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Abstract—Based on the equivalence principle and the reciprocity
theorem, the multiple scattering up to Nth-order by adjacent multi-
particles is considered in this study. It is well known that the first-order
solution can easily be obtained by calculating the scattered field from
isolated targets when illuminated by a plane wave/Gaussian beam.
However, due to the difficulty in formulating the couple scattered
field, it is very difficult to find an analytical solution for the higher-
order of the scattered field with considering the multiple scattering
even for multi-canonical geometries, such as spheres, spheroids, and
cubes. In order to overcome this problem, in this present work, the
higher-order solutions of electromagnetic scattering for multi-particles
are derived by employing the technique based on the reciprocity
theorem and the equivalence principle. In specific, using the formulas
of the composite scattering field obtained in this work, the bi-static
scattering of plane wave/Gaussian beam by adjacent multi-spheres
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is calculated and the results are compared with those obtained from
the numerical computations by the Time Domain Integral Equation
Method (TDIEM).

1. INTRODUCTION

The study of electromagnetic scattering from discrete particles has
been the subject of intensive investigation over the past several decades
for its important application in the understanding of remotely sensed
data [1–7]. Because of the simplicity of the geometry and the interest
in practical applications, scattering of plane wave or Gaussian beam by
isolated particles, such as spheres and cylinders, has been well studied
both theoretically and experimentally [8–15]. However, when the
composite scattered field from the discrete random media is studied,
the interactions of the electromagnetic wave between different particles
should be taken into account. Due to the important influence on
total field, higher-order of the scattered field, i.e., considering the
multiple scattering from the multi-particles, has attracted the attention
of many researchers. Unfortunately, to obtain the scattering solution
up to higher-order, it is necessary to treat electromagnetic interaction
between objects that is not only non-plane-wave in character but
have non-uniformities in amplitude and phase. For this type of
problem, the exact analytical solutions can not be found except in a
very small number of cases [15–17]. To overcome these difficulties,
a new technique based on the reciprocity theorem is proposed by
to evaluate the composite scattered field from two adjacent targets
and an approximate solution for the scattered field up to the second-
order is obtained [18]. In this paper, we extend the previous research
from scattering of the two adjacent 2D targets with plane/Gaussian
beam incidence to the case of multi-particles, and an approximate
solution up to Nth-order for scattered field of a plane wave/Gaussian
beam from adjacent multi-particles is derived employing the reciprocity
theorem [18–22] and the equivalence principle [22]. In the solution, only
the previous order scattered field of objects and the equivalent surface
electric or/and magnetic current density induced by the incident beam
are required.

As an example, in Section 3, the approach proposed in Section 2 is
applied to obtain a solution for composite scattered field from adjacent
multi-spheres. In Section 4, the bi-static scattering is discussed and
the results are compared with numerical computations by employing
the Time Domain Integral Equation Method.
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2. SCATTERING OF A PLANE WAVE/GAUSSIAN
BEAM BY ADJACENT PARTICLES

When we are interested in a limited region of space, it is well known
that all uninteresting regions outside this space can be replaced by
using equivalent sources, which include equivalent electric current
and/or magnetic current [22, 23]. In general, when the composite
scattered field from discrete particles is studied, the field outside the
scatterers is of interest. Thus, the scatterers can be replaced by
employing equivalent surface electric current and/or surface magnetic
current. In this section, based on the equivalence principle and the
reciprocity theorem, a solution for composite scattering of Gaussian
beam by discrete particles is derived.
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Figure 1. Geometry of the scattering problem.

As is shown in Fig. 1(a), N particles, which are randomly

distributed, are illuminated by a plane wave/Gaussian beam.
⇀

E
i

1

and
⇀

H
i

1 denote the electric and magnetic field of the incident field,
respectively. Without loss of the generality, suppose the incident
wave would induce an equivalent electric current density

⇀

Jn and an
equivalent magnetic current density

⇀

Mn on the surface of particle n in
the absence of the other particles. Firstly, considering the equivalent
electric current density

⇀

Jn as the primary source, the electric and
magnetic fields produced by

⇀

Jn in the presence of the other N − 1
particles are denoted by

⇀

EJn and
⇀

HJn. On the other hand, considering



222 Guo et al.

the equivalent magnetic current density
⇀

Mn as the excitation source,
the electric and magnetic fields produced by

⇀

Mn in the presence of the
other N − 1 particles are denoted by

⇀

EMn and
⇀

HMn, respectively.
Now, let us consider another situation where the source

⇀

Jn

and
⇀

Mn are removed and an infinitesimal electric current source
⇀

Je = p̂δ(⇀
r − ⇀

r 0) and an infinitesimal magnetic current source
⇀

Mm =
q̂δ(⇀

r − ⇀
r 0) are placed at the far-zone observation point P , as shown

in Fig. 1(b). Here, the unit polarization vector q̂(v̂s or ĥs) and p̂(v̂s

or ĥs) are related by q̂ = k̂s × p̂, where k̂s denotes the unit vector of
the propagation direction of the scattered field. In the presence of the
particles except for the particle n, the electromagnetic fields produced
by

⇀

Je and
⇀

Mm are denoted by
⇀

Ee,
⇀

He and
⇀

Em,
⇀

Hm, respectively.
Here, it should be emphasized that the fields

⇀

Ee,
⇀

He,
⇀

Em and
⇀

Hm not
only contain the fields excited by the infinitesimal sources but their
scattered fields from the particles except for particle n.

Applying the reaction theorem [22] over the entire space, which
results in ∫

Sn

[
⇀

Jn ·
(

⇀

Ee +
⇀

Em

)
− ⇀

Je ·
(

⇀

EJn +
⇀

EMn

)

+
⇀

Mm ·
(

⇀

HJn +
⇀

HMn

)
− ⇀

Mn ·
(

⇀

He +
⇀

Hm

)]
dS

=
∫∫
©
s∞

[(
⇀

EJn +
⇀

EMn

)
×
(

⇀

He +
⇀

Hm

)

−
(

⇀

Ee +
⇀

Em

)
×
(

⇀

HJn +
⇀

HMn

)]
· d⇀

S

+
N∑

l=1,l �=n

∫∫
©
sl

[(
⇀

EJn +
⇀

EMn

)
×
(

⇀

He +
⇀

Hm

)

−
(

⇀

Ee +
⇀

Em

)
×
(

⇀

HJn +
⇀

HMn

)]
· d⇀

S (1)

where S∞ represents a closed sphere at infinity. At an infinite distance
away from the source, the following two relations exist(

⇀

EJn +
⇀

EMn

)
= −Z0n̂ ×

(
⇀

HJn +
⇀

HMn

)
(2)(

⇀

Ee +
⇀

Em

)
= −Z0n̂ ×

(
⇀

He +
⇀

Hm

)
(3)
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By substituting Eq. (2) and Eq. (3) into Eq. (1), the integral
over S∞ on the right-hand side vanishes. Based on the equivalence
principle and the extinction theorem [22], also the surface integral over
the surface of the N − 1 particles vanishes since n̂ × ⇀

E = n̂ × ⇀

H = 0.
Thus, Eq. (1) can be written as∫

Sn

[
⇀

Jn ·
(

⇀

Ee +
⇀

Em

)
− ⇀

Je ·
(

⇀

EJn +
⇀

EMn

)

+
⇀

Mm ·
(

⇀

HJn +
⇀

HMn

)
− ⇀

Mn ·
(

⇀

He +
⇀

Hm

)]
dS = 0 (4)

Suppose the particles are all perfectly electric conducting
scatterers, as well known, the surface magnetic current density is
⇀

Mn = 0, and based on the reciprocity theorem, the elementary
magnetic current source

⇀

Mm equal to zero, too. Then, Eq. (4) can
be simplified as follows∫

Sn

(
⇀

Jn · ⇀

Ee −
⇀

Je ·
⇀

EJn

)
dS = 0 (5)

Suppose N perfectly magnetic particles are considered, the surface
electric current

⇀

Jn = 0, and based on the reciprocity theorem, the
elementary electric current source

⇀

Je equal to zero, too. Then, Eq. (4)
can be written as∫

Sn

(
⇀

Mm · ⇀

HMn − ⇀

Mn · ⇀

Hm

)
dS = 0 (6)

In the case of the scatterers are all dielectric, using Eq. (4)–Eq. (6),
the following three equations are obtained∫

Sn

(
⇀

Jn · ⇀

Ee −
⇀

Je ·
⇀

EJn

)
dS = 0 (7)

∫
Sn

(
⇀

Mm · ⇀

HMn − ⇀

Mn · ⇀

Hm

)
dS = 0 (8)

∫
Sn

(
⇀

Jn · ⇀

Em − ⇀

Je ·
⇀

EMn +
⇀

Mm · ⇀

HJn − ⇀

Mn · ⇀

He

)
dS = 0 (9)
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Because
⇀

Je and
⇀

Mm are both infinitesimal sources, Eq. (7)–Eq. (8)
can also be written as the following forms

p̂ · ⇀

EJn =
∫
Sn

⇀

Jn · ⇀

EedS (10)

q̂ · ⇀

HMn =
∫
Sn

⇀

Mn · ⇀

HmdS (11)

p̂ · ⇀

EMn − q̂ · ⇀

HJn =
∫
Sn

(
⇀

Jn · ⇀

Em − ⇀

Mn · ⇀

He

)
dS (12)

Then, using Eq. (10)–Eq. (11), the first-order scattered field from
particle n and the secondary scattered field, i.e., rescattered field from
the other N − 1 particles when illuminated by the first-order scattered
field of particle n, can be evaluated.

In Eqs. (10) and (11), if the multiple scattered field up to N − 1
order scattered fields of

⇀

Eed and
⇀

Hmd from the particles except for the
particle n are all taken into account, we should note that

⇀

Ee and
⇀

Hm

can be obtained as

⇀

Ee =
⇀

Eed +
N∑

l1=1,l1 �=n

⇀

E
(1)l1

eds +
N∑

l1=1,l1 �=n

N∑
l2=1,l2 �=n,l1

⇀

E
(2)l1l2

eds + . . .

+
N∑

l1=1,l1 �=n

N∑
l2=1,l2 �=n,l1

. . .
N∑

lN−1=1,lN−1 �=n,lN−2

⇀

E
(N−1)l1l2...lN−1

eds (13)

⇀

Hm =
⇀

Hmd +
N∑

l1=1,l1 �=n

⇀

H
(1)l1

mds +
N∑

l1=1,l1 �=n

N∑
l2=1,l2 �=n,l1

⇀

H
(2)l1l2

mds + . . .

+
N∑

l1=1,l1 �=n

N∑
l2=1,l2 �=n,l1

. . .

N∑
lN−1=1,lN−1 �=n,lN−2

⇀

H
(N−1)l1l2...lN−1

mds (14)

In Eqs. (13) and (14), the multiple scattered field of
⇀

Eed and
⇀

Hmd

by the particle n does not be considered. If these scattered fields are
also taken into account, Eqs. (13) and (14) should be rewritten as the
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following expressions, i.e.,

⇀

Ee =
⇀

Eed +
N∑

l1=1,l1 �=n

⇀

E
(1)l1

eds +
N∑

l1=1

N∑
l2=1,l2 �=n,l1

⇀

E
(2)l1l2

eds + . . .

+
N∑

l1=1

N∑
l2=1,l2 �=l1

. . .

N∑
lN=1,lN �=n,lN−1

⇀

E
(N)l1l2...lN

eds (15)

⇀

Hm =
⇀

Hmd +
N∑

l1=1,l1 �=n

⇀

H
(1)l1

mds +
N∑

l1=1

N∑
l2=1,l2 �=n,l1

⇀

H
(2)l1l2

mds + . . .

+
N∑

l1=1

N∑
l2=1,l2 �=l1

. . .
N∑

lN=1,lN �=n,lN−1

⇀

H
(N)l1l2...lN

mds (16)

Substituting Eqs. (15) and (16) into Eqs. (10) and (11), the two
following equations are obtained

p̂ · ⇀

EJn =
∫
Sn

⇀

Jn ·
⎡
⎣⇀

Eed +
N∑

l1=1,l1 �=n

⇀

E
(1)l1

eds +
N∑

l1=1

N∑
l2=1,l2 �=n,l1

⇀

E
(2)l1l2

eds + . . .

+
N∑

l1=1

N∑
l2=1,l2 �=l1

. . .

N∑
lN=1,lN �=n,lN−1

⇀

E
(N)l1l2...lN

eds

⎤
⎦ dS

=
∫
Sn

⇀

Jn · ⇀

EeddS +
∫
Sn

⇀

Jn ·
N∑

l1=1,l1 �=n

⇀

E
(1)l1

eds dS

+
∫
Sn

⇀

Jn ·
N∑

l1=1

N∑
l2=1,l2 �=n,l1

⇀

E
(2)l1l2

eds dS + . . .

+
∫
Sn

⇀

Jn ·
N∑

l1=1

N∑
l2=1,l2 �=l1

. . .
N∑

lN=1,lN �=n,lN−1

⇀

E
(N)l1l2...lN

eds dS

= p̂ ·
⎡
⎣⇀

E
(0)

Jn +
N∑

l1=1,l1 �=n

⇀

E
(1)l1

Jn +
N∑

l1=1

N∑
l2=1,l2 �=n,l1

⇀

E
(2)l1l2

Jn + . . .

+
N∑

l1=1

N∑
l2=1,l2 �=l1

. . .

N∑
lN=1,lN �=n,lN−1

⇀

E
(N)l1l2...lN

Jn

⎤
⎦ (17)
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q̂ · ⇀

HMn=
∫
Sn

⇀

Mn ·
⎡
⎣⇀

Hmd+
N∑

l1=1,l1 �=n

⇀

H
(1)l1

mds +
N∑

l1=1

N∑
l2=1,l2 �=n,l1

⇀

H
(2)l1l2

mds + . . .

+
N∑

l1=1

N∑
l2=1,l2 �=l1

. . .
N∑

lN=1,lN �=n,lN−1

⇀

H
(N)l1l2...lN

mds

⎤
⎦ dS

=
∫
Sn

⇀

Mn · ⇀

HmddS +
∫
Sn

⇀

Mn ·
N∑

l1=1,l1 �=n

⇀

H
(1)l1

mds dS

+
∫
Sn

⇀

Mn ·
N∑

l1=1

N∑
l2=1,l2 �=n,l1

⇀

H
(2)l1l2

mds dS + . . .

+
∫
Sn

⇀

Mn ·
N∑

l1=1

N∑
l2=1,l2 �=l1

. . .

N∑
lN=1,lN �=n,lN−1

⇀

H
(N)l1l2...lN

mds dS

= q̂ ·
⎡
⎣⇀

H
(0)

Mn +
N∑

l1=1,l1 �=n

⇀

H
(1)l1

Mn +
N∑

l1=1

N∑
l2=1,l2 �=n,l1

⇀

H
(2)l1l2

Mn + . . .

+
N∑

l1=1

N∑
l2=1,l2 �=l1

. . .

N∑
lN=1,lN �=n,lN−1

⇀

H
(N)l1l2...lN

Mn

⎤
⎦ (18)

where,
⇀

Eed is the direct electric field generated by
⇀

Je = p̂δ(⇀
r −⇀

r 0) and
⇀

Hmd is the direct magnetic field excited by
⇀

Mm = q̂δ(⇀
r −⇀

r 0).
⇀

E
(i)l1l2...

eds

and
⇀

H
(i)l1l2...

mds (i = 1, 2, 3, . . . , N) are the multiple scattered fields from
the particles when illuminated by

⇀

Eed and
⇀

Hmd, respectively.
In the following discussions, it should be noted that the particle

n is an arbitrary one among all the particles. Therefore, the scattered
field from the other particles can be calculated by using the similar
way. Thus, the composite scattered field of Gaussian beam by the
particles is obtained as

⇀

E
s

=
N∑

n=1

(
⇀

EJn +
⇀

EMn

)
(19)

In Eq. (19),
⇀

EJn can be evaluated by Eq. (17). Meanwhile,
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using the relation
⇀

EMn = −Z0k̂s ×
⇀

HMn,
⇀

EMn is obtained by solving
Eq. (18).

3. ELECTROMAGNETIC SCATTERING OF GAUSSIAN
BEAM BY ADJACENT MULTI-SPHERES

In the previous section, the expressions, which can be applied to
evaluate the scattered field from any adjacent particles with known
geometries and dielectric properties, are derived. As an example of
the application of the new approach, in this section an approximate
analytical solution is derived for N multi-layered spheres. As shown
in Fig. 2, the assumption is made that the multi-layered spheres lie in
the far-field region of each other, i.e., the following conditions should
be satisfied {

2a2
l1

/
λ < r̃l1l2

2a2
l2

/
λ < r̃l1l2

here l1, l2 ∈ [1, N ] and l1 �= l2 (20)

where λ denotes the wavelength of the incident wave,
⇀

r̃ l1l2 = ⇀
r l2 − ⇀

r l1

and r̃l1l2 = |⇀r l2−⇀
r l1| is the distance between sphere centers of sphere l1

and l2, al1 and al2 are the radii of sphere l1 and l2, respectively. Suppose

ik

1

4
5

6

N

2

x̂

ẑ

ŷ0W
0

21

~
llr

3

2l

1l 2l
r

1l
r

Figure 2. Geometry and coordinates of the scattering model.
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a Gaussian beam, which propagates along the positive z-direction, is
incident upon the multi-layered spheres. As is apparent in Fig. 2, the
incident Gaussian beam has its focal point at origin point and W0

denotes its beam-waist radius. Neglect the time factor exp(−iωt), the
spatial distribution of the amplitude of the electric component Eη̂ in
the z = 0 plane is given by [11]

Eη̂(x, y, 0) = E0 exp
[
−(x2 + y2)

W 2
0

]
(21)

where E0 denotes the amplitude of the electric component at the center
of the beam and, in the following, E0 is set to be 1. The polarization
η̂ may be chosen to be either x̂ (TM) or ŷ (TE). In the next step, the
approximate analytical solutions of the scattered field by the multi-
layered spheres are derived.

3.1. Soulutions to the First-order Scattered Field

When the observation point ⇀
r 0 lies in the far-field zone, the expressions

of
⇀

Eed and
⇀

Hmd along −k̂s are given by [17, 23]

⇀

Eed(r0) =
−ik0Z0

4πr0
exp(ik0r0) exp

(
−i

⇀

ks · ⇀
r
)

k̂s × k̂s × p̂ (22)

⇀

Hmd(r0) =
−ik0Y0

4πr0
exp(ik0r0) exp

(
−i

⇀

ks · ⇀
r
)

k̂s × k̂s × q̂ (23)

where k̂s denotes the propagation direction of the scattered field, k0

is the wave number of the incident wave in free space, Z0 = 1/Y0

characteristic impedance.
Invoking the equivalent principle, suppose the equivalent electric

and magnetic current density on the surface of sphere n are denoted by
⇀

Jn and
⇀

Mn, respectively. Using Eq. (17) and Eq. (18), the first-order
scattered field of sphere n can be expressed as

p̂ · ⇀

E
(0)

Jn =
∫
Sn

⇀

Jn · ⇀

EeddS (24)

q̂ · ⇀

H
(0)

Mn =
∫
Sn

⇀

Mn · ⇀

HmddS (25)

Substituting Eq. (22) and Eq. (23) into Eq. (24) and Eq. (25),
using Stratton-Thu formulation [22], the first-order scattered field from
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sphere #1 when illuminated by the incident Gaussian beam is given
by

p̂ · ⇀

E
(0)

n = p̂ ·
(

⇀

E
(0)

Jn +
⇀

E
(0)

Mn

)
= − eik0r0

4πk0r0
exp

(
−i

⇀

ks · ⇀
rn

)
k2

0p̂

·
⎡
⎣iZ0k̂s × k̂s ×

∫
sn

⇀

Jn exp
(
−i

⇀

ks · ⇀
r
′)

ds′

−ik̂s ×
∫
sn

⇀

Mn exp
(
−i

⇀

ks · ⇀
r
′)

ds′

⎤
⎦

= −eik0r0

r0
exp

(
−i

⇀

ks · ⇀
rn + i

⇀

k i · ⇀
rn

)
p̂ · S̄g

n

(
k̂i, k̂s

)
(26)

In Eq. (26), the relation
⇀

E
(0)

Mn = −Z0k̂s × ⇀

H
(0)

Mn is used. ⇀
rn is the

position vector of the sphere center of sphere n. S̄g
n(k̂i, k̂s), the bi-

static scattered electric field amplitude vector of sphere n when it is
illuminated by the Gaussian beam, can be expressed as

S̄g
n

(
k̂i, k̂s

)
=

i

k

[
SS1n(θ, ϕ)ϕ̂ + SS2n(θ, ϕ)θ̂

]
(27)

For the case of TM polarization, i.e., the electric field of the
Gaussian beam is polarized to the x-axis, in Eq. (27), SS1n(θ, ϕ) and
SS2n(θ, ϕ)can be written as [10]

SS1n(θ, ϕ) =
∞∑

u=1

u∑
v=−u

2u + 1
u(u + 1)

[
ivauvπ

|v|
u (cos θ)

−buvτ
|v|
u (cos θ)

]
exp(ivϕ) (27a)

SS2n(θ, ϕ) =
∞∑

u=1

u∑
v=−u

2u + 1
u(u + 1)

[
auvτ

|v|
u (cos θ)

+ivbuvπ
|v|
u (cos θ)

]
exp(ivϕ) (27b)

For the case of TE polarization, i.e., the electric field of the
Gaussian beam is polarized to the y-axis, the following two expressions
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is obtained

SS1n(θ, ϕ) =
∞∑

u=1

u∑
v=−u

2u + 1
u(u + 1)

[
ivauvπ

|v|
u (cos θ)− buvτ

|v|
u (cos θ)

]

exp
[
iv
(
ϕ − π

2

)]
(27c)

SS2n(θ, ϕ) =
∞∑

u=1

u∑
v=−u

2u + 1
u(u + 1)

[
auvτ

|v|
u (cos θ) + ivbuvπ

|v|
u (cos θ)

]

exp
[
iv
(
ϕ − π

2

)]
(27d)

In Eqs. (27a)–(27d), auv = gv
u,TMap

u and buv = gv
u,TEbp

u,
where gv

u,TM and gv
u,TE are the beam-shape coefficients appearing in

Generalized Lorenz-Mie Theory (GLMT) [12, 24]. And the parameters
ap

u and bp
u are the scattering coefficients for the plane wave [10].

Then, the first-order scattered field of the Gaussian beam by the
multi-layered spheres can be written as

p̂ · ⇀

E
(0)

= p̂ ·
N∑

n=1

⇀

E
(0)

n (28)

where
⇀

E
(0)

n (⇀
r ) is expressed as Eq. (26).

3.2. Soulutions to the Second-order Scattered Field

In this part, the solutions for the second-order scattered field are
derived.

In Eqs. (17) and (18), the second-order scattered field from sphere
l1 when illuminated by the first-order scattered field from sphere n can
be written as

p̂ · ⇀

E
(1)

Jn =
∫
Sn

⇀

Jn ·
N∑

l1=1,l1 �=n

⇀

E
(1)l1

eds dS =
N∑

l1=1,l1 �=n

∫
Sn

⇀

Jn · ⇀

E
(1)l1

eds dS (29)

q̂ · ⇀

H
(1)

Mn =
∫
Sn

⇀

Mn·
N∑

l1=1,l1 �=n

⇀

H
(1)l1

mds dS =
N∑

l1=1,l1 �=n

∫
Sn

⇀

Mn·
⇀

H
(1)l1

mds dS (30)

In Eqs. (29) and (30),
⇀

E
(1)l1

eds is the scattered field of
⇀

Eed by

sphere l1 and
⇀

H
(1)l1

mds is the scattered field of
⇀

Hmd by sphere l1. Under
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the approximation that
⇀

Eed and
⇀

Hmd are considered as plane wave

propagating along the −k̂s direction, the expressions for
⇀

E
(1)l1

eds and
⇀

H
(1)l1

mds can be written as

⇀

E
(1)l1

eds =
−ik0Z0

4π
eik0r0

r0
e−ik0k̂s·⇀r l1

eik0r′

r′
S̄l1

eds

(
−k̂s, r̂

′
)

(31)

⇀

H
(1)l1

mds =
−ik0Y0

4π
eik0r0

r0
e−ik0k̂s·⇀r l1

eik0r′

r′
S̄l1

mds

(
−k̂s, r̂

′
)

(32)

where ⇀
r l1 is the position vector of the sphere l1, S̄l1

eds(−k̂s, r̂
′) and

S̄l1
mds(−k̂s, r̂

′) denote the electric and magnetic field bi-static scattering
amplitude vector of multi-layered sphere l1 when it is illuminated by
a plane wave [25, 26]. r′ denotes the distance between the sphere
center of sphere l1 and the point at ⇀

r , that is r′ = |⇀r − ⇀
r l1 | and

r̂′ = (⇀
r − ⇀

r l1)
/|⇀r − ⇀

r l1 |. Then Eq. (29) and Eq. (30) can be written
as

p̂ · ⇀

E
(1)

Jn

(⇀
r
)

=
−ik0Z0

4π
eik0r0

r0

N∑
l1=1,l1 �=n

e−ik0k̂s·⇀r l1

∫
Sn

⇀

Jn · eik0r′

r′
S̄l1

eds

(
−k̂s, r̂

′
)

dS (33)

q̂ · ⇀

H
(1)

Mn =
−ik0Y0

4π
eik0r0

r0

N∑
l1=1,l1 �=n

e−ik0k̂s·⇀r l1

∫
Sn

⇀

Mn · eik0r′

r′
S̄l1

mds

(
−k̂s, r̂

′
)

dS (34)

Keeping in mind the conditions on the dimensions of, and the
distance between, the spheres as specified in Eq. (20), Eq. (33) and
Eq. (34) can be evaluated analytically. In Eq. (33), Eq. (34), noting
that ⇀

r is the position of the point on the surface of sphere n, then
|⇀r − ⇀

r l1 | ≈ |⇀rn − ⇀
r l1 |, thus

r̂′ =
⇀
r − ⇀

r l1∣∣⇀r − ⇀
r l1

∣∣ ≈
⇀
rn − ⇀

r l1∣∣⇀rn − ⇀
r l1

∣∣ = ˆ̃rnl1 (35)

Under this approximation, in Eq. (33) and Eq. (34), S̄l1
eds(−k̂s, r̂

′)
and S̄l1

mds(−k̂s, r̂
′) are not functions of the integration variables.
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Therefore, these two equations can be rewritten as

p̂ ·⇀

E
(1)

Jn =
−ik0Z0

4π

eik0r0

r0

N∑
l1=1,l1 �=n

e−ik0k̂s·⇀r l1 S̄l1
eds

(
−k̂s, ˆ̃rnl1

)
·
∫

Sn

⇀

J n
eik0r′

r′
dS

= ik0Z0

4π

eik0r0

r0

N∑
l1=1,l1 �=n

e−ik0k̂s·⇀r l1 S̄l1
eds

(
−k̂s,ˆ̃rnl1

)
·
⎡
⎣ˆ̃rl1n× ˆ̃rl1n×

∫
Sn

⇀

J n
eik0r′

r′
dS

⎤
⎦(36)

q̂ ·⇀

H
(1)

Mn =
−ik0Y0

4π

eik0r0

r0

N∑
l1=1,l1 �=n

e−ik0k̂s·⇀r l1 S̄l1
mds

(
−k̂s, ˆ̃rnl1

)
·
∫

Sn

⇀

Mn
eik0r′

r′
dS

= −ik0Y0

4π

eik0r0

r0

N∑
l1=1,l1 �=n

e−ik0k̂s·⇀r l1

[
−ˆ̃rl1n × S̄l1

mds

(
−k̂s, ˆ̃rnl1

)]
·
∫

Sn

⇀

Mn
eik0r′

r′
dS

=
−ik0Y0

4π

eik0r0

r0

N∑
l1=1,l1 �=n

e−ik0k̂s·⇀r l1 S̄l1
eds

(
−k̂s, ˆ̃rnl1

)
·
⎡
⎣̂̃rl1n×

∫
Sn

⇀

Mn
eik0r′

r′
dS

⎤
⎦ (37)

Using Eq. (36) and Eq. (37), the secondary scattered field p̂ · ⇀

E
(1)

(⇀
r )

from sphere l1 is given as

p̂ · ⇀

E
(1)

n = p̂ ·
(

⇀

E
(1)

Jn +
⇀

E
(1)

Mn

)
= k2

0
eik0r0

r0

⎧⎨
⎩

N∑
l1=1,l1 �=n

e−ik0k̂s·⇀r l1 S̄l1
eds

(
−k̂s, ˆ̃rnl1

)

·
⎡
⎣ˆ̃rl1n × ˆ̃rl1n ×

∫
Sn

iZ0

4k0π

eik0r′

r′
⇀

J ndS − Z0
ˆ̃rl1n ×

∫
Sn

iY0

4k0π

eik0r′

r′
⇀

MndS

⎤
⎦
⎫⎬
⎭

=
eik0r0

r0

N∑
l1=1,l1 �=n

{
e−ik0k̂s·⇀r l1 S̄l1

eds

(
−k̂s, ˆ̃rnl1

)

·k2
0

[
ˆ̃rl1n × ˆ̃rl1n ×

∫
Sn

iZ0

4k0π

eik0r′

r′
⇀

J ndS − Z0
ˆ̃rl1n ×

∫
Sn

iY0

4k0π

eik0r′

r′
⇀

MndS

]}

=
eik0r0

r0

N∑
l1=1,l1 �=n

{
e
−ik0

(
k̂s·⇀r l1−k̂i·⇀r n

)
S̄l1

eds

(
−k̂s, ˆ̃rnl1

)
· e

ik0

∣∣∣∣⇀r̃ l1n

∣∣∣∣∣∣∣⇀r̃ l1n

∣∣∣ S̄ng
eds

(̂
ki, ˆ̃rl1n

)}
(38)

where S̄l1
eds(−k̂s, ˆ̃rnl1) is the bi-static scattered electric field amplitude

vector of the sphere l1 when it is illuminated by a plane wave and
S̄ng

eds(k̂i, ˆ̃rl1n) is the scattered electric field amplitude vector of sphere n
when the incident wave is a Gaussian beam. Meanwhile, in Eq. (38),

the relation
⇀

E
(1)

Mn = −Z0k̂s ×
⇀

H
(1)

Mn and Stratton-Thu formulation are
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employed. Because the sphere n is an arbitrary one among all the
spheres, the secondary scattered fields of the Gaussian beam by all the
multi-layered spheres can be written as

p̂ · ⇀

E
(1)

=
eik0r0

r0

N∑
n=1

N∑
l1=1,l1 �=n

[
e
−
(
k̂s·⇀r l1

−k̂i·⇀r n

)
S̄l1

eds

(
−k̂s, ˆ̃rnl1

)

·e
ik0

∣∣∣∣⇀r̃ l1n

∣∣∣∣∣∣∣⇀r̃ l1n

∣∣∣ S̄ng
eds

(
k̂i, ˆ̃rl1n

)]
(39)

3.3. Soutions to the Third- and Higher-order of the
Scattered Field

In this part, the solutions for the third- and higher-order of the
scattered field are derived. First, we derive the solutions for the third-
order scattered field.

Suppose multi-layered sphere n, l1 and l2 are arbitrary three
scatterers among spheres, in order to calculate the third-order scattered
field, i.e., the rescattered field of secondary scattered field from sphere
l1. To deal this problem, sphere n can be considered as one scatterer
and the spherer-sphere pair, which is composed of sphere l1 and l2,
as the other one. Because the first-order and the secondary scattered
field has been solved in 3.1 and 3.2, as given in Eq. (17) and Eq. (18),
this problem can be reduced to calculate the multiple scattered fields
⇀

E
(2)l1l2

eds and
⇀

H
(2)l1l2

mds . In Eq. (17) and Eq. (18), the third-order scattered
field can be written as

p̂ · ⇀

E
(2)

Jn =
∫
Sn

⇀

Jn ·
N∑

l1=1

N∑
l2=1,l2 �=n,l1

⇀

E
(2)l1l2

eds dS

=
N∑

l1=1

N∑
l2=1,l2 �=n,l1

∫
Sn

⇀

Jn · ⇀

E
(2)l1l2

eds dS (40)

q̂ · ⇀

H
(2)

Mn =
∫
Sn

⇀

Mn ·
N∑

l1=1

N∑
l2=1,l2 �=n,l1

⇀

H
(2)l1l2

mds dS

=
N∑

l1=1

N∑
l2=1,l2 �=n,l1

∫
Sn

⇀

Mn · ⇀

H
(2)l1l2

mds dS (41)
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Suppose an infinitesimal electric current source
⇀

Jen = ξ̂δ(⇀
r − ⇀

rn)
and an infinitesimal magnetic current source

⇀

Mmn = ζ̂δ(⇀
r − ⇀

rn)
are placed at the point of sphere center of sphere n, here, the unit
polarization vector ξ̂ and ζ̂ are related by ζ̂ = k̂2s × ξ̂, denotes
the unit vector of the propagation direction of the excited field by
⇀

Jen = ξ̂δ(⇀
r − ⇀

rn). Because the dimension of the spheres is very small
relative to the distance between the spheres, the electric field produced
by

⇀

Jen and the magnetic field produced by
⇀

Mmn at the point of sphere
l2 can be written as

⇀

Eedn = − ik0Z0

4π
∣∣⇀r l2 − ⇀

rn

∣∣e−ik0r̂l2n·⇀r n exp
[
ik0r̂l2n · ⇀

r
]
r̂l2n×r̂l2n×ξ̂ (42)

⇀

Hedn = − ik0Y0

4π
∣∣⇀r l2 − ⇀

rn

∣∣e−ik0r̂l2n·⇀r n exp
[
ik0r̂l2n · ⇀

r
]
r̂l2n×r̂l2n×ζ̂ (43)

where, r̂l2n = (
⇀
r l2

−⇀
r n)

|⇀r l2
−⇀

r n|
.

Considering the conditions on the dimensions of, and the distance
between the spheres as specified in Eq. (20), the scattered fields of

⇀

Eedn

and
⇀

Hedn by sphere l2 are obtained as

⇀

E
(1)l2

edn = − ik0Z0

4π
∣∣⇀r l2 − ⇀

rn

∣∣eik0

∣∣∣⇀r l2
−⇀

r n

∣∣∣ eik0r′

r′
S̄el2

(
r̂l2n, r̂′

)
(44)

⇀

H
(1)l2

edn = − ik0Y0

4π
∣∣⇀r l2 − ⇀

rn

∣∣eik0

∣∣∣⇀r l2
−⇀

r n

∣∣∣ eik0r′

r′
S̄ml2

(
r̂l2n, r̂′

)
(45)

Suppose the field
⇀

Eed and
⇀

Hmd would induce an equivalent electric
current density

⇀

Jedl1 and an equivalent magnetic current density
⇀

Mmdl1
on the surface of sphere l1 in the absence of the other two scatterers.

Then, based on the reciprocity theorem, the fields
⇀

E
(2)l1l2

eds and
⇀

H
(2)l1l2

mds
can be calculated by using the following two equations

⇀

E
(2)l1l2

eds = − ik0Z0

4π
∣∣⇀r l2 − ⇀

rn

∣∣eik0

∣∣∣⇀r l2
−⇀

r n

∣∣∣−ik0Z0

4πr0
exp(ik0r0)

exp
(
−i

⇀

ks · ⇀
r l1

) ∫
Sl1

eik0r′

r′
S̄el2

(
r̂l2n, r̂′

) · ⇀

Jedl1dS (46)
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⇀

H
(2)l1l2

mds = − ik0Y0

4π
∣∣⇀r l2 − ⇀

rn

∣∣eik0

∣∣∣⇀r l2
−⇀

r n

∣∣∣−ik0Y0

4πr0
exp (ik0r0)

exp
(
−i

⇀

ks · ⇀
r l1

) ∫
Sl1

eik0r′

r′
S̄ml2

(
r̂l2n, r̂′

) · ⇀

Jmdl1dS (47)

Keeping in mind the conditions on the dimensions of, and the
distance between the spheres as specified in Eq. (20), Eqs. (46) and
(47) can be evaluated analytically. In Eq. (46), Eq. (47), noting
that ⇀

r
′
is the position of the point on the surface of sphere l1, then

|⇀r ′ − ⇀
r l2| ≈ |⇀r l1 − ⇀

r l2 |, thus

r̂′ =
⇀
r
′ − ⇀

r l2∣∣∣⇀r ′ − ⇀
r l2

∣∣∣ ≈
⇀
r l1 − ⇀

r l2∣∣⇀r l1 − ⇀
r l2

∣∣ = ˆ̃rl1l2 (48)

Under this approximation, in Eq. (46) and Eq. (47), S̄el2(r̂l2n, r̂′)
and S̄ml2(r̂l2n, r̂′) are not functions of the integration variables.
Therefore, these two equations can be rewritten as

ξ̂ · ⇀

E
(2)l1l2

eds =− ik0Z0

4π
∣∣⇀r l2 − ⇀

rn

∣∣eik0

∣∣∣⇀r l2
−⇀

r n

∣∣∣ exp
[
−i

⇀

ks · ⇀
r l1

]
−ik0Z0

4πr0
exp(ik0r0)S̄el2(r̂l2n, ˆ̃rl1l2) ·

∫
Sl1

eik0r′

r′
⇀

Jedl1dS

=− ik0Z0

4π
∣∣⇀r l2 − ⇀

rn

∣∣eik0

∣∣∣⇀r l2
−⇀

r n

∣∣∣ exp
[
−i

⇀

ks · ⇀
r l1

]

exp(ik0r0)
r0

S̄el2

(̂
rl2n, ˆ̃rl1l2

)
· e

ik0

∣∣∣⇀r l1
−⇀

r l2

∣∣∣∣∣⇀r l1−⇀
r l2

∣∣ S̄el1

(
−k̂s, ˆ̃rl2l1

)
(49)

ζ̂ · ⇀

H
(2)l1l2

mds =− ik0Y0

4π
∣∣⇀r l2 − ⇀

rn

∣∣eik0

∣∣∣⇀r l2
−⇀

r n

∣∣∣ exp
[
−i

⇀

ks · ⇀
r l1

]
−ik0Y0

4πr0
exp(ik0r0)S̄ml2

(
r̂l2n, ˆ̃rl1l2

)
·
∫

Sl1

eik0r′

r′
⇀

Jmdl1dS

=− ik0Y0

4π
∣∣⇀r l2 − ⇀

rn

∣∣eik0

∣∣∣⇀r l2
−⇀

r n

∣∣∣ exp
[
−i

⇀

ks · ⇀
r l1

]

exp(ik0r0)
r0

S̄ml2

(̂
rl2n, ˆ̃rl1l2

)
· e

ik0

∣∣∣⇀r l1
−⇀

r l2

∣∣∣∣∣⇀r l1−⇀
r l2

∣∣ S̄ml1

(
−k̂s, ˆ̃rl2l1

)
(50)
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Then, substituting Eq. (49) and Eq. (50) into Eq. (40) and Eq. (41),
the following two equations are obtained

p̂ · ⇀

E
(2)

Jn =
exp(ik0r0)

r0

N∑
l1=1

N∑
l2=1,l2 �=n,l1

{
exp

[
−i

⇀

ks · ⇀
r l1

]

·
{

S̄el2

(
r̂l2n, ˆ̃rl1l2

)
· e

ik0

∣∣∣⇀r l1
−⇀

r l2

∣∣∣∣∣⇀r l1 − ⇀
r l2

∣∣ S̄el1

(
−k̂s, ˆ̃rl2l1

)}

·
∫
Sn

⇀

Jn · ξ̂ −ik0Z0

4π
∣∣⇀r l2 − ⇀

rn

∣∣eik0

∣∣∣⇀r l2
−⇀

r n

∣∣∣
dS

}
(51)

q̂ · ⇀

H
(2)

Mn =
exp(ik0r0)

r0

N∑
l1=1

N∑
l2=1,l2 �=n,l1

{
exp

[
−i

⇀

ks · ⇀
r l1

]

·
{

S̄ml2

(
r̂l2n, ˆ̃rl1l2

)
· e

ik0

∣∣∣⇀r l1
−⇀

r l2

∣∣∣∣∣⇀r l1 − ⇀
r l2

∣∣ S̄ml1

(
−k̂s, ˆ̃rl2l1

)}

·
∫
Sn

⇀

Mn · ζ̂ −ik0Y0

4π
∣∣⇀r l2 − ⇀

rn

∣∣eik0

∣∣∣⇀r l2
−⇀

r n

∣∣∣
dS

}
(52)

In Eq. (51) and Eq. (52), noting that S̄el2(r̂l2n, ˆ̃rl1l2) ·
S̄el1(−k̂s, ˆ̃rl2l1) = S̄ml2(r̂l2n, ˆ̃rl1l2) · S̄ml1(−k̂s, ˆ̃rl2l1), the third-order
scattered field from multi-layered sphere l1 is obtained as

p̂ · ⇀

E
(2)

n = p̂ ·
(

⇀

E
(2)

Jn +
⇀

E
(2)

Mn

)

=
exp(ik0r0)

r0

N∑
l1=1

N∑
l2=1,l2 �=n,l1

{
exp

[
−i

⇀

ks · ⇀
r l1

]

·
{

S̄el2

(
r̂l2n, ˆ̃rl1l2

)
· e

ik0

∣∣∣⇀r l1
−⇀

r l2

∣∣∣∣∣⇀r l1 − ⇀
r l2

∣∣ S̄el1

(
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where S̄el1(−k̂s, ˆ̃rl2l1) and S̄el2(r̂l2n, ˆ̃rl1l2) are the bi-static scattered
electric field amplitude vectors of the sphere l1 and l2 when illuminated
by a plane wave and S̄g

n(k̂i, ˆ̃rl2n) is the scattered electric field amplitude
vector of sphere n when the incident wave is a Gaussian beam. Because
the sphere n is an arbitrary one among all the spheres, the third-order
scattered fields of the Gaussian beam by all the multi-layered spheres
can be written as
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ĥ · S̄g

n

(
k̂i, ˆ̃rl2n

)
+ v̂ · S̄g

n

(
k̂i, ˆ̃rl2n

)]}

=
exp(ik0r0)

r0

N∑
n=1

N∑
l1=1

N∑
l2=1,l2 �=n,l1

{
exp

[
−i

⇀

ks · ⇀
r l1 + i

⇀

k i · ⇀
rn

]

·e
ik0

∣∣∣⇀r l2
−⇀

r n

∣∣∣∣∣⇀r l2 − ⇀
rn

∣∣ · e
ik0

∣∣∣⇀r l1
−⇀

r l2

∣∣∣∣∣⇀r l1 − ⇀
r l2

∣∣
·
[
S̄el1

(
−k̂s, ˆ̃rl2l1

)
· S̄el2

(
r̂l2n, ˆ̃rl1l2

)
· S̄g

n

(
k̂i, ˆ̃rl2n

)]}
(54)

Using the similar way, the jth-order scattered field by all the multi-



238 Guo et al.

layered spheres can be written as

p̂·⇀E
(j−1)

=
exp(ik0r0)

r0

N∑
n=1

N∑
l1=1

N∑
l2=1,l2 �=l1

. . .

N∑
lj−1=1,lj−1 �=n,lj−2{

exp
[
−i

⇀

ks ·⇀r l1 +i
⇀

k i ·⇀rn

]
·
[
e
ik0

∣∣∣⇀r lj−1
−⇀

r n

∣∣∣∣∣⇀r lj−1
−⇀

rn

∣∣ · e
ik0

∣∣∣⇀r lj−2
−⇀

r lj−1

∣∣∣∣∣⇀r lj−2
− ⇀

r lj−1

∣∣
·e

ik0

∣∣∣⇀r lj−3
−⇀

r lj−2

∣∣∣∣∣⇀r lj−3
− ⇀

r lj−2

∣∣ · . . . · e
ik0

∣∣∣⇀r l1
−⇀

r l2

∣∣∣∣∣⇀r l1 − ⇀
r l2

∣∣
]

·
[
S̄ell1

(
−k̂s, ˆ̃rl2l1

)
· S̄elj−1

(
ˆ̃rlj−1n, ˆ̃rlj−2lj−1

)

·S̄elj−2

(̂̃
rlj−2lj−1

,ˆ̃rlj−3lj−2

)
·. . .·S̄el2

(̂̃
rl2l3 ,

ˆ̃rl1l2

)
·S̄g

n

(̂
ki,ˆ̃rlj−1n

)]}
(55)
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Figure 3. Bi-static scattering RCS of plane wave from three
conducting spheres vs. scattering angles for different azimuthal
scattering angles. (a) φs = 90◦, (b) φs = 60◦, (c) φs = 30◦. The
position vectors of the three spheres are ⇀

r 1 = (0mm, 0mm, 0mm),
⇀
r 2 = (0mm, 3mm, 0mm) and ⇀

r 3 = (0mm, 2mm, 2mm), respectively.
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From the preceding discussions, the scattered field up to N -order
can be easily obtained, and its solution can be written as

p̂ · ⇀

E
s

= p̂ ·
[

⇀

E
(0)

+
⇀

E
(1)

+ . . . +
⇀

E
(N−1)

]
(56)

The composite scattered field of a plane wave by adjacent multi-
spheres is obtained by replacing the scattered electric field amplitude
vector of sphere n when the incident wave is a Gaussian beam with
that when the incident wave is a plane wave in Eq. (28), Eq. (39),
Eq. (54) and Eq. (55).
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Figure 4. Bi-static scattering RCS of plane wave from four conducting
spheres vs. scattering angles for different azimuthal scattering angles.
(a) φs = 90◦, (b) φs = 60◦, (c) φs = 30◦. The position vectors of the
four spheres are ⇀

r 1 = (0mm, 0mm, 0mm), ⇀
r 2 = (0mm, 3mm, 0mm),

⇀
r 3 = (0mm, 3.5mm, 2.5mm) and ⇀

r 4 = (0mm, 0.5mm, 3mm),
respectively.
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4. NUMERICAL RESULTS

The Numerical Electromagnetic Code (NEC), which is a computational
package based on the Time Domain Integral Equation Method
(TDIEM), and only the examples are provided for plane wave case.
Therefore, to check the validity of the present method, the bi-static
scattering RCS (Radar Cross Section) [26] of a plane wave from
adjacent multi-spheres are compared with the data obtained by using
NEC. In the following discussions, due to the article size is limited,
only TM case is considered and the propagation direction is along the
positive z-axis.
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Figure 5. Bi-static scattering RCS of plane wave from four adjacent
plasma-coated conducting spheres vs. azimuthal scattering angles for
different scattering angles. (a) θs = 90◦, (b) θs = 60◦, (c) θs = 30◦.
The position vectors of the four spheres are ⇀

r 1 = (0mm, 0mm, 0mm),
⇀
r 2 = (0mm, 40mm, 0mm), ⇀

r 3 = (0mm, 50mm, 40mm) and ⇀
r 4 =

(0mm, 10mm, 45mm).
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Figure 6. Bi-static scattering RCS of Gaussian beam from three
conducting spheres vs. scattering angles for different beam-waist radii.
(a) φs = 90◦, (b) φs = 60◦, (c) φs = 30◦.

In Fig. 3 and Fig. 4, the frequency of the excitation wave is
62.5 GHz and the radius of the spheres is 0.5mm. As is shown in
Fig. 3 and Fig. 4, the result up to the second- and third-order provides
a reasonable approximation and is in very agreement with the TDIEM
data over the angular range. Meanwhile, one can also find that the
difference between scattering result up to second- and that up to third-
order is very small. Therefore, the third- and the higher-order of the
scattered field can be neglected. Then, in the following discussions,
only the scattered fields up to second-order are considered.

Figure 5 gives the azimuthal patterns of bi-static scattering
RCS for four adjacent plasma-coated conducting spheres for different
scattering angle θs when the incident field is a plane wave. In Fig. 5,
the frequency of the incident wave is 5 GHz and the radius of the
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Figure 7. Bi-static scattering RCS of Gaussian beam from four
conducting spheres vs. scattering angles for different beam-waist radii.
(a) φs = 90◦, (b) φs = 60◦, (c) φs = 30◦.

spheres is 5 mm. The coating thickness is dr = 1mm. The collision
frequency and the electron density of the plasma are Ve = 50GHz and
Ne0 = 5.0× 1017 m−3, respectively. For the coated spheres case, it can
be seen from Fig. 5 that the result up to second-order is in agreement
with the Time Domain Integral Equation Method data and provides a
reasonable approximation.

It should be pointed out that the validity of our present method
has been checked in Fig. 3–Fig. 5, and in the next discussion, emphasis
is put on studying the dependence of the bi-static scattering RCS on
the bean-waist radii. Fig. 6 and Fig. 7 illustrate the bi-static scattering
RCS of Gaussian beam from three- and four-spheres model for different
beam-waist radii, and the other parameters in Fig. 6 and Fig. 7 are the
same as those in Fig. 3 and Fig. 4, respectively. It is observed clearly
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that the amplitude of the plane wave incident is larger than that of the
Gaussian beam incident, and it is found that the amplitude depends
on the beam-waist W0. As is depicted in Fig. 6 and Fig. 7, the results
of Gaussian beam will gradually approach to that of the plane wave
case when the beam-waist increases, i.e., as larger the beam waist is,
closer result for the Gaussian beam and the plane wave incidence is.

5. CONCLUSIONS

In this research, based on the equivalence principle and the reciprocity
theorem, a general approach has been developed for deriving the
scattered field up to higher order from discrete particles. The
formulation has been applied to obtain approximate analytical
solutions up to Nth-order scattered fields of plane wave/Gaussian
beam by adjacent multi-spheres. The validity of the present method
was verified by comparison with the Time Domain Integral Equation
computations, and agreement was obtained. From the comparison, the
conclusion that solution up to second-order can give a good agreement
is obtained.
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