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Abstract—Based on vector electromagnetic theory and the Waveg-
uide Model, the vector Hopkins model is deduced. The model contains
the vector Hopkins formula and the resist profile model of fast Opti-
cal Proximity Correction. The vector Hopkins formula considers inci-
dence angles and azimuth angles of off-axis illumination, which differs
from the traditional scalar Hopkins formula. The resist profile model
is employed to analyze the effect of the photoresist diffusion under
off-axis illumination by using self-adaptive Gaussian filter with scale
adjustable, and a new transmission cross coefficient is obtained. The
projection system parameters are introduced simultaneously, such as
incidence angles, azimuth angles of off-axis illumination and diffusion
parameters of photoresist. By simulating the aerial image of 3D mask
in the actual lithography process, the optimal angular range of oblique
incidence is studied; the image quality by impact with the oblique
incidence angle is discussed as well.

1. INTRODUCTION

The steadily decreasing dimensions in semiconductor devices are for
filling the requirement of the increased resolution in nanolithography.
Off-axis illumination (OAI) as one of the important resolution
enhancement techniques is applied to achieve the higher resolution [1].
However, the models like Optical Proximity Correction (OPC) which
utilize the OAI are still using the thin film mask approximation method
(Kirchhoff approach or scalar Hopkins model). In this Kirchhoff
approach framework where the mask is considered as an infinitely
thin film, the diffracted orders of an oblique incident light under the
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condition of OAI are assimilated as the normal incident waves and
calculated by a simple shift in the Fourier spectrum. This is only
valid in Kirchhoff approach where the near-field calculation of the
diffractions at mask edges is not included. Recent research results have
demonstrated the limitations of Kirchhoff approach in the paper of OAI
concerned [2, 3]. Vector lithography simulation has been becoming
more and more important. Three-dimensional (3D) simulation is
necessary for accurate modeling in such critical problems, e.g., 3D
defects, 3D mask repair and optical proximity effects. However,
the major disadvantage of 3D rigorous vector simulation is the huge
increased computation time and memory requirements over 3D scalar
models and 2D vector models [4, 5]. Based on this, and taking the
OPC model into account, computation load is much heavier. The
final aim of OPC model is to reduce the amount of calculation and
improve accuracy at the same time. However, the traditional resist
profile model of fast OPC, which was used to simulate the photoresist
diffusion, usually can be simulated by a Transmission Cross Coefficient
(TCC) convoluting a simple 2D Gaussian filter [6] and ignored effects
caused by the scale parameter σ of Gaussian filter, so it was not
accuracy enough for 3D mask in OAI.

In this paper, a new vector Hopkins model is proposed to improve
operational precision in nanolithography simulation. The model
contains the vector Hopkins formula and the modified resist profile
model of fast OPC. The vector Hopkins formula is deduced by using
Vector Electromagnetic Theory [7–11] and Waveguide Models [12].
The new formula contains the incidence angles and the azimuth angles
of off-axis illumination, which is different from the traditional scalar
Hopkins formula. Based on this vector formula, the modified resist
profile model of fast OPC is obtained by convolving self-adaptive
Gaussian filter with scale adjustable, which is proposed firstly in
this manuscript, and a new transmission cross coefficient (T̃CC) is
obtained as well. The T̃CC includes the projection system parameters
such as incidence angles, azimuth angles of off-axis illumination and
photoresist diffusion of parameters. The image quality depending on
the incidence angles is investigated and the best range of illumination is
concluded. These results are verified by our simulations compared with
scalar Hopkins formula. Finally the run time and required memory by
using the vector Hopkins model are compared with the rigorous vector
simulation method, and the result indicates that the vector Hopkins
model is a fast and precise simulation method.
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2. THEORY

2.1. Vector Hopkins Formula

In order to calculate the 3D mask accurately, the additional parameters
including incidence angles and incidence azimuth angles of the
illumination source are taken into account to descript the OAI model
in this paper as shown in Figure 1.
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Figure 1. Incidence light and 3D mask schematics.

In Figure 1, Λ is the period along the X -axis direction of mask
pitch,

⇀

K is the incident wave vector, θ is the incident angle which is the
intersection angle between the incident wave vector and Z -axis, and ϕ
is the incident azimuth angle which is the intersection angle between
projection vector of

⇀

K in X-Y plane and X -axis. And we assume that
the evanescent waves are not contained in the incident field.

The j -order diffraction vector electric field can be calculated by
applying the Rigorous Diffraction Theory and the electromagnetic field
boundary conditions [7]:

⇀

Ej =
⇀

Aj exp
{
−i

[
⇀

kxjx +
⇀

kyy +
⇀

kzjz
]}

(1)

where j is an integer referring to a diffraction order,
⇀

Aj is the vector
transmission amplitude, kxj = Kx + 2π

Λ j, Kx = 2π
λ sin θ cosφ, ky =

2π
λ sin θ sinφ and kzj =

√(
2π
λ n

)2 − k2
y − k2

xj are the components of
wave vector along the X-axis, Y -axis and Z-axis, respectively. The
j-order diffraction vector magnetic field has the similar form which
corresponds with the vector electric field.

Applying the electromagnetic field diffraction operation [7, 13],
one obtains the following expressions for the fields which incident
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on the Entrance Pupil (EP) in the Fresnel region of the diffracted
field [14, 15]:

Applying the electromagnetic field diffraction operation [14], one
obtains the following expressions for the fields which incident on the
Entrance Pupil (EP) in the Fresnel region of the diffracted field [15]:

⇀
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j
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where F denotes Fourier Transformation, R is the distance from the
intersection point O of the mask with the optical axis to an observation
point Q on the EP.

The electric vector
⇀

EEPj at a point on EP is rotated into electric

vector
⇀

EXPj at the corresponding point on the Exit Pupil (XP) [16].
⇀

EXPj (Kx, Ky; sxj , sy) = M (sxj , sy)×
⇀

EEPj (Kx, Ky; sxj , sy) (4)
where (sxj , sy) = (kxj/m, ky/m), m represents the magnification, and
M represents the lens matrix.
M (sxj , sy) =



s2
y −sxjsy 0

−sxjsy s2
xj 0

(Kxsxj + Kysy)sxjsz (Kxsxj + Kysy)sysz (Kxsxj + Kysy)(s2
xj + s2

y)


 (5)

Hence the vector electric field on the optics image can be
represented [17, 18]:

⇀

E=

∫∫
√

s2
xj+s2

y≤NA

⇀

A (sxj , sy)× ei(sxjx+syy+szz)dsxjdsy (6)

where (sxj , sy, sz) represents the direction of propagation parameter,

and
⇀

A is the amplitude vector:

~A (sxj , sy; Kx, Ky) =
m

jλ2

√√√√ ~z · ⇀

k

~z · ⇀

K
M (sxj , sy)F

{
⇀

Ej ;
sxj −Kx

λ
,
sy −Ky

λ

}
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where Φ(sxj , sy) is the aberration function, and ∆ is the defocus
distance.

Next, the intensity distributions on the wafer. We assume that
the wafer grating structure is invariant along the ±~y directions, and
the structure with nonvertical sidewalls is approximated by stratifying
it into many thin sublayers with vertical sidewalls. The traveling
direction of the incident wave E is restricted to be on the xz plane and
thus the scattered waves are also on the same plane symmetrically.
Then the amplitude on the wafer could be computed using the
waveguide model [12].

In order to increase the speed of calculation, the incident
electromagnetic wave is divided into TE polarization and TM
polarization and then the components are studied respectively.

2.1.1. TE Mode

Inside a stratified layer i, the electric and magnetic fields are expressed
by

Ei
y =

L∑

m=−L

[(
F i

me
αi

m(z−zi−1)

+ F
′i
me

−αi
m(z−zi−1)

)
×
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]

(8)

H i
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)
×
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lmeil(sxjx+syy)

]

(9)
where L is proportional to the number of traveling waves in the
calculation.

By using the Waveguide Model in [12], the electric field in Y
direction is deduced:

Ey =
N∑

i=−0

(
L∑

m=−L

[(
F i

me
αi

m(z−zi−1)

+F
′i
me

−αi
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)

×
L∑
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Gi
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])
= E(+)

y + E(−)
y (10)

where E
(+)
y and E

(−)
y are the electric components of downgoing (+) and

upgoing (−) waves, respectively, at the depth of z in the photoresist
correlated with the incident electric wave in TE-polarization.
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2.1.2. TM Mode

Following the Section 2.1.1, we obtain the magnetic field in Y direction,
which is described as:

Hy =
N∑

i=0

(
−

L∑

m=−L

[(
F i

me
αi

m(z−zi−1)−F
′i
me

−αi
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)

×
L∑
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])
= H(+)

y + H(−)
y (11)

where H
(+)
y and H

(−)
y are the magnetic components of the downgoing

(+) and upgoing (−) waves, respectively, at the depth of z in the
photoresist due to incident magnetic wave in TM-polarization.

2.1.3. Common Conditions

The incident electromagnetic waves can be generally described by non-
coherently superposing TE model and TM mode. As introduced in
the Section 2.1.1 and Section 2.1.2, the final amplitude vector of the
incident wave on the wafer is shown as below:

⇀
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[

⇀
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] [
E(+)

y + E(−)
y

]
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] 1
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s
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r
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(
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s
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r
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(12)

where the first item denotes TE-polarization and the second one
denotes TM-polarization. Besides, nr is the complex refractive index

of photoresist and
−−→
s
(±)
r is the propagation vectors of the downgoing

(+) and upgoing (−) waves, respectively. In the photoresist, the unit

vectors ⇀
e⊥ =

⇀
z×⇀

K∣∣∣∣
⇀
z×⇀

K

∣∣∣∣
and ⇀

e// = ⇀
e⊥ ×

⇀

K are normal direction and

tangential direction, respectively. (⇀
s is the unit vector of

⇀

A). Based
on (5) and (7), A(sxj , sy) can be written in a matrix form. It is
substituted back in (12), we obtain

B(sxj , sy) = Pij(sxj , sy)A(sxj , sy), i, j = 1, 2, 3 (13)
when (11) is substituted back in (18), we obtain

B(sxj , sy;Kx,Ky) =
m

iλ2
Kij
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λ
,
sy

λ
; z

)
×F

{
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sxj −Kx

λ
,
sy −Ky

λ

}

(14)
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in which

Kij =

√
~z · ~r
~z · ~s Pij(sxj , sy)M(sxj , sy)ei[Φ(sxj , sy)−sxj∆]. (15)

2.1.4. Intensity Computation

Applying Abbe Principle and the intensity definition [3], the final
intensity can be obtained:

I(x, y, z) =
∫∫

J(Kx, Ky)
∣∣∣∣
∫∫

B(sxj , sy; Kx, Ky)

×ei(sxjx+syy)dsxjdsy

∣∣∣∣
2

dKxdKy (16)

where J(Kx, Ky) is the intensity of the source.
When (14) is substituted back in (16), we obtain the vector

Hopkins formula:
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where the Transmission Cross Coefficient (TCC) is

Tij =
∫∫
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λ
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)
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(
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λ
,
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)
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(s′xj , s
′
y) is the conjugate component of (sxj , sy). Since (18)

contains the incidence angles and azimuth angles of OAI, it is so-called
vector TCC.

The vector Hopkins formula of (17) is identical with the scalar
Hopkins formula [3] in form. When θ = 0 and ϕ = 0, (17) can be
reverted into the scalar Hopkins formula.
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2.2. The Resist Profile Model

The photoresist diffusion model is used to characterize the accurate
resist profile simulation for OPC. In [6], according to adjust the only
parameter of Gaussian filter — standard deviation, the effect of the
photoresist diffusion can be simulated by TCC convoluting a simple 2D
Gaussian filter. However, this method considers neither the influence
of incidence angles under OAI nor the filter effect for Gaussian filter.
Practically, the Gaussian filter usage in image processing is that the
scale parameter σ of Gaussian filter is required as larger as possible
corresponding to the image edge, and while σ is required as smaller as
possible corresponding to the image smoothing department. Evidently,
how to choose the optimum value of σ is important to the resist profile
simulation. So, self-adaptive Gaussian filter with scale adjustable is
designed.

2.2.1. Self-adaptive Gaussian Filter with Scale Adjustable Model

Two-dimensional (2D) Gaussian filter is

G (x, y) =
1

2πσ2
e

(
−x2+y2

2σ2

)

(19)

As TN Cornsweet [19] has used the image pixel grayscale value
countdown as the pixel related to σ, the problem of choosing σ can be
transformed to the judgment of the current image pixel of the region
smoothness problem.

We assume the current image pixel is (x, y), the filter window
is m × n, the image signal is L(x, y), and the sampling image signal
of the filter window is L(i,j)(x, y), so the average grayscale value of
corresponding image window is

Mw(x, y) =
1

m× n

(m+1)/2∑

i=−(m+1)/2

(n+1)/2∑

j=−(n+1)/2

L(i, j) (x, y) (20)

The difference of the current pixel’s grayscale value and the
average grayscale value of corresponding image window is

D (x, y) = |L (x, y)−Mw (x, y)| (21)

Because Mw (x, y) represents the smoothness of image window,
D (x, y) is inversely proportioned to the smoothness of image window.
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So the Gaussian filter standard deviation is
σ =D (x, y) = |L (x, y)−Mw (x, y)|

=

∣∣∣∣∣∣∣∣
L (x, y)− 1

mn

(m + 1)/2∑

i=−(m + 1)/2

(n + 1)/2∑

j=−(n + 1)/2
L(i, j) (x, y)

∣∣∣∣∣∣∣∣

(22)

When (22) is substituted back in (19), the self-adaptive Gaussian
Filter with scale adjustable is obtained.

2.2.2. The Resist Profile Model

Then the self-adaptive Gaussian Filter with scale adjustable
convolutes (17), we obtain the simplification expression:

Ieff (x, y)=I (x, y) ∗G (x, y)

=

∞∫

−∞

∞∫

−∞

(∫∫∫∫
TCCij ×G (x− u, y − v)× F

×F∗× ei[(sxj−s′jx)x+(sy−s′y)y]dsxjdsyds′xjds′y

)
dudv

=
∫∫∫∫

T̃CC × F× F∗ × ei[(sxj−s′jx)x+(sy−s′y)y]dsxjdsyds′xjds′y (23)

in which

T̃CC =

∞∫

−∞

∞∫

−∞
TCCij ×G (x− u, y − v) dudv (24)

(24) is so-called T̃CC. It contains the projection system param-
eters such as incidence angles, azimuth angles of off-axis illumination
and diffusion of photoresist of parameters.

2.3. The Matrix Decomposition Algorithm of T̃CC

Since the T̃CC includes various parameters of the projection system,
the algorithm of T̃CC becomes particularly important. When the
dielectric constant of wafer is real, the T̃CC function is a complex
Hermitian matrix, and the decomposition on T̃CC can be transformed
to solve Hermitian matrix eigenvalues problem. Weilandt-Hoffman
theorem has proved that eigenvalues of Hermitian matrix are not



300 Cao, Cheng, and Zhang

sensitive to small perturbations of the matrix elements [20]. So
the Hermitian matrix can be directly transformed into a symmetric
diagonal matrix. There are many algorithms to solving eigenvalues of
the symmetric diagonal matrix, and we use the RRR (Relative Robust
Representation) algorithm, which is considered to use the smallest
work space [21]. When the dielectric constant of wafer is not real, the
T̃CC function is a general matrix, and the eigenvalues and eigenvectors
of T̃CC can be obtained by numerical methods, whose computation
load is big. The genetic algorithm [22] can raise the computation speed,
and our algorithm in this paper comes from [23].

3. SIMULATION RESULTS

MATLAB is used to simulations. Firstly, diffraction intensity
distributions of the single slit mask are computed by (22). The width
of the slit is 155 nm. Assumed the incidence wavelength is 193 nm, and
the electromagnetic wave is incident through the mask with different
incidence angles. The results are as shown in Figures 2–5.

In Figure 2, the 1-order diffraction intensity distributions for
different incidence angles are compared, in which azimuth angles are
invariable. Figure 2 shows the central place of intensity shifts with
the incident angle, the intensity amplitude and the lobe width are also
changed when the incident angle changed. But the decrease of the
intensity amplitude is more obvious for 85 degree incidence angle in
Figure 2, where OPE is quite prominent. Relatively, the peak value
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in 75 degree incidence angle is approaching the max. The 0-order
diffraction situation is similar to 1-order diffraction.

In Figure 3, the azimuth angles with corresponding incidence
angles by (22) are compared. It shows that the incident azimuth only
influences the intensity amplitude.The results of the periodic mask are
similar, so we do not repeat that for the paper length limit.

Because the position of reflective spot was measured to detect
the silicon chip platform’s horizontal position in the circumstance
of industry, we can acquire the reflectivity of the light reflected by
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the topside of the mask and determine the best oblique illumination
incidence angle. And the reflectivity formula is

Γ =
Iinc − I

Iinc
(25)

where Iinc is the normalization intensity, I is the intensity thru the
mask. (17) is normalized and substituted back in (25), the relational
curve is obtained as shown in Figure 4. It shows the lowest reflectivity
is between 60–75 degrees in the large numerical aperture, and the
luminous intensity transmissibility is quite high.

Furthermore, the photoresist profile is simulated by using a simple
2D Gaussian filter and (23), respectively, as shown in Figures 5(a) and
5(b). It shows that the effect of photoresist diffusion in wafer profile
can be accurately simulated by using our Gaussian model.

To further confirm the vector Hopkins formula inferred in this
paper, a simple diplo-hole mask is simulated, as shown in Figure 6.
The simulation image by using the scalar, vector Hopkins formula
and rigorous coupled-wave analysis (RCWA) [24–26] are shown in
Figures 6(b), (c) and (d), respectively. By contrasting (b) with (c),

(a) (b) 

0 45 90 135 180 225

x [nm] x [nm]

Z
 [
n
m

]

Z
 [
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]

Figure 5. Simulation result on resist profile. (a) The resist profile by
using the simple 2D Gaussian filter model. (b) The resist profile by
using the adaptive Gaussian filter with scale adjustable model.
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Figure 6. Simulation result on wafer: (a) a mask pattern; (b)
the scalar Hopkins formula; (c) the vector Hopkins formula; (d) the
rigorous coupled-wave analysis
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the image pattern with vector Hopkins formula simulation is much
distinct. By contrasting (d) with (c), the image pattern error is not
obvious. Figure 7 shows the 3D intensity distributions of the mask
pattern is simulated by scalar, vector Hopkins formula and RCWA,
and results are shown in Figures 7(a), (b) and (c), respectively. We
find that the diffraction intensity is most centralized by using RCWA,
next is using the vector Hopkins formula. The comparative results
between our model and scalar Hopkins method correspond with the
comparative results between the rigorous vector simulation method
and scalar Hopkins method [24].

Finally, the computation time, the memory requirements and
amplitude error of intensity by using the vector Hopkins method are
compared with the RCWA. Taking a 70 degrees oblique TE wave
illuminates aforementioned single slit mask as an example, the 1st-

Table 1. Run time and memory comparison of the vector Hopkins
method and RCWA.

Method Vector Hopkins Method RCWA
Run time 128.046000 seconds 177.2800000 seconds

Memory required 102Meg 119Meg

(a)  The scalar Hopkins formula.
(b)  The vector Hopkins formula 

( 75   incidence angle).o

(c)  The rigorous coupled-wave analyses
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Figure 8. 1st-order diffraction intensity distributions of vector
Hopkins method and RCWA.

order diffraction intensity distributions is calculated, as shown in
Figure 8, and the results of this comparison are shown in Table 1.
Obviously, computation time and the memory requirements are
reduced by using the vector Hopkins method. The reason is that this
method is not necessary to incorporate many evanescent waves into
simulations because of the strong filtering by the projection lens. As
shown in Figure 8, there is tiny amplitude error of intensity, which
is less than 10−4. So, the vector Hopkins model is a fast and precise
model.

4. CONCLUSION

The vector Hopkins formula is deduced in our work. It contained
the projection system parameters such as incidence angles, azimuth
angles and photoresist diffusion of parameters. It is observed that
the lithography imaging depends on the incidence angles and azimuth
angles. The best oblique incidence angle scope to OAI lithography is
investigated. Meanwhile, the new transmission cross coefficient (T̃CC)
is used for fast precise simulation. The evaluation shows that the vector
Hopkins formula provides improved accuracy compared with scalar
Hopkins formula under hyper NA and Off-axis Illumination lithography
simulation. And the computation time the memory requirements are
smaller by using vector Hopkins model. Therefore the model has well
serviceability and application prospect.
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