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Abstract—The dynamic evolutions of full Gaussian and particularly
the truncated Gaussian pulses in dispersive Lorentz media are studied
numerically in detail. The observed qualitative phenomena lead
to revised interpretation regarding both Sommerfeld and Brillouin
precursors. Neither strict Sommerfeld nor Brillouin precursor is
present for the case of an incident full Gaussian pulse for any finite
propagation distance. In addition, the Brillouin effect can be separated
into a tail and a forerunner depending on the turn-on point of the
initial pulse. Moreover, the essence of an artificial precursor is
discussed, which deserves caution when handling the high dynamic
range problems by numerical algorithm.

1. INTRODUCTION

The propagation of electromagnetic pulses in dispersive Lorentz media
was initially analyzed by Sommerfeld [1] and Brillouin [2, 3] in 1914
using the asymptotic method of steepest descent. They showed
analytically that when the pulse penetrates deep into Lorentz media,
its dynamics settle into two parts: the Sommerfeld precursor, which
is composed of high-frequency components and propagates at the
velocity of light in vacuum c, and the Brillouin precursor, which
is composed of low-frequency components and arrives later after
the Sommerfeld one [4]. Later, Oughstun and Sherman, using
modern asymptotic techniques, accomplished a seminal quantitative
improvement to describe the propagated field together with a more
accurate definition of signal velocity in dispersive media [5]. Based on
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this approach, the precursor fields of various types of incident pulses in
dispersive media, including unit-step-function-modulated pulse, delta-
function modulated pulse and Gaussian pulse, were studied [6–11].
Moreover, the contribution from medium dispersion and absorption in
Brillouin precursor is described in [12] and possible usages of Brillouin
precursor are suggested in [12, 13]. Other useful methods analyzing
this problem, such as imbedding method, Green function method,
and propagator method, can be found in [14–16]. Also, the reflection
coefficient for a plane wave obliquely incident on a Lorentz medium
half space is determined analytically in [17].

Recently, strongly dispersive materials have attracted much
attention in connection to metamaterial research [18] where it is typical
to design composites that consist of small resonating inclusions as
building blocks. One of the aims is to fabricate artificial materials with
negative refractive index. Such a property can be achieved only within
a certain frequency range, and consequently the material parameter
properties are strongly dependent on frequency. This leads to further
difficulties in the interpretation of the various wave velocities in the
medium [19–23] since not only the magnitude of the velocity but also
its direction in negative-phasevelocity materials is to be decided. There
is clearly a need for further understanding of pulse behavior in complex
materials.

The objective in the present paper is to point out that even if
the dynamics of the pulse propagation in Lorentz-dispersive media
is well studied, the character of the precursor structure calls for
additional analysis and interpretation. The focus in the following is to
demonstrate that for an incident ideal full Gaussian pulse, there will be
neither Sommerfeld nor Brillouin precursor for any finite propagation
distance into Lorentz media. However, their appearance depends on
whether the Gaussian pulse has a clearly defined turn-on time. In
order to achieve these goals, pulse behavior is examined by applying
Fast Fourier Transform (FFT) to various Gaussian pulse forms. The
full Gaussian pulse is first analyzed, and the results are compared with
earlier literature. Then attention is given to the effect of an onset of
the pulse. One of the original contributions of the present paper is the
analysis of truncated Gaussian pulses (meaning that the Gaussian pulse
is multiplied by a Heaviside unit step function and therefore vanishes
before a certain zero-crossing point) as incident waves, compared with
the full Gaussian pulse case. Finally, the nature of new qualitative
observation — artificial precursor — is examined which is relevant in
the interpretation of pulse propagation analyses, especially when the
spectra are calculated numerically.
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2. PROPAGATION OF FULL GAUSSIAN PULSE IN
LORENTZ MEDIA

Consider an incident Gaussian-modulated cosine pulse with carrier
frequency ωc and initial pulse width 2T , given by

f(t) = e−(t/T )2 cos(ωct) (1)

which is propagating through isotropic non-magnetic material. The
spectrum of the incident field given by Eq. (1) could be analytically
calculated by Fourier Transform and is expressed as
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The dielectric behavior of the medium is assumed to follow a Lorentz
model where the relative permittivity is described as [24]

ε(ω) = 1 − b2

ω2 − ω2
0 + 2iδω

(3)

where ω0 is the resonant frequency, b is the plasma frequency and
δ is the damping frequency. The Lorentz model described in (3) is
often used in the analysis of artificial dielectrics, artificial magnetic
and metamaterials where individual resonating elements are embedded
into a background matrix to enhance the dielectric response of the
composite [25, 26].

Although the evolution of ultrashort full Gaussian pulse in Lorentz
media has been studied thoroughly (see, for example [9–11]), the
dynamics of the pulse evolution is very interesting and deserves to
be reviewed here. Let us explore the case when the carrier frequency
ωc = 5.75 × 1016 s−1 is near the upper limit of the absorption band
([(ω2

0−δ2)
1
2 , (ω2

0+b2−δ2)
1
2 ]) of a Lorentz medium with parameters ω0 =

4×1016 s−1, b2 = 20×1032 s−2, and δ = 0.28×1016 s−1, and the initial
pulse width 2T = 0.4 fs. Except T , all the parameters are the same as
those in [9–11]. Although a more smoothly varying envelope is chosen,
the pulse is still ultrawideband since the −3 dB fractional bandwidth
is 20.47%, and also note that T < 1/δ. The reason for choosing a
broader pulse width than in these references is that, as shown in Fig. 1,
the whole spectrum in this case remains practically limited around the
carrier frequency and is located within the most dispersive region. This
leads to the fact that the pulse decays much more strongly than in the
results shown in [9, 10], which reveals interesting features and provides
better understanding concerning Sommerfeld and Brillouin precursors
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Figure 1. The spectrum of full Gaussian pulse used in the analysis
(solid curve) and complex permittivity of the selected Lorentz medium
(dotted and dashed curves). The frequency scale is normalized to the
carrier frequency ωc.

in the weak-field regime. In addition, the effect of pulse width is also
discussed.

In this paper, FFT is applied to evaluate the transient field at
any given propagation distance. In frequency domain approach, an
arbitrary plane wave propagates with a phase dependence exp(−jkz),
where k2 = ω2με. There, at first the spectrum F (ω) of the
initial temporal signal f(t) is calculated by Fourier Transform,
then in frequency domain, the propagated spectrum is described
as F (ω) exp(−jkz), and finally the propagated temporal waveform
is computed using Inverse Fourier Transform. Here the FFT and
Inverse Fast Fourier Transform (IFFT) algorithms are applied to
approximate the Fourier and Inverse Fourier integrals. It should also
be noticed that all the results are calculated with identical sample
points N = 106 and computational domain from −200T to 200T ,
which is sufficiently large to model the pulse in Eq. (1). In order to
examine the validity of the FFT routine, the spectra are also calculated
analytically (by multiplying exp(−jkz) with the analytical spectrum
in (2)) in comparison with the numerical spectra obtained by FFT.

2.1. Dynamic Evolution of Full Gaussian Pulse

The pulse evolution, shown in detail in Fig. 2 as function of the space-
time parameter θ = ct/z, can be summarized qualitatively in the
following way. When the initial Gaussian pulse propagates inside the
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Lorentz medium, its envelope starts to spread out gradually and decay
dramatically. In time domain, the pulse oscillations become faster.
This is consistent with the developments in frequency domain, where
the lower frequency components decay faster than the higher ones.
With the increase of propagation distance up to z = 167.84 zd = 2µm,
where zd (= 11.92 nm) denotes the e−1 absorption depth at the carrier
frequency ωc [11], a much lower frequency tail (in both time and
frequency domains) is witnessed just after the initial signal. This tail
attenuates much more slowly than the initial Gaussian pulse. As the
pulse continues to propagate, a very-quick-oscillating structure appears
in front of the initial Gaussian pulse, which is very small in amplitude.
Further examination shows that it always travels at the light velocity
in vacuum c and its amplitude remains nearly invariable (10−13). Let
us call this high-frequency structure ‘artificial precursor’ and the low-
frequency tail ‘Brillouin tail’. When z = 251.76 zd = 3µm, the pulse
has developed into clearly three parts: artificial precursor, the initial
pulse and Brillouin tail. Finally, the initial Gaussian pulse vanishes
leaving only the artificial precursor and Brillouin tail in Fig. 2(e), and
again the artificial precursor seems not to decay during propagation. In
frequency domain, the comparison between analytical and numerical
spectrum in Fig. 2(f) indicates that the artificial precursor deserves
further examination.

(a) 0 m
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(b) z  = 83.92 zd  = 1 mµ

(c) z = 167.84 zd  = 2 mµ
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(e) z  = 671.35 zd = 8 mµ

(d) z  = 251.76 zd = 3 mµ
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(f) d = 13   = 1090.9 mµz z

 

Figure 2. Dynamic evolution of full Gaussian pulse in Lorentz
medium, with absorption depth zd = 11.92 nm, carrier frequency
ωc = 5.75 × 1016 s−1, initial pulse width 2T = 0.4 fs.

2.2. Interpretation of the Evolution: Artificial Precursor
and Brillouin Tail

It is illustrative to compare the results in Fig. 2 with the results in
earlier literature [9]. A similar dynamic evolution is observed despite
the different initial pulse width T . However, one major difference
is that the pulse in Fig. 2 suffers from a much greater attenuation
because the spectrum is more concentrated on the carrier frequency
and is located in the most dispersive and attenuation region. Another
important distinction lies in the emergence of artificial precursor,
whose amplitude (of the order of 10−13) is invariable and comparable
with those of initial pulse and Brillouin tail. Great caution should
be paid when trying to explain this artifact. Its appearance and
velocity (always the vacuum light speed considering the envelope) are
not affected much by increasing sample points or computational range.

The proper interpretation of this phenomenon is as follows. In
numerical computation, floating-point numbers with only finite digits
cannot faithfully mimic the real numbers, which means a non-absolute-
zero value could be treated as zero when it is beyond the description
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capability of the floating-point numbers with only finite digits. As
a result, the full Gaussian pulse can never be achieved numerically,
and moreover, despite a large computational domain defined ([−200T ,
200T ] in this paper), the ideal Gaussian pulse is already numerically
truncated at a certain fixed position due to finite digits effect of
floating-point numbers. This results in the rapidly oscillating artificial
precursor. For instance, when the floating-point numbers have 16
digits, the computation accuracy limit (10−16) has already been
reached if t = 6T , where the value of |f(t)| in (1) is approximately
2.6 × 10−16. That also explains why the computational range, if it is
large enough, has basically no effect on artificial precursor. The fact
that the origin of this precursor is in the numerics can also be shown
from Figs. 2(e) and (f) where it is seen that in case of analytically
calculated frequency spectrum the precursor vanishes. In short, the
artificial precursor can be considered as an unphysical Sommerfeld
precursor. That means, for an incident ideal full Gaussian pulse, no
Sommerfeld precursor should appear.

In [9], the author concluded that an input Gaussian pulse will
evolve into a pair of pulses: the generalized Sommerfeld precursor,
propagating just below c, and the generalized Brillouin precursor.
Nevertheless, from the analysis above, it is shown that leave alone
the artificial precursor, no precursor fields emerge during the whole
dynamics. So instead of generalized Sommerfeld and Brillouin
precursors, we call them initial Gaussian pulse and Brillouin tail
considering the envelope.

Figure 3 shows the amplitude of the envelope peak of the
propagating field. There, the most dramatic message is the enormous
attenuation of the initial pulse. Fig. 4 displays the velocities of the
envelope peaks of the various components of the pulse. An interesting
phenomenon is that the Brillouin tail propagates at nearly a constant
velocity vB roughly equal to c/n (ω = 0), which is usually considered
as velocity of the Brillouin precursor. That is because this Brillouin-
structure field is composed of low frequency components near DC.
The reason for the term ‘tail’ rather than ‘precursor’ in this paper
is that this Brillouin structure clearly evolves behind the initial pulse,
as shown in Fig. 2.

Therefore, for an ideal full Gaussian pulse propagating in Lorentz
media, there will be, strictly speaking, neither Sommerfeld nor
Brillouin precursor. Admittedly the pulse spectrum in the example was
rather narrow but nevertheless the same qualitative conclusions would
apply to narrower pulses. Because the spectra of ultrashort pulses
spread widely over the whole frequency band, and the larger near-DC
and high-frequency components will lead to much larger initial pulse
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Figure 3. Attenuation of the peak of the pulse envelope of the three
different structures of the waveform.
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Figure 4. Velocities of the envelope peak of three different structures
of the waveform.

and Brillouin tail in amplitude. As a result, the artificial precursor
with an invariable amplitude (10−13) becomes invisible but definitely
exits.

2.3. Effect of Pulse Width

To further illustrate the point of precursorless evolution of the full
Gaussian pulse, let us treat a more wideband pulse. Fig. 5 shows
the case where a Gaussian pulse with 10 times narrower pulse width



Progress In Electromagnetics Research B, Vol. 14, 2009 75

Temporal signal at 100 zd
Scaled and shifted 

original pulse

Figure 5. The transient waveform of a ultra-wideband Gaussian pulse
with 2T = 0.04 fs penetrating into the Lorentz medium for 100 zd,
together with the dotted curve representing the scaled original pulse
which propagates in vacuum for the same distance. The dotted curve,
representing the luminally propagating pulse, is clearly ahead of the
wake-up of the ultra-wideband full Gaussian pulse.

(2T = 0.04 fs and ωc = 5.75 × 1016 s−1) is chosen as the incident field.
Fig. 5 shows that although the high-frequency part of the initial pulse
travels faster in this case and resembles the Sommerfeld precursor, it
is nevertheless subluminal. This can be seen in Fig. 5 by comparison
to the position of the initial pulse propagating through free space,
whose peak arrives exactly at θ = 1 (here the space-time parameter
is defined as θ = ct/z). However, with the continuous decrease of
the pulse width, the velocity of the initial pulse will be increasingly
approaching the vacuum light speed, and in the limiting case, when
the Gaussian pulse evolves into a delta function, the initial pulse could
finally be considered as the Sommerfeld precursor.

In order to explore further effect affecting the precursor structure,
truncated Gaussian pulses are treated as incident fields in the following
section.
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3. PROPAGATION OF TRUNCATED GAUSSIAN PULSE
IN LORENTZ MEDIA

In order to generate a truncated Gaussian pulse as an input wave, the
full Gaussian pulse in Fig. 2(a) is multiplied by a unit-step Heaviside
function which triggers at the zero-crossing point of the carrier wave.
The zero-crossings are defined by

t0 =
(

k +
1
2

)
π

ωc
(4)

where k = 0, ±1, ±2, . . .. In other words, the pulse is silent before
this time instant. Different from a full Gaussian pulse, a truncated
Gaussian pulse is more realistic with a clearly defined turn-on time
at t0. In order to reveal the truncation effects on pulse dynamics in
the mature-dispersion regime, firstly the evolution of a Gaussian pulse
truncated at higher order negative zero-crossing point (with negative
large k) is analyzed, in which it mimics the full Gaussian pulse and
provides a distinguishable comparison. Then, the truncation at lower
order negative zero-crossing point is studied to explore the influence of
truncation points.

3.1. Comparison between Truncated and Full Gaussian
Pulses

Figure 6 illustrates the dynamic evolution of the Gaussian pulse
truncated at the negative zero point t0 = −0.9 fs = −4.5T when
k = 17, and the space-time parameter θ is defined as θ = (t − t0)c/z
(note that θ = 1 corresponds to the luminally propagating signal
component). Compared with Fig. 2, the entire dynamic evolution
resembles closely that of the previously analyzed full Gaussian pulse.
However, a more close comparison in Fig. 7 clearly shows the following:
First, a clear-shaped Sommerfeld precursor, traveling exactly at c,
arrives as the earliest part of the signal; and second, a clear-
shaped Brillouin precursor emerges after the initial pulse but before
the Brillouin tail. Also in frequency domain, two new frequency
components emerge in Fig. 8(a) besides those in Fig. 8(b). One is
the strong DC frequency components corresponding to the Brillouin
precursor. The other is the even higher frequency components ranging
from −50ω0 to 50ω0 which corresponds to the Sommerfeld precursor.

This leads to the following significant conclusion: for the full
Gaussian pulse case, it is not proper to name the propagated field
after precursors, since there is neither strict-speaking Sommerfeld nor
Brillouin precursor for any finite propagation distance into the Lorentz
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Figure 6. Dynamic evolution of truncated Gaussian pulse at t0 =
−4.5T = 0.9 fs in Lorentz medium, with absorption depth zd =
11.92 nm, carrier frequency ωc = 5.75 × 1016 s−1, initial pulse width
2T = 0.4 fs.

media. Also it clearly shows that the emergence of precursor fields
depends on whether the Gaussian pulse has a clearly defined turn-on
time.

Next, let us study how a more marked turn-on behavior (a
truncation closer to the pulse peak) affects the pulse evolution. The
dynamic evolution of the Gaussian pulse truncated at the negative
zero-crossing point t0 = −0.35 fs = −1.8T when k = 7 is illustrated in
Fig. 9. Obviously, for the same propagation distance z = 300 zd, the
precursor fields dominate the propagated fields and are much larger in
amplitude compared with Figs. 7(a) and 8(a). This evidently shows
that the amplitudes of Sommerfeld and Brillouin precursors are chiefly
determined by the position of the truncation point; in other words, the
derivative of the pulse at the turn-on time has a strong influence on
the amplitudes of the precursor fields.

3.2. Truncation Effects on the Sequence of Pulse
Components

As already shown in previous section, the turn-on time has a significant
influence on the amplitudes of the Sommerfeld and Brillouin precursors
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 Full Gaussian pulse case(b)

 Truncated Gaussian pulses case at t 0 = -4.5T = 0.9 fs(a)

Figure 7. Time-domain comparison between the transient fields
of full and truncated Gaussian pulses with the same parameters at
z = 300zd = 3.576µm, where absorption depth zd = 11.92 nm, carrier
frequency ωc = 5.75 × 1016 s−1, initial pulse width 2T = 0.4 fs.
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 Full Gaussian pulse case (b)

 Truncated Gaussian pulses case at t0 = -4.5T = 0.9 fs(a)

Figure 8. Frequency-domain comparison between the spectra of
full and truncated Gaussian pulses with the same parameters at
z = 300zd = 3.576µm, where absorption depth zd = 11.92 nm, carrier
frequency ωc = 5.75 × 1016 s−1, initial pulse width 2T = 0.4 fs.
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 Transient field(a)

 Corresponding spectrum(b)

Figure 9. The transient field of truncated Gaussian pulses with
t0 = −1.8T = −0.35 fs at z = 300zd = 3.576µm. (Note the 7 orders
of larger magnitude of the precursors as compared to Fig. 7(a) and
Fig. 8(a), where the truncation is at t0 = −4.5T = 0.9 fs, and the
main pulse is totally overshadowed by the precursors).
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 Transient field of truncated Gaussian pulse
with t0 = -3.41T = -0.681 fs at  z = 100zd = 1.19 mµ
(b)

zd

zd

 Transient field of truncated Gaussian pulse
 with t0 = -2.87T = -0.574 fs at  z = 80zd = 0.95

(a)
mµ

zd

zd
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(d) Transient field of truncated Gaussian pulse  
t0 = -4.50T = -0.901 fs at z = 300zd = 3.57 mµwith

zd

zd

Transient field of truncated Gaussian pulse  
t0 = -3.96T = -0.792 fs at z = 150zd = 1.79 mµwith

(c)

zd

zd

Figure 10. The influence of truncation points on the sequence of pulse
components.
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due to truncation. Also, it should be noticed that for truncated
Gaussian pulse with different initial time, the pulse components in
the dispersion-mature region may vary greatly not only in amplitude
but also in the sequence. In order to qualitatively illustrate this
phenomenon, transient fields for different truncated Gaussian pulse
in Lorentz medium are computed and compared with those of full
Gaussian pulse at the same propagation distance in Fig. 10.

Clearly, the Sommerfeld precursor always arrives firstly and travels
exactly at c, while the Brillouin precursor always propagates at the
speed of v = c/n(0) = c/1.5 and may arrive before, after or overlapping
with the original pulse according to varying truncation points. What is
more interesting is that the dynamic evolution of truncated Gaussian
pulse could actually be interpreted as the combination of the evolution
of full Gaussian pulse (the second figure in Fig. 10(a)) and the evolution
of the precursor pair due to truncation (the third figure in Fig. 10(a)).
As a result, the key distinction of the dynamics lies in the fact that
the amplitudes of the precursor pair vary dramatically for different
truncation cases. When the truncation introduces a precursor pair
small enough, a complete pulse train will be observed as Sommerfeld
precursor, main pulse, Brillouin precursor and Brillouin tail shown
in Fig. 10(d). Otherwise, when the truncation launches a precursor
pair large enough to dominate the evolution, the whole dynamics of
full Gaussian pulse will be overlapped and negligible after a certain
propagation distance. In all, the Brillouin precursor may appear
before, after or overlapping with the main pulse according to different
truncation position, and the main pulse and Brillouin tail may be
absent while the precursor pair dominate the dynamic evolution.

4. CONCLUSION

The results presented in this paper have shown clearly the role of the
truncation on precursor fields when a Gaussian-modulated sinusoidal
pulse propagates in dispersive Lorentz media. In the dynamics of a full
Gaussian pulse propagation, neither strict Sommerfeld nor Brillouin
precursor exists. Rather, the high frequency component should be
treated as the initial pulse because of its natural development in
the time domain shown in Fig. 2. Furthermore, the low-frequency
component should be termed as the Brillouin tail (rather than
precursor) since it develops after the main pulse and not in front of
it. The studies on truncation cases reveal that the appearances of
precursor fields depend on whether the Gaussian pulse has a clearly
defined turn-on time and that their amplitudes are chiefly determined
by the derivative of the pulse at the turn-on time. The above
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statements could also be generalized into other cases when the carrier
frequency is not located (as here) in the upper edge of the absorption
band. Nevertheless, in such cases similar qualitative phenomena could
not be easily observed, because the artificial precursor, the initial
pulse, and the Brillouin tail are not comparable with one another
in amplitude. When the carrier frequency is above the upper limit
of the absorption band (ωc ≥ (ω2

0 + b2 − δ2)
1
2 ) where the effective

permittivity is close to that of free space as shown in Fig. 1, high-
frequency-component structure, referring to so-called initial pulse,
resembles the strict Sommerfeld precursor since it dominates the
dynamics and travels at velocity very close to c. On the contrary, when
the carrier frequency is below the lower limit of the absorption band
(ωc ≤ (ω2

0 − δ2)
1
2 ), the initial pulse could become comparable with the

numerical noise (10−16), and the distortion between them will make
it difficult to observe the dynamics. This problem can be solved by
increasing the digits of floating-point numbers at the expense of more
computational time and resources. Anyway, considering the fact that
the high frequency structure, either called ‘initial pulse’ in this paper or
‘generalized Sommerfeld precursor’ in [9], always travels subluminally,
there is still neither strict Sommerfeld nor Brillouin precursor when an
arbitrary full Gaussian-modulated cosine pulse propagates in dispersive
Lorentz media for a finite propagation distance. However, for the
limiting case, when the Gaussian pulse eventually develops into a delta-
function-modulated pulse, the ‘initial pulse’ can be properly considered
as the Sommerfeld precursor.

Finally, the discussion about the artificial precursor calls for
caution when FFT is used to handle problems with high dynamic range.
The appearance of this artifact at the speed of light carries the risk
of identifying it with a strict Sommerfeld forerunner. However, due
to the fact that a numerical description cannot absolutely reproduce
a full Gaussian pulse, the discretization creates an artificial turn-on
time which translates into a precursor. This becomes visible when the
other physical components of the pulse have decayed to levels below
13 orders of magnitude.
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