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Abstract—This paper presents the graphical solutions of conjugately
characteristic-impedance transmission lines (CCITLs) implemented by
periodically loaded lossless transmission lines (TLs), which can exhibit
both non-negative (NNCR) and negative characteristic resistances
(NCR) with the corresponding propagation constants. The standard
T-chart and the extended T-chart are employed to solve CCITL
problems with NNCR and NCR cases respectively, depending on the
argument of CCITL characteristic impedances. The range of plotting
of the standard T-chart and the extended T-chart is always inside
or on the unit circle, and always outside or on the unit circle of the
voltage reflection coefficient plane, respectively. Two examples of finite
periodic TL structures providing both NNCR and NCR cases are given.
It is found that both T-charts provide the same input impedance of
the corresponding CCITLs as expected, and the standard T-chart is
more familiar and easier to deal with.

1. INTRODUCTION

One class of transmission lines (TLs), called conjugately characteristic-
impedance transmission lines (CCITLs), has been introduced recently
in the literature [1–7]. By definition, a CCITL possesses conjugate
characteristic impedances Z±

0 of waves propagating in the opposite
directions along the transmission line. Examples of CCITLs are
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reciprocal lossless uniform TLs, nonreciprocal lossless uniform TLs
[8–10], exponentially tapered lossless nonuniform TLs [2, 11, 12] and
periodically loaded lossless TLs operated in passband [13–18]. Using
the ABCD matrix technique, it can be shown that the equation of
the input impedance at each terminal of loaded finite lossless periodic
structures is in the same form as that of CCITLs [4]. Thus, CCITLs
can be conveniently implemented using periodically loaded lossless TLs
in practice. It should be pointed out that the analytical approach for
solving problems associated with CCITLs usually provides complex
formulae. Thus, graphical tools are usually needed to simplify the
analysis and design of CCITLs.

Recently, the graphical tools used in the analysis and design of
CCITLs, called T-charts [1, 7] have been invented and applied to solve
problems associated with CCITLs effectively. One can imagine that T-
charts are a generalized version of the standard Smith chart developed
for CCITLs. It is found that the T-chart generally depends on the
phase angle φ associated with the effective characteristic impedances
of CCITLs. As the parameters of CCITLs change, T-charts will
be changed accordingly as well. Thus, T-charts will be effectively
employed to simplify the analysis and design of CCITLs.

In the literature [5, 6], it is interestingly found that CCITLs
can exhibit both non-negative (NNCR) (Re{Z±

0 } ≥ 0) and negative
characteristic resistances (NCR) (Re{Z±

0 } < 0) if the operating
frequency is chosen appropriately. It should be pointed out that the
standard T-chart can be applied for CCITLs with the NNCR case
only [1], while the extended T-chart can treat the CCITL problems
associated with the NCR case [7]. Interestingly, it has been recently
found that both NNCR and NCR cases always exist in the same
passbands by employing the analysis based on the short-circuited and
open-circuited terminations for determining Z±

0 and β of equivalent
CCITLs [6]. Thus, the graphical solutions for the standard T-chart
and the extended T-chart for equivalent CCITLs, with NNCR and
corresponding NCR cases respectively, are expected to be identical. In
this paper, graphical solutions based on both T-charts are employed to
confirm this fact by determining the input impedances of terminated
equivalent CCITLs.

The organization of this paper is as follows. Section 2 presents the
theory of CCITLs associated with terminated finite lossless reciprocal
periodic TL structures. Numerical results illustrating both NNCR and
NCR cases are shown in Section 3. Finally, conclusions are presented
in Section 4.
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Figure 1. Models of: (a) a finite lossless reciprocal periodic TL
structure of M unit cells terminated in a passive load impedance ZL

and (b) an equivalent CCITL terminated in ZL.

2. THEORY OF CCITLS

The theory of CCITLs associated with terminated finite lossless
reciprocal periodic TL structures is provided in this section. Fig. 1(a)
shows a model of finite periodic TL structures of M unit cells
terminated in a passive load impedance ZL. Each unit cell of length
d is characterized by its transmission (ABCD) matrix. The input
impedance of the finite periodic structure of M unit cells is defined as
Zin,M . In [4], Fig. 1(a) can be viewed as a CCITL model of length
l = Md as shown in Fig. 1(b) possessing the propagation constant β,
with corresponding characteristic impedances, Z+

0 and Z−
0 , for waves

propagating in the forward and reverse directions, respectively. By
definition of CCITLs, Z+

0 and Z−
0 are complex conjugate of each other,

and β is the same for both forward and reverse waves for reciprocal
periodic TL structures. In this model, only the terminal quantities are
of interest without considering any physical quantities inside periodic
TL structures. The traveling wave equations for the phasor voltage
Vm and the phasor current Im in the passsbands at the terminal of the
mth unit cell (where m = 1, 2, . . . ,M) can be written as [11]

Vm = V +
0 e−jmβd + V −

0 ejmβd, (1)
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Im =
V +

0

Z+
0

e−jmβd − V −
0

Z−
0

ejmβd, (2)

where V +
0 and V −

0 are defined as the amplitudes of the incident and
reflected voltage waves referenced at the input of the finite periodic
TL structure, respectively.

Using the ABCD matrix technique, Z±
0 can be expressed in terms

of the total ABCD parameters of the unit cell of interest as [4]

Z±
0 =

∓2B
A − D ∓ j

√
4 − (A + D)2

, (3)

where they are complex conjugate to each other in the passbands only.
For convenience in analysis, Z±

0 are defined in the polar form as

Z±
0 = |Z0|e∓jφ, (4)

where |Z0| and φ are the magnitude and the argument of Z−
0 ,

respectively. For the NNCR case, (4) implies that the argument φ
must lie in the following range:

−90◦ ≤ φ ≤ 90◦, (5)

where cos φ ≥ 0 in this range. For the NCR case, the valid range of
the argument φ is

−180◦ < φ < −90◦ and 90◦ < φ ≤ 180◦, (6)

where cos φ < 0. Two examples of terminated finite periodic TL
structures exhibiting both NNCR and NCR cases will be illustrated
in Section 3.

In (1) and (2), β can be determined from the following dispersion
relation [11]:

cos βd =
A + D

2
. (7)

Note that the magnitude of the right-hand side of (7) is always less
than or equal to unity in passbands; i.e., β is real. As shown in [4], the
input impedance Zin,M (see Fig. 1(a)) of the terminated finite periodic
TL structure of M unit cells is given by

Zin,M = Z+
0 Z−

0

1 + Γe−j2Mβd

Z−
0 − Z+

0 Γe−j2Mβd
, (8)

where Γ is the voltage reflection coefficient at the load mathematically
given as

Γ =
ZLZ−

0 − Z+
0 Z−

0

ZLZ+
0 + Z+

0 Z−
0

. (9)
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From (8) and (9), it is obvious that the matching condition resulting in
ZinM = ZL for periodic TL structures can be obtained when ZL = Z+

0

for the NNCR case (Re{Z±
0 } ≥ 0) and ZL = −Z−

0 for the NCR case
(Re{Z±

0 } < 0); i.e., the magnitude of Γ is equal to zero and approaches
infinity, respectively. Moreover, |Γ| is always less than or equal to unity
for the NNCR case, and always greater than or equal to unity for the
NCR case [6]. However, associated powers for both cases are still
conserved for passive load terminations as also shown in [6].

Recently, it has been shown that CCITL parameters (Z+
0 , Z−

0 and
β) can be determined rigorously by using the analysis based on short-
circuited and open-circuited terminations [6], which is briefly described
below. Fig. 1(b) with M = 1 illustrates an equivalent CCITL model of
a single unit cell terminated in a passive load impedance ZL at its right
terminal, where Zin,L = Zin,M (M = 1) is the input impedance seen
from the left terminal of the CCITL. It should be pointed out that only
one unit cell (M = 1) is considered in determining CCITL parameters
of periodic TL structures since the ABCD matrix of each unit cell of
periodic TL structures is identical, and the single unit cell contains all
needed information for computing CCITL parameters. For the short-
circuited load (ZL = 0), Zin,L can be computed using (8) with M = 1
as

Zin,L

∣∣∣
ZL=0

= Z+
0 Z−

0

1 − e−j2βd

Z−
0 + Z+

0 e−j2βd
. (10)

For the open-circuited load (|ZL| → ∞), Zin,L is given as

Zin,L

∣∣∣|ZL|→∞ =
Z+

0 Z−
0 e−j2βd

1 − e−j2βd
. (11)

One more equation is needed in uniquely solving for Z+
0 , Z−

0 and
β, and can be obtained from the interchanging ZL in Fig. 1(b) to its
left terminal instead. Then, considering the short-circuited load yields
another equation. The input impedance (Zin,R) seen from the right
terminal of the short-circuited CCITL can be found as

Zin,R

∣∣∣
ZL=0

= Z+
0 Z−

0

1 − e−j2βd

Z+
0 + Z−

0 e−j2βd
. (12)

In the CCITL system, observing from the left terminal of the CCITL, it
is found that Z+

0 and Z−
0 are the characteristic impedances for waves

propagating in the forward and reverse directions, respectively. On
the other hand, observing from the right one, waves propagating in
the forward and reverse directions possess Z−

0 and Z+
0 , respectively.

Thus, interchanging of Z+
0 and Z−

0 in (8) and (9) with ZL = 0, Zin,R

can be written compactly as shown in (12).
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Solving (10), (11) and (12) simultaneously, Z+
0 , Z−

0 and β can be
determined analytically as follows [6]:

Z−
0 =

−Q2 ±
√

Q2
2 + 4Q1

2
, (13)

Z+
0 = Z−

0 + Q2, (14)

and β can be determined from

e−j2βd =
1 − R1Z

−
0

1 + R1Z
+
0

. (15)

Note that Q1, Q2 and R1 in the above equations are defined in
terms of Zin,L and Zin,R under short-circuited and/or open-circuited
terminations as

Q1 ≡ Zin,L

∣∣∣|ZL|→∞ · Zin,R

∣∣∣
ZL=0

, (16)

Q2 = Zin,L

∣∣∣|ZL|→∞ − 1
R1

, (17)

R1 =
Zin,L

∣∣∣
ZL=0

Zin,L

∣∣∣|ZL|→∞ · Zin,R

∣∣∣
ZL=0

. (18)

It should be pointed out that there are two sets of solutions for Z±
0

and β from the above analysis as seen in (13). It is found that one
solution yields the NNCR case; i.e., Z±

0 = R ± jX with β = T + nπ
d

(for −π < Td ≤ π), where R,X and T are real, n is a nonnegative
integer (see [6] for more details of choosing appropriate values of n), and
R ≥ 0. Another solution yields the NCR case; i.e., Z±

0 = −R0 ± jX
with β = −T + nπ

d , where R0 = R when R �= 0, and R0 > 0. In
[6], it is shown rigorously that equivalent CCITL models based on
both NNCR and corresponding NCR cases are equivalent; i.e., they
provide the identical ABCD matrix of the unit cell of interest. In the
next section, two examples of terminated finite periodic TL structures
exhibiting both NNCR and NCR cases are provided. In addition,
graphical solutions based on the standard T-chart and the extended
T-chart of these specific examples are employed to confirm that both
CCITL models are equivalent.

3. NUMERICAL RESULTS

Figure 2 illustrates a finite periodic TL structure implemented by a
multi-section transmission line (MSTL) of coplanar waveguides (CPW)
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[19, 20]. An MSTL with a three-section CPW is analyzed and designed
using the Agilent Genesys EDA software [21]. Equivalent CCITL
parameters Z±

0 and β of MSTL can be determined rigorously using
the theory in Section 2. The three-section CPW printed on the printed
board circuit (PCB) with dielectric constant of 3, substrate height of
0.75 mm and conductor thickness of 0.035 mm. It consists of center
conductor width w, slot width s, ground plane width g and center
conductor length L as shown in Fig. 2(a).

(a) (b)

Figure 2. A model of MSTL: (a) A CPW and (b) Three-section CPW.

Sizes of each CPW are tabulated in Table 1. The frequency of
interest ranges from 0.5 to 5 GHz. Note that a unity of M (M = 1) is
employed in this paper, and the length d of the unit cell of Fig. 1(b)
is 50 mm. Using (3) and (7), it is found that β satisfying | cos βd| ≤ 1
is in the 1st passband (0.5–2.413 GHz) and the 2nd passband (2.795–
5GHz), corresponding to the NNCR and NCR cases respectively, as
shown in Fig. 3. Note that the complex value of β is observed in
the stopband (between 2.413 GHz and 2.795 GHz). Only β in the
passbands is plotted.

Table 1. Physical sizes of CPWs.

Using (3), Figs. 4 and 5 plot the magnitudes and arguments of
Z±

0 versus frequency, respectively. In Fig. 5, φ+ and φ− denote the
arguments of Z+

0 and Z−
0 , respectively. It is observed that Z+

0 and
Z−

0 are complex conjugate of each other in the passbands only. In
addition, this MSTL exhibits the NNCR and NCR in the 1st passband
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Figure 3. β versus frequency.

Figure 4. Magnitudes of Z+
0 and Z−

0 versus frequency.

and the 2nd passband respectively, as shown in Fig. 5. Away from the
passbands (i.e., stopbands), it is found that Z±

0 are purely imaginary
with different magnitudes.

Next, it is of interest to determine the input impedance Zin,M

of the MSTL terminated in the load impedance ZL of 50Ω at the
operating frequency of 3 GHz using the standard analysis based on
the ABCD matrix technique (see (3) and (7)) and the analysis
based on short-circuited and open-circuited terminations (see (13) to
(15)). At this operating frequency, using the standard analysis based
on the ABCD matrix technique, Z±

0 = −244.681 ± j63.073Ω and
β = 54.186 rad/m (corresponding to the NCR case) are obtained as
shown in Figs. 4 and 5. However, the analysis based on short-circuited
and open-circuited terminations for the NNCR case provides Z±

0 =
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Figure 5. φ+ and φ− versus frequency.

244.681±j63.073Ω and β = −54.186+ nπ
d (using β = 71.478 rad/m (for

n = 2)) [6]. In addition, CCITL parameters of the corresponding NCR
case are Z±

0 = −244.681 ± j63.073Ω and β = 54.186 rad/m. It should
be pointed out that the analysis based on the short-circuited and open-
circuited terminations always provides both NNCR and NCR cases
existing in the same passbands while the standard analysis based on
the ABCD matrix technique (see (3)) always provides either NNCR or
NCR cases only in a passband; e.g., considering Z±

0 at 3 GHz for both
methods. Using (8) and (9), Zin,M of the MSTL with the NNCR and
corresponding NCR cases can be readily calculated. It is found that
they provide the identical Zin,M of 48.069 + j103.551Ω with different
|Γ| of 0.679 and 1.473 for the NNCR and corresponding NCR cases
respectively, as expected.

Applying both T-charts to determine Zin,M , the plots of the
normalized input impedances zin,M of the standard T-chart [1] for
φ = −14.46◦ and the extended T-chart [7] for φ = −165.55◦ are shown
in Figs. 6(a) and 6(b), respectively. Note that both T-charts depend
on the argument of characteristic impedance φ. For passive loads,
the valid regions of the standard T-chart and the extended T-chart
are on or inside, and on or outside the unit circle in the Γ plane,
respectively. In this paper, impedances are normalized with respect
to |Z0|. To determine Zin,M of the NNCR case, the normalized load
impedance zL of 50/|Z0| = 0.198 is plotted on the standard T-chart as
shown in Fig. 6(a). Starting from the zL point, the normalized input
impedance zin,M can be found graphically by rotating the zL point
clockwise an amount of 2βd along the circular path passing through
zL. However, it moves around the circle more than 360◦. Thus, only
the circular path of an amount of 2βd−2π is plotted in Fig. 6(a). This
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(a)

(b)

Figure 6. Determination of Zin,M of the MSTL: (a) NNCR case, (b)
NCR case.
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is due to the periodic property of this TL for its impedance to repeat
itself for every half-wavelength. Therefore, the zin,M point can be
read as r = 0.19 and x = 0.41, and the input impedance Zin,M can be
computed as zin,M |Z0|, which is equal to 48.01+j103.60Ω. In addition,
Fig. 6(b) illustrates the determination of zin,M of the corresponding
NCR case on the extended T-chart. Following the similar procedure
as the previous case, zin,M can be determined graphically by starting
from the normalized zL = 0.198 and rotating in the clockwise direction
by an amount of 2βd along the circular path passing through zL.
Finally, zin,M can be found at r = 0.19 and x = 0.41 with Zin,M

of 48.01+ j103.60Ω, which is identical to the result of the NNCR case.
Comparing the graphical solutions of Zin,M to that based on (8) and
(9), it is found that they are in excellent agreement.

In addition to computing the MSTL with only a single unit cell
(M = 1), the input impedance Zin,M of terminated five identical
unit cells (M = 5 and ZL = 50Ω) of three-section CPW in cascade
connection at 3GHz, used as an example for practical applications,
can be determined by using these T charts showing their convenience
in usage of multiple unit cells. Using (8) and (9) of the ABCD matrix
technique, Zin,M of 341.563 − j462.950Ω can be obtained using the
same CCITL parameters (Z±

0 , β) of the unit cell as in the previous
example. Furthermore, applying both T-charts to determine Zin,M

for M = 5, the plots of the normalized input impedances zin,M of
the standard T-chart for φ = −14.46◦ and the extended T-chart for
φ = −165.55◦ are shown in Figs. 7(a) and 7(b), respectively. In Fig.
7(a), starting from the zL point, the normalized input impedance zin,M

can be found graphically by rotating the zL point clockwise an amount
of 2Mβd along the circular path passing through zL. However, only
the circular path of an amount of 2Mβd− 2Mπ is plotted in Fig. 7(a)
due to the periodic property of this TL. Therefore, the zin,M point
can be finally read as r = 1.35 and x = −1.83 resulting in the
input impedance Zin,M of 341.12 − j462.40Ω. In addition, Fig. 7(b)
illustrates the determination of zin,M of the corresponding NCR case
on the extended T-chart. Following the similar procedure as the
previous case, zin,M can be determined graphically by starting from
the normalized zL = 0.198 and rotating in the clockwise direction by
an amount of 2Mβd along the circular path passing through zL. Only
the circular path of an amount of 2Mβd − 2(M − 1)π is plotted in
Fig. 7(b). Finally, zin,M can be found at r = 1.35 and x = −1.83
corresponding to Zin,M of 341.12− j462.40Ω, which is identical to the
result of the NNCR case. Again, they are in excellent agreement with
Zin,M computed using (8) and (9) above.



148 Torrungrueng and Lamultree

(a)

(b)

Figure 7. Determination of zin,M of the MSTL with M = 5: (a)
NNCR case, (b) NCR case.
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4. CONCLUSIONS

Two identical graphical solutions of a type of CCITLs, lossless periodic
TL structures implemented by the three-section CPW as a unit cell
providing both NNCR and NCR cases, are presented in this paper.
It is found that the magnitude of the voltage reflection coefficient is
always less than or equal to unity for the NNCR case, and always
greater than or equal to unity for the NCR case. The standard
T-chart and the extended one are dependent on the argument of
the characteristic impedances of CCITLs, and they are employed to
effectively and intuitively solve CCITL problems with NNCR and NCR
cases, respectively. At the selected frequency in passbands, the ranges
of plotting the standard T-chart for the NNCR case and the extended
one for the NCR case are always inside or on the unit circle, and outside
or on the unit circle of Γ plane, respectively. Nevertheless, the input
impedances of the equivalent terminated CCITLs with the NNCR and
corresponding NCR cases, obtained by using appropriated T-charts,
are almost identical to that calculating directly from (8) and (9) for
both single and five unit cells of the three-section CPW. Due to the
fact that the NNCR case is more familiar and easier to deal with, the
corresponding NCR case can always convert into the NNCR case, then
the standard T-chart can be employed to solve problems effectively.
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