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Abstract—High frequency field expressions are derived at the focal
points of a paraboloidal reflector placed in a homogenous and reciprocal
chiral medium. Firstly Geometrical Optics (GO) field expressions are
derived for the paraboloidal reflector placed in chiral medium. As the
GO fails at the focal points, so Maslov’s method has been used to
find the field expressions which are also valid around the focal point.
By using hybrid space, Maslov’s method combine the simplicity of
ray theory and the generality of Fourier Transform method. Some
numerical results including contour plots and line plots around the
focal region of paraboloidal reflector placed in chiral medium are
obtained using the derived expressions.

1. INTRODUCTION

Asymptotic ray theory (ART) or the geometrical optics approximation
is widely used to study various kinds of problems in the areas
of electromagnetic, acoustic waves, seismic waves etc [1–3]. As
geometrical optics (GO) fails in the focal regions, so Maslov’s method
is used to study the fields at the focal regions [4, 5]. Maslov’s method
combines the simplicity of asymptotic ray theory and the generality
of the Fourier transform method. This is achieved by representing
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the geometrical optics fields in hybrid coordinates consisting of space
coordinates, and wave vector coordinates, that is by representing the
field in terms of six coordinates. It may be noted that information of
ray trajectories is included in both space coordinates R = (x, y, z) and
wave vector coordinates P = (px, py, pz). Solving the Hamiltonian
equations under the prescribed initial conditions, one can construct
the geometrical optics field in space R, which is valid except in the
vicinity of focal point. Near the focal point, the expression for the
geometrical optics field in spatial coordinates is rewritten in hybrid
domain. The expression in hybrid domain is related to the original
domain R through the asymptotic Fourier transform. The reason for
considering the hybrid domain is that, in general the singularities in
different domain do not coincides. This means that a domain always
exist in which the solution is bounded. Analysis of focusing systems
has been worked out by various authors using Maslov’s method [6–
20]. In present work, our interest is to apply the Maslov’s method
to a paraboloidal reflector placed in chiral medium. Chiral medium
is microscopically continuous medium composed of chiral objects,
uniformly distributed and randomly oriented [22]. A chiral object is
a three dimensional body that can not be brought into congruence
with its mirror image through translation or rotation e.g., helix,
animal hands etc. An object which is not chiral is called achiral. A
chiral medium is either right handed or left handed. The historical
background and electromagnetic chirality has been analyzed by various
authors [22–30].

2. GEOMETRICAL OPTICS AND MASLOV’S METHOD
IN ORDINARY MEDIUM

The GO and Maslov’s method is given in [6, 14], but here it is applied to
a paraboloidal reflector placed in chiral medium, so first it is discussed
for three dimensional wave in ordinary medium. Consider the scalar
wave equation (∇2 + n2k2

)
u(r) = 0 (1)

where r = (x, y, z), ∇2 = ∂2/∂2
x + ∂2/∂2

y + ∂2/∂2
z , k = ω

√
εµ is wave

number and n is index of refraction of the medium, which is constant
in this case. Medium is homogeneous and isotropic. Solution of Eq. (1)
may be assumed in the form of Luneberg-Kline series

u(r) =
∞∑

m=0

Em(r)
(jk)m

exp(−jks) (2)
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Assuming large values of k, hence higher order terms are neglected,
and only first term of Eq. (2), is taken. By putting Eq. (2) in Eq. (1)
and equating the coefficient of k2 we get Eikonal equation as in [21]

{∇s(r)}2 − n2 = 0 (3)

similarly by equating the coefficients of k we get transport equation

2∇E · ∇s + E∇2s = 0 (4)

where only E0 is retained and is denoted by E. Wave vector and
Hamiltonian are define as p = ∇s and H(r, p) = (p · p − n2)/2
respectively. So the Eikonal equation becomes H(r, p) = 0. Eikonal
equation can be solved by the method of characteristic as follow

dx

dt
= px (5)

dy

dt
= py (6)

dz

dt
= pz (7)

dpx

dt
= 0 (8)

dpy

dt
= 0 (9)

dpz

dt
= 0 (10)

The solution of Eqs. (5)–(10) are

x = ξ + pxt (11)
y = η + pyt (12)
z = ζ + pzt (13)

px = px0 (14)
py = py0 (15)
pz = pz0 (16)

where, (ξ, η, ζ) and (px0, py0, pz0) are the initial values of (x, y, z) and
(px, py, pz) respectively. The phase function is given by

s = s0 +
∫ t

0
n2dt = s0 + n2t (17)
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Applying Gauss’s theorem to a paraxial ray tube, we obtain the
solution of Eq. (4) as in [21]

u(r) = Er0J
−1/2 exp

{−jk
(
s0 + n2t

)}
(18)

where Er0 is the initial value of the field amplitude and J = D(t)/D(0),
where D(t) = ∂(x, y, z)/∂(ξ, η, ζ), is the Jacobian of transformation
from ray coordinates (ξ, η, ζ) to cartesian coordinate (x, y, z). The GO
solution is not valid at focal points that is where J = 0, so Maslov’s
method is used to find the fields around the focal regions of a focusing
system as in [6–21]. The equation which is valid around the focal point
of a paraboloidal reflector placed in ordinary medium is given as [6]

u(r) =
k

2π

∫ ∞

−∞

∫ ∞

−∞
Er0

(
D(t)
D(0)

∂(px, py)
∂(x, y)

)− 1
2

exp[−jk{s0 + n2t

−x(px, py, z)px − y(px, py, z)py + xpx + ypy}]dpxdpy (19)

The expression D(t)
D(0)

∂(px,py)
∂(x,y) can be more simply calculated as

D(t)
D(0)

∂(px, py)
∂(x, y)

=
1

D(0)
∂(px, py, z)
∂(ξ, η, ζ)

(20)

3. GEOMETRICAL OPTICS IN CHIRAL MEDIUM

Both left circularly polarized (LCP) and right circularly polarized
(RCP) modes, are supported by chiral medium. There are many ways
to define the constitutive relations for chiral medium, but Drude-Born-
Fadorov (DBF) constitutive relations [22] are used as follows

D = ε(E + β∇×E) (21)
B = µ(H + β∇×H) (22)

where, ε, µ, and β is permittivity, permeability and chirality
parameters respectively, ε, µ, have usual dimensions and β has
the dimension of length. Using Eq. (21) and Eq. (22), solution
of Maxwell’s equations results in coupled differential equations.
Uncoupled differential equations for E and H are obtained by using
the following transformation [22]

E = QL − j

√
µ

ε
QR (23)

H = QR − j

√
ε

µ
QL (24)
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and QL, QR are RCP and LCP wave respectively and satisfy the
following equations

(∇2 + n2
1k

2
)
QL = 0 (25)(∇2 + n2

2k
2
)
QR = 0 (26)

where, n1 = 1/(1− kβ) and n2 = 1/(1 + kβ) are equivalent refractive
indices for LCP and RCP waves respectively and k = ω

√
εµ. The

Eq. (25) and Eq. (26) show that fields in chiral medium may be treated
in a manner similar to ordinary medium if the transformation given
in Eq. (23) and Eq. (24) are used. So GO solution for chiral medium
can be obtained in a manner similar to ordinary medium as discussed.
Now in chiral medium two types of polarizations exist, so both waves
are solved independently. The total field will be the superposition of
the two contributions.

4. GEOMETRIC OPTICS FIELD OF A PARABOLOIDAL
REFLECTOR PLACED IN CHIRAL MEDIUM

In this paper, we want to find the reflected field around the focal region
of a paraboloidal reflector placed in a chiral medium. To achieve this
the reflection of plane waves from simple perfect electric conducting
(PEC) plane placed in chiral medium is discussed as in [14]. Reflection
of RCP wave with unit amplitude, phase velocity ω/kn2 and making
angle α with z-axis, from a perfect electric conducting (PEC) plane
has been considered in Figure 1. Two waves are reflected, a RCP wave
with amplitude (cosα− cosα1)/(cosα + cosα1), traveling with phase
velocity ω/kn2 and making an angle α with z-axis and an LCP wave
with amplitude 2 cosα/(cosα + cos α1) traveling with phase velocity
ω/kn1 and making an angle α1 = sin−1{(n1/n2) sinα} with z-axis. If
we take β > 0 then n1 > n2 and α1 < α, LCP wave bends towards
normal, because it is slower than RCP. In Figure 2, LCP wave with

1

z
LCP

RCPRCP

α
α

α

Figure 1. RCP reflection from PEC plane.
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unit amplitude, and angle α with z-axis, is incident on perfect electric
conducting (PEC) plane we get two reflected waves, a RCP wave with
amplitude 2 cosα/(cosα + cosα2) traveling with phase velocity ω/kn2

and making an angle α2 = sin−1{(n2/n1) sinα} with z-axis and an
LCP wave with amplitude (cosα − cosα2)/(cosα + cos α2) traveling
with phase velocity ω/kn1 and making an angle α with z-axis. If
we take β > 0 then n1 > n2 and α2 > α. If β = 0 then only normal
reflection take place, and if β increases the difference between the angle
α and α1, α2 increases.

Four waves are reflected when both LCP and RCP waves hit the
PEC plane. These waves are represented by RR, RL, LL and LR, where
RR and RL are RCP and LCP reflected wave components respectively,
when RCP is incident, and LL and LR are LCP and RCP reflected
waves respectively, when incident wave is LCP. Consider a paraboloidal
reflector, as shown in Figure 3, having Equation given as

z
LCP

RCPRCP

2

α α
α

Figure 2. LCP reflection from PEC plane.

Z

RCP+LCP

x

LR

RL

LL+RR

normal

α

α

Figure 3. Paraboloidal reflector placed in chiral medium.
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ζ = g(ξ, η) = f − ρ2

4f
= f − ξ2 + η2

4f
(27)

where, (ξ, η, ζ) are the initial values of (x, y, z), f is the focal length
of the paraboloidal reflector and ρ2 = ξ2 + η2. The reflector is placed
in homogenous and reciprocal chiral medium defined by constitutive
relations as given in Eq. (21) and Eq. (22). Let there be two incident
plane waves of opposite handedness traveling in chiral medium along
positive z-axis, which satisfy the wave equations (25) and (26) are given
as

QL = (ax + jay) exp(−jkn1z) (28)
QR = (ax − jay) exp(−jkn2z) (29)

where ax and ay are the unit vector along x-axis and y-axis respectively.
By ignoring the polarization and taking the incident field of unit
amplitude we get

QL = exp(−jkn1z) (30)
QR = exp(−jkn2z) (31)

These waves are making an angle α with the normal to the surface of
a paraboloidal reflector. The unit normal vector to the surface can be
written as

an = sin α cos γax + sinα sin γay + cos αaz (32)

where, α and γ are given as

sinα =
ρ√

ρ2 + 4f2
(33)

cosα =
2f√

ρ2 + 4f2
(34)

tan γ =
η

ξ
(35)

The reflected wave vectors for LL, RR, RL and LR rays are calculated
from Fermat’s principle of reflection [12], and are given by

pLL = −n1 sin 2α cos γax − n1 sin 2α sin γay − n1 cos 2αaz (36)
pRR = −n2 sin 2α cos γax − n2 sin 2α sin γay − n2 cos 2αaz (37)
pRL = −n1S1 cos γax − n1S1 sin γay − n1C1az (38)
pLR = −n2S2 cos γax − n2S2 sin γay − n2C2az (39)
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where S1 = sin(α + α1), C1 = cos(α + α1), S2 = sin(α + α2) and
C2 = cos(α + α2). The initial amplitudes for these rays are given by

ELL(r0) =
cosα− cosα2

cosα + cos α2
(40)

ERR(r0) =
cosα− cosα1

cosα + cos α1
(41)

ERL(r0) =
2 cos α

cosα + cos α1
(42)

ELR(r0) =
2 cos α

cosα + cos α2
(43)

The initial phases are given by

sLL(ro) = n1ζ (44)
sRR(r0) = n2ζ (45)
sRL(r0) = n2ζ (46)
sLR(r0) = n1ζ (47)

The Jacobian of transformation for these rays are given by

JLL =
cos4 α

f2
(n1t)2 − 2 cos2 α

f
n1t + 1 (48)

JRR =
cos4 α

f2
(n2t)2 − 2 cos2 α

f
n2t + 1 (49)

JRL =
X1S1 cos2 α cotα

tanαS1 + C1

(
n2

1t

2f

)2

−S2
1 − C1S1 cotα−X1 cos2 α

tanαS1 + C1

(
n1t

2f

)
+ 1 (50)

JLR =
X2S2 cos2 α cotα

tanαS2 + C2

(
n2

2t

2f

)2

−S2
2 − C2S2 cotα−X2 cos2 α

tanαS2 + C2

(
n2t

2f

)
+ 1 (51)
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where

X1 =

√
n2

1 − n2
2 sin2 α + n2 cosα

√
n2

1 − n2
2 sin2 α

(52)

X2 =

√
n2

2 − n2
1 sin2 α + n1 cosα

√
n2

2 − n2
1 sin2 α

(53)

The focal points equations where Jacobian is zero for LL and RR rays
are given as

n1t =
f

cos2 α
(54)

n2t =
f

cos2 α
(55)

Similarly the focal points equations where Jacobian is zero for RL and
LR rays are given as

X1S1 cos2 α cotα

tanαS1 + C1

(
n2

1t

2f

)2

− S2
1−C1S1 cotα−X1 cos2 α

tanαS1 + C1

(
n2

1t

2f

)
+1=0

(56)
X2S2 cos2 α cotα

tanαS2 + C2

(
n2

2t

2f

)2

− S2
2−C2S2 cotα−X2 cos2 α

tanαS2 + C2

(
n2

2t

2f

)
+1=0

(57)
The geometrical optics field for each ray is obtained by putting
Eqs. (40)–(51) in Eq. (18), we get the expression for uLL(r), uRR(r),
uRL(r) and uRL(r) as

uLL(r) = ELL(r0)J
−1/2
LL exp

[−jk
{
n2

1t + sLL(ro)
}]

(58)

uRR(r) = ERR(r0)J
−1/2
RR exp

[−jk
{
n2

2t + sRR(ro)
}]

(59)

uRL(r) = ERL(r0)J
−1/2
RL exp

[−jk
{
n2

1t + sRL(ro)
}]

(60)

uRL(r) = ELR(r0)J
−1/2
LR exp

[−jk
{
n2

2t + sLR(ro)
}]

(61)

Since the GO solution fails at the focal points so we find approximate
field at focal points using Moslov’s method. To calculate the field
around the focal points using Eq. (19) we need equation Eq. (20) for
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the amplitude of different reflected rays

JLL(t)
∂(px, py)
∂(x, y)

=
n2

1 cos4 α cos2 2α

f2
(62)

JRR(t)
∂(px, py)
∂(x, y)

=
n2

2 cos4 α cos2 2α

f2
(63)

JRL(t)
∂(px, py)
∂(x, y)

=
X1n

2
1C

2
1S1 cos3 α

4f2 sinα(tan αS1 + C1)
(64)

JLR(t)
∂(px, py)
∂(x, y)

=
X2n

2
2C

2
2S2 cos3 α

4f2 sinα(tan αS2 + C2)
(65)

The amplitude components for each ray is calculated. Now to calculate
the phase function in Eq. (19), x and y are expressed in terms of hybrid
coordinates (px, py, z). Similarly t is represented in terms of hybrid
coordinates as t = (z− ζ)/pz. The phase function s(px, py) is given by

s(px, py) = nζ + n2

(
z − ζ

pz

)
− (ξ + pxt)px − (η + pyt)py + xpx + ypy

by putting ζ = f cos 2α/ cos2 α, η = 2f tanα sin γ and ξ =
2f tanα cos γ the phase function for different rays are

sLL(px, py) = n1 (2f − x sin 2α cos γ − y sin 2α sin γ − z cos 2α) (66)
sRR(px, py) = n2 (2f − x sin 2α cos γ − y sin 2α sin γ − z cos 2α) (67)

sRL(px, py) = n1

{
n2

n1
f

cos 2α

cos2 α
− (x cos γ + y sin γ − 2f tanα)S1

−
(

z − f
cos 2α

cos2 α

)
C1

}
(68)

sLR(px, py) = n2

{
n1

n2
f

cos 2α

cos2 α
− (x cos γ + y sin γ − 2f tanα)S2

−
(

z − f
cos 2α

cos2 α

)
C2

}
(69)

The conversion factor from wave vector coordinates (px, py) in Eq. (19),
to ray coordinates (ξ, η) for each ray is given as
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(a) (b)

(c) (d)

Figure 4. Contour plot for |uLL| with kf = 100 and (a) kβ = 0, (b)
kβ = 0.01, (c) kβ = 0.05, (d) kβ = 0.1.

∂(pxLL, pyLL)
∂(ξ, η)

=
n2

1 cos4 α cos 2α

f2
(70)

∂(pxRR, pyRR)
∂(ξ, η)

=
n2

2 cos4 α cos 2α

f2
(71)

∂(pxRL, pyRL)
∂(ξ, η)

=
n2

1X1 cos2 α cotαC1S1

4f2
(72)

∂(pxLR, pyLR)
∂(ξ, η)

=
n2

2X2 cos2 α cotαC2S2

4f2
(73)

The conversion factor from (ξ, η) to angular coordinates (α, γ) is given
by

∂(ξ, η)
∂(α, γ)

=
4f2 sinα

cos3 α
(74)

which is the same for LL, RR, RL and LR rays. By substituting
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(b)

(c) (d)

(a)

Figure 5. Contour plot for |uRR| with kf = 100 and (a) kβ = 0, (b)
kβ = 0.01, (c) kβ = 0.05, (d) kβ = 0.1.

Eqs. (62)–(74) in Eq. (19), the field around the focal region of a
paraboloidal reflector placed in chiral medium are obtained. The
results are given below

uLL(r) =
j2kn1f

π

∫ H

0

∫ 2π

0

(
cosα− cosα2

cosα + cos α2

)
tanα

× exp{−jksLL(px, py)}dαdγ (75)

uRR(r) =
j2kn2f

π

∫ H

0

∫ 2π

0

(
cosα− cosα1

cosα + cos α1

)
tanα

× exp{−jksRR(px, py)}dαdγ (76)

uRL(r) =
jkn1f

π

∫ H

0

∫ 2π

0

(
2 cos α

cosα + cosα1

)
sec3/2 α

√
X1

×{sinαS1(tanαS1+C1)}1/2exp{−jksRL(px, py)}dαdγ (77)



Progress In Electromagnetics Research B, Vol. 15, 2009 69

(a) (b) 

(c) (d)

Figure 6. Contour plot for |uRL| with kf = 100 and (a) kβ = 0, (b)
kβ = 0.01, (c) kβ = 0.05, (d) kβ = 0.1.

uLR(r) =
jkn2f

π

∫ H

0

∫ 2π

0

(
2 cos α

cosα + cosα2

)
sec3/2 α

√
X2

×{sinαS2(tan αS2+C2)}1/2exp{−jksLR(px, py)}dαdγ (78)

where H = tan−1(D/2f), where D is the height of the paraboloidal
reflector from the horizontal axis. Eqs. (75)–(78) are solved numerically
and the results are presented in the next section.

5. RESULTS AND DISCUSSION

Contour plots of the field reflected by paraboloidal surface placed
in isotropic medium are shown in Figures 4–7 and line plots of the
paraboloidal reflector are shown in Figures 8–15. For simulation
kf = 100 and H = π/4 are used. The fields patterns variation along
x-axis, y-axis and z-axis are shown. As the paraboloidal reflector is
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u

(a) (b)

(c) (d)

Figure 7. Contour plot for |uLR| with kf = 100 and (a) kβ = 0, (b)
kβ = 0.01, (c) kβ = 0.05, (d) kβ = 0.1.
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Figure 8. Line plot for |uLL| along either x-axis or y-axis, with
kf = 100 and (a) kβ = 0, (b) kβ = 0.01, (c) kβ = 0.05, (d) kβ = 0.1.
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Figure 9. Line plot for |uLL| along z-axis, with kf = 100 and (a)
kβ = 0, (b) kβ = 0.01, (c) kβ = 0.05, (d) kβ = 0.1.
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Figure 10. Line plot for |uRR| along either x-axis or y-axis, with
kf = 100 and (a) kβ = 0, (b) kβ = 0.01, (c) kβ = 0.05, (d) kβ = 0.1.
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Figure 11. Line plot for |uRR| along z-axis, with kf = 100 and (a)
kβ = 0, (b) kβ = 0.01, (c) kβ = 0.05, (d) kβ = 0.1.

symmetric, so the magnitude of the field variation along x-axis and
y-axis are same. In contour plot horizontal axis is kz and vertical axis
is either kx or ky. The solutions of Eqs. (11)–(13), (54), and (55) gives

n1t = n2t =
√

(x− ξ)2 + (y − η)2 + (z − ζ)2 (79)
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Figure 12. Line plot for |uRL| along either x-axis or y-axis, with
kf = 100 and (a) kβ = 0, (b) kβ = 0.01, (c) kβ = 0.05, (d) kβ = 0.1.
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Figure 13. Line plot for |uRL| along z-axis, with kf = 100 and (a)
kβ = 0, (b) kβ = 0.01, (c) kβ = 0.05, (d) kβ = 0.1.

So the equations of focal points for uLL and uRR of paraboloidal
reflector are similar to ordinary medium and overlap which is given by

x = y = z = 0 (80)

The focal points for LL and RR rays overlap for all values of kβ. For
kβ = 0, n1 = n2 = 1 and

uLL = uRR = 0 (81)

Magnitude of uLL and uRR around the focal point increases with the
increase in the chirality parameter kβ as shown in Figures 4, 5, 8–
11. Magnitude of uRL and uLR around the focal region decrease with
the increase of chirality parameter kβ as shown in Figures 6, 7, 12–
15. Figures 6, 7, 13, and 15, show that as the chirality parameter kβ
increases, the focal point for RL is shifted towards left and focal point
for LR ray is shifted towards right. With the increase in value of
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chirality parameter kβ, the gap between the focal points of RL and
LR rays increases. The variation in field pattern for different value of
the chirality parameter kβ is shown. If kβ = 0 then n1 = n2 = 1 and
the field pattern reduces to ordinary medium as given in [6]

uRL = uLR =
2jkf

π

∫ H

0

∫ 2π

0
tanα exp{−jk(2f − x sin 2α cos γ

−y sin 2α sin γ − z cos 2α)}dαdγ (82)

The equation of the focal point for RL and LR rays reduces to Eq. (80),
which is the same as in the case of ordinary medium that is achiral
medium.
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Figure 14. Line plot for |uLR| along either x-axis or y-axis, with
kf = 100 and (a) kβ = 0, (b) kβ = 0.01, (c) kβ = 0.05, (d) kβ = 0.1.
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Figure 15. Line plot for |uLR| along z-axis, with kf = 100 and (a)
kβ = 0, (b) kβ = 0.01, (c) kβ = 0.05, (d) kβ = 0.1.
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6. CONCLUSIONS

When a paraboloidal reflector placed in homogenous, isotropic and
reciprocal chiral medium is excited, four focal points are formed for
different rays designated in this paper by LL, RR, RL and LR. Focal
points for LL and RR rays are located at the same position, and focal
points for RL and LR are located on the opposite side of the focal point
for RR and LL ray. If chirality factor kβ > 0, then LCP wave move
slower than RCP, and is focused near the reflector and RCP wave is
focused away from the reflector. The situation is reversed if chirality
factor kβ < 0. As the chirality parameter increases, the gap between
the focal point increases, and if the chirality parameter kβ = 0 is zero,
the field for LL and RR becomes zero and that for RL and LR reduces
to the case of ordinary medium.

REFERENCES

1. Felson, L. B., Hybrid Formulation of Wave Propagation and
Scattering, Nato ASI Series, Martinus Nijhoff, Dordrecht, The
Netherlands, 1984.

2. Dechamps, G. A., “Ray techniques in electromagnetics,” Proc.
IEEE, Vol. 60, 1022–1035, 1972.

3. Chapman, C. H. and R. Drummond, “Body wave seismograms
in inhomogeneous media using Maslov asymptotic theory,” Bull.
Seismol., Soc. Am., Vol. 72, 277–317, 1982.

4. Maslov, V. P., “Perturbation theory and asymptotic methods,”
Moskov. Gos. Univ., Moscow, 1965 (in Russian). Translated into
Japanese by Ouchi et al., Iwanami.

5. Maslov, V. P. and V. E. Nazaikinski, “Asymptotic of operator and
pseudo-differential equations,” Consultants Bureau, N.Y., 1988.

6. Ghaffar, A., Q. A. Naqvi, and K. Hongo, “Analysis of the
fields in three dimensional Cassegrain system,” Progress In
Electromagnetics Research, PIER 72, 215–240, 2007.

7. Hussain, A., Q. A. Naqvi, and K. Hongo, “Radiation
characteristics of the Wood lens using Maslov’s method,” Progress
In Electromagnetics Research, PIER 73, 107–129, 2007.

8. Ji, Y. and K. Hongo, “Analysis of electromagnetic waves refracted
by a spherical dielectric interface by Maslov’s method,” J. Opt.
Soc. Am. A, Vol. 8, 541–548, 1991.

9. Ji, Y. and K. Hongo, “Field in the focal region of a dielectric
spherical by Maslov’s method,” J. Opt. Soc. Am. A, Vol. 8, 1721–
1728, 1991.



Progress In Electromagnetics Research B, Vol. 15, 2009 75

10. Hongo, K., Y. Ji, and E. Nakajima, “High frequency expression
for the field in the caustic region of a reflector using Maslov’s
method,” Radio Sci., Vol. 21, No. 6, 911–919, 1986.

11. Hongo, K. and Y. Ji, “High frequency expression for the field
in the caustic region of a cylindrical reflector using Maslov’s
method,” Radio Sci., Vol. 22, No. 3, 357–366, 1987.

12. Hongo, K. and Y. Ji, “Study of the field around the focal region
of spherical reflector antenna by Maslov’s method,” IEEE Trans.
Antennas Propagat., Vol. 36, 592–598, May 1988.

13. Ziolkowski, R. W. and G. A. Deschamps, “Asymptotic evaluation
of high frequency field near a caustic: An introduction to Maslov’s
method,” Radio Sci., Vol. 19, 1001–1025, 1984.

14. Faryad, M. and Q. A. Naqvi, “High frequency expression for the
field in the caustic region of cylindrical reflector placed in chiral
medium,” Progress In Electromagnetics Research, PIER 76, 153–
182, 2007.

15. Faryad, M. and Q. A Naqvi, “High frequency expression for the
field in the caustic region of a parabolic reflector coated with
isotropic chiral medium,” Journal of Electromagnetic Waves and
Applications, Vol. 22, No. 965–986, 2008.

16. Faryad, M. and Q. A Naqvi, “cylindrical reflector in chiral
medium supporting simultaneously positive phase velocity and
negative phase velocity,” Journal of Electromagnetic Waves and
Applications, Vol. 22, No. 563–572, 2008.

17. Ghaffar, A., A. Hussain, Q. A. Naqvi, and K. Hongo, “Radiation
characteristics of an inhomogeneous slab using Maslov’s method,”
Journal of Electromagnetic Waves and Applications, Vol. 22,
No. 2, 301–312, 2008.

18. Aziz, A., A. Ghaffar, Q. A. Naqvi, and K. Hongo, “Analysis
of the fields in two dimensional Gregorian system,” Journal of
Electromagnetic Waves and Applications, Vol. 22, No. 1, 85–97,
2008.

19. Aziz, A., Q. A. Naqvi, and K. Hongo, “Analysis of the fields in
two dimensional Cassegrain system,” Progress In Electromagnetics
Research, PIER 71, 227–241, 2007.

20. Ghaffar, A., A. Rizvi, and Q. A. Naqvi, “Field in the focal
space of symmetrical hyperboloidal focusing lens,” Progress In
Electromagnetics Research, PIER 89, 255–273, 2009.

21. Balanis, C. A., Advanced Engineering Electomagnetics, John
Wiley and Sons, 1989.

22. Lakhtakia, A., “Beltrami fields in chiral media,” Contemporary



76 Rahim et al.

Chemical Physics, World Scientific Series, 1994.
23. Lakhtakia, A., V. K. Varadan, and V. V. Varadan, Time

Harmonic Electromagnetic Fields in Chiral Media, Springer,
Berlin, 1989.

24. Jaggard, D. L., X. Sun, and N. Engheta, “Canonical sources and
duality in chiral media,” IEEE Trans. Antennas Propagt., Vol. 36,
1007–1013, 1988.

25. Jaggard, D. L., A. R. Mickelson, and C. H. Papas, “On
electromagnetic waves in chiral media,” Appl. Phys., Vol. 18, 211–
216, 1978.

26. Engheta, N. and D. L. Jaggard, “Electromagnetic chirality and its
applications,” IEEE Antennas Propagat. Soc. Newsletter, Vol. 30,
612, 1988.

27. Lakhtakia, A., V. K. Varadan, and V. V. Varadan, “Field
equations, huygenss principle, integral equations, and theorems
for radiation and scattering of electro-magnetic waves in isotropic
chiral media,” J. Opt. Soc. Am. A, Vol. 5, 175184, 1988.

28. Bassiri, S., “Electromagnetic waves in chiral media,” In
Recent Advances in Electromagnetic Theory, H. N. Kritikos and
D. L. Jaggard (eds.), Springer-Verlag, New York, 1990.

29. Engheta, N., “Special issue on wave interaction with chiral
and complex media,” Journal of Electromagnetic Waves and
Applications, Vol. 5/6, 537–793, 1992.

30. Lindell, I. V., A. H. Sihvola, S. A. Tretyakov, and A. J. Viitanen,
Electromagnetic Waves in Chiral and Bi-Isotropic Media, Artech
House, MA, 1994.


