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Abstract—A high-order closed-form solution for the specific absorp-
tion rate (SAR) distribution induced inside a plane geometry fatmuscle
tissue by a shortwave diathermy induction coil is presented. The solu-
tion is derived starting from the complete integral expressions for the
electromagnetic field components generated by a currentcarrying cir-
cular loop located horizontally above a stratified earth. It is valid in a
wide frequency range, and is flexible to any multi-turn coil configura-
tion. The spatial distribution of the SAR induced in the muscle tissue
by a flat round coil is computed by using the proposed formulation,
the zero-order quasi-static one, and the finite difference time domain
(FDTD) method. Excellent agreement is demonstrated to exist be-
tween the results provided by the new approach and those achieved
through FDTD simulations. On the contrary, the performed compu-
tations show that the zero-order solution leads to over-estimate the
SAR. The performances of the round and figure-eight coil geometries
are compared. Despite of what has been argued in previously pub-
lished papers, it turns out that the figure-eight coil is less energetically
efficient than the round one. The work in the present paper is an
extension of a previous work.

1. INTRODUCTION

Shortwave or Radio Frequency (RF) inductive diathermy therapy
consists of using an applicator coil fed by a radiofrequency generator
to produce electric currents and ohmic heating in subcutaneous fat
and muscle tissues by electromagnetic induction. This widespread
electrotherapy treatment modality is employed for multiple purposes,
that is to accelerate wound healing and nerve regeneration, to deal with

Corresponding author: M. Parise (m.parise@unicampus.it).



236 Parise and Cristina

vascular occlusion, and to reduce post-surgery pain or relieve muscle
spasms [1–3]. In particular, recent studies about wound healing [1]
proved that the application of shortwave diathermy enhances the
proliferation rates of the fibroblast cells, which are involved in the
synthesis of collagen and contribute to repair scar tissues. Previously,
several tests performed on patients with peripheral vascular desease
(PVD) [2] pointed out how the production of heating in deep tissues
causes vasodilation of the local vessels, thus increasing the blood flow.
Moreover, heat produced by applicator coils is used in combination
with conventional radiotherapy and chemotherapy for the management
of tumors (loco-regional hyperthermia [4–8]).

Regardless of the therapeutic purpose, diathermy treatment
planning necessitates the a priori knowledge of the Specific Absorption
Rate (SAR) patterns induced in human tissues by coils.

When, as frequently occurs, the illuminated structure is human
back or abdomen, the SAR can be computed assuming a planar
tissue geometry, provided both the coil-to-subject spacing and coil
radius are small if compared to the characteristic dimension of
the cross section of the body trunk [3, 9, 10]. The EM analysis
can then be efficiently performed through analytical techniques,
which require computer resources and computation times significantly
smaller than those implied by numerical procedures, and are
suitable for the comparative evaluation of various exposure conditions
and coil configurations. Closed-form expressions for the heating
patterns generated in simplified tissue models (semi-infinite plane and
cylinder) by circular coils were derived under the quasi-static field
assumption [3, 10–13], that is neglecting the high-frequency effects due
to the displacement current (in both the air and the tissue) and the
depth of penetration (in the tissue). Yet, at the most commonly used
diathermy frequencies of 27.12 MHz or 40.68 MHz, any quasi-static
(i.e., zero-order) model fails because the depth of penetration in muscle
tissue is smaller than the thickness of the layer, and more complex
formulations are required in order to achieve accurate results.

The aim of this paper is to present a refined high-order model of
the planar fat-muscle tissue combination exposed to radio waves from
a diathermy coil, that responds to the following two requirements.
First, it must be valid in the quasi-static as well as the nonquasi-
static frequency regions (i.e., up to the maximum diathermy operating
frequency). Second, it has to allow the analytical close-formulation
for the SAR distribution generated by any feasible flat multi-turn
geometry. The latter requirement ensures minimum time consumption
when it is required to optimize the coil to produce a desired
heating pattern. The proposed model is based on the exact integral



Progress In Electromagnetics Research, PIER 92, 2009 237

representation for the electric field produced by a circular turn placed
above a stratified medium [14]. At first, such field integral is cast into a
form suitable for the application of the Cauchy’s residue theorem. Next
the non-oscillating part of the integrand is accurately approximated
with a rational function according to the fitting algorithm [15],
and finally the residue theorem is applied providing a closed-form
expression for the radial distribution of the electric field at any
plane parallel to the air-tissue boundary. The process of integration
takes only few seconds, since the computational effort is limited to
the extraction of the poles and residues that describe the rational
approximation. The heating patterns produced by multi-turn coils are
computed by superposing the contributions arising from the different
turns. Moreover, since the function to be approximated is unique for
all the possible turns at a given height from the medium, a single
run of the fitting algorithm is enough to achieve the performances
of an infinite number of flat coils of various shapes and sizes. This
feature brings down the computational cost of any iterative process
aimed at optimizing the coil geometry, and makes the proposed model
and computation methodology advantageous over standard purely
numerical techniques used to solve electromagnetic boundary value
problems, like the FDTD and finite element methods.

The SAR distribution produced by the round coil in the region
occupied by muscle tissue is computed by applying the proposed
approach. The obtained results closely agree with the corresponding
ones provided by FDTD simulations, while match the data achieved
with the quasi-static formulation only in the low frequency range. At
higher frequencies (like the diathermy operating frequencies) the quasi-
static model leads to over-estimate the maximum SAR up to about
30%.

Furthermore, to illustrate the flexibility of the developed method
to deal with different coil configurations, the poles and residues that
have been obtained for the case of a round coil are also used to
investigate the heating pattern of a figure-eight (or butterfly) geometry
made up of a coplanar pair of coils with their perimeters touching. It is
confirmed that this configuration produces, with respect to the single
round coil, a more focused field under the joint, as was also concluded
in previous papers [10, 11]. What has not yet been pointed out, and
instead emerges from the present analysis, is that, surprisingly, using
a figure-eight applicator worsens the efficiency of the system.

The present article is an extension of a previous conference
paper [16]. It exhibits a more elegant and simplified theoretical
development, which allows to reduce from two to one the number
of rational approximations to be calculated. As a result, the
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computational time is halved as well. Furthermore, unlike the
preceding formulation, the solution proposed here can be easily
adjusted to any coil shape. Finally, a large number of numerical results
are presented and investigated in this extended version.

2. THEORY

Consider a single-turn circular coil carrying a time-varying current
placed horizontally above a planar skin-fat-muscle tissue combination,
as shown in Fig. 1. The geometric configuration is symmetric with
respect to the coil axis, and a cylindrical coordinate system (r, ϕ, z) is
suitably introduced and fixed on the skin surface.
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Figure 1. Geometry and coordinates for a skin-fat-muscle planar
tissue exposed to a diathermy induction circular loop.

The thickness of the region occupied by the skin is negligible if
compared to those of fat and muscle layers, to the local wavelength
and plane wave depth of penetration, and the EM field arising from
the corresponding induced currents can be ignored. The thickness of
the fat layer is d, while the muscle tissue can be considered a semi-
infinite medium as long as its thickness is greater than the depth
of penetration. The dielectric permittivity, electric conductivity, and
mass density are respectively ε1, σ1, and ρ1 for fat, ε2, σ2, and ρ2 for
muscle. The combination is assumed to have the magnetic permeability
of free space μ0. The coil, with radius a, is situated in free space at
height h from air-tissue interface, and carries a current equal to Iejωt.
Because of symmetry about the z-axis, the electric field generated by
the loop has no vertical component, and the EM field is transverse
electric (TE). The time-harmonic factor ejωt is suppressed throughout
analysis. The exact integral representation for the nonzero electric field
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component induced in the tissue is given by [14]:

Eϕ(r, z) =
2Ia

π

∫ ∞

0
f(λ, z)J1(λa)J1(λr)λdλ, (1)

with

f(λ, z) =

{
g(λ)

[
e−u1(z−d) + RTE

1 eu1(z−d)
]
, 0 < z < d,

g(λ)
(
1 + RTE

1

)
e−u2(z−d), z > d,

(2)

g(λ) =
πωμ0(1 + RTE

0 )e−u0h

4ju0

(
eu1d + RTE

1 e−u1d
) , (3)

and being

um =
(
λ2 − ω2μmεm + jωμmσm

) 1
2 , (4)

RTE
0 =

u0 [u1 + u2 tanh (u1d)] − u1 [u2 + u1 tanh (u1d)]
u0 [u1 + u2 tanh (u1d)] + u1 [u2 + u1 tanh (u1d)]

, (5)

RTE
1 =

u1 − u2

u1 + u2
, (6)

respectively, the propagation coefficient in the m-th layer and the
transverse electric plane wave reflection coefficients at z = 0 and z = d.

The integral on the right-hand side of (1) is a first-order Hankel
transform. In principle, digital linear filter technique [17, 18] based
on exponential sampling would be suitable for the evaluation of this
transform, as the kernel function is seen to decay exponentially when
the absolute value of λ increases. Yet, it is known that the conventional
approach to digital filter design relies on repeated usage of the sample
domain Wiener-Hopf least-squares method within an optimization
loop [18]. Since the computational cost of the Wiener-Hopf method is
proportional to the square of the filter length, such multiple executions
can take a huge amount of time for very long filter designs [17]. Thus,
the accuracy of the result of computation can be theoretically enhanced
by increasing the filter length, but at the cost of running an expensive
optimization process. Furthermore, any digital filter is optimized for a
specific known integral transform (the so-called test function), and may
lead to uncertain results when applied to the calculation of different
transforms.

In order to overcome the intrinsic limitations of the digital filter
technique, a new method is proposed for carrying out the evaluation
of the integral on the right-hand side of (1). The key feature of the
method is that integration is performed analytically by applying the
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Cauchy’s residue theorem, once the function (2) is replaced with an
accurate rational approximation. At first the integral is cast into a form
in which the range of integration extends from −∞ to ∞. Proceeding
as discussed in [19] allows to derive the following representation for
Eϕ(r, z) alternative to (1):

Eϕ(r, z) =
Ia

π

∫
C1

f (λ, z) q(λ, r)λdλ (7)

with

q (λ, r) =

{
H

(1)
1 (λa)J1(λr), r < a,

J1(λa)H(1)
1 (λr), r > a,

(8)

and being H
(1)
1 (ξ) the first-order Hankel function of the first kind.

The contour of integration C1 extends along the upper shore of the
negative real λ-axis (the branch cut of the Hankel function H

(1)
1 ) and

the positive real λ-axis on the complex λ-plane, as shown in Fig. 2.
It should be noted that, when increasing |λ|, the function f(λ, z)
rapidly decay in all the quadrants of the complex λ-plane, while the
function q (λ, r) exponentially diverges or decays depending on whether
Im[λ]<0 or Im[λ]>0. Hence, in agreement with Jordan’s lemma [20],
Equation (7) does not suffer any alteration when closing the contour C1

with an infinite semicircle about the upper-half of the complex λ-plane.
It reads:

Eϕ(r, z) =
Ia

π

∫
C1+C2

f (λ, z) q(λ, r)λdλ, (9)

being C2 the semicircle at infinity (a dashed line in Fig. 2).
As proved in [20], any integral along a closed path C can be

evaluated by means of the residue theorem, provided the integrand
is analytic inside and on C except for a number of pole singularities.
In the present case, the square-root terms (4) introduce branch point
singularities all over the complex λ-plane, which prevent from applying
the residue theorem. To eliminate such branch points, the rational
approximation

f (λ, z) ∼=
Np∑
n=1

cn(z)
jλ2 − pn(z)

, (10)

is determined via the least squares-based fitting algorithm described
in [15]. The coefficients pn and cn (n = 1, . . . , Np) are either real or
come in complex conjugate pairs. Moreover, the pn’s are chosen so
that Re[pn]<0, and as a consequence the contour C1 + C2 encloses the
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Figure 2. Closed path for the application of the residue theorem.

pole singularities λn =
√−jpn (n = 1, . . . , Np). Substitution of (10)

into (9) and use of the residue theorem [20] lead to:

Eϕ (r, z) = 2jIa

Np∑
n=1

�λn [bn(λ, r, z)] , (11)

with
bn(λ, r, z) =

cn(z)
jλ2 − pn(z)

q (λ, r) λ, (12)

and where

�λn [bn(λ, r, z)] = lim
λ→λn

[(λ − λn) bn(λ, r, z)] =
1
2j

cn(z) q [λn(z), r]

(13)
is the residue of bn(λ, r, z) at λ = λn.

Finally, substituting (13) into (11) yields:

Eϕ(r, z, h) = Ia

Np∑
n=1

cn(z, h) q [λn(z, h), r, a] , (14)

where the dependences of the coefficients cn and λn upon h and that
of q upon the loop radius a are made explicit. Computational efforts
of the proposed methodology are limited to the calculation of the cn’s
and λn’s, and the accuracy of the results depends only on the quality of
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fitting. No expensive sample-domain optimization process is required,
since the integral in (9) is solved analytically.

Closed-form expressions for the electric field distributions induced
in tissues by multi-turn coils can be derived by superposing solutions
of the form (14) valid for the separate turns. Coplanar turns share
the same set of poles and residues and, as a consequence, electric field
distributions arising from flat coils are computed with minimum time
consumption. This is the case, for instance, of the pancake-shaped coil
made up of N concentric turns having different radii varying from a1

(inner radius) to aN (outer radius). Summing up the contributions (14)
from all the turns of the coil leads to

E
(pc)
ϕ (r, z, h) = I

N∑
i=1

ai

Np∑
n=1

cn(z, h) q [λn(z, h), r, ai ] . (15)

Analogous expressions can be obtained for coils constituted by
non-concentric turns. In these cases, the summation of the various
contributions is performed after splitting the electric field vector
generated by the i-th turn into its cartesian components along the
x and y axes belonging to the coil plane (Fig. 3). From (14), it follows
that:

Exi(x, y, z, h) = −Iiai(y − yi)
ri

Np∑
n=1

cn(z, h) q [λn(z, h), ri, ai] , (16)

Eyi(x, y, z, h) =
Iiai(x − xi)

ri

Np∑
n=1

cn(z, h) q [λn(z, h), ri, ai] , (17)

where Pi ≡ (xi, yi) is the center of the i-th turn, and ri =√
(x − xi)2 + (y − yi)2. The total electric field components are

expressed as:

Ex(x, y, z, h) =
N∑

i=1

Exi(x, y, z, h), (18)

Ey(x, y, z, h) =
N∑

i=1

Eyi(x, y, z, h), (19)

Notice that all the feasible flat coil geometries placed at height
h above the tissue correspond to a unique set of poles and residues.
This feature is particularly useful when it is necessary to search for
the optimum coil that produces a desired field pattern, since the
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Figure 3. Geometry for the i-th turn.

conventional approach for solving such inverse problem relies on the
computation of the patterns associated to coils of various shapes and
sizes within an optimization loop. As the cn’s and λn’s are calculated
before entering the optimization algorithm, the computational work
that remains to be done at each iteration is negligible. This alone
makes the proposed methodology advantageous over purely numerical
techniques like the finite difference time domain and finite element
methods.

3. RESULTS AND DISCUSSION

3.1. Validation of the Method

Since therapeutic heating is required in deeper regions of human body,
the developed theory is applied to the computation of the SAR induced
in the muscle tissue sketched in Fig. 1 by a pancake round-shaped coil,
which represents a widely used applicator for diathermy. The SAR
(W/kg) in the muscle tissue is expressed as:

SAR(r, z) =
σ2E

2
ϕ(r, z)
ρ2

, z > d, (20)
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where Eϕ(r, z) is given by (15). The calculations are performed
assuming σ1 = 0.033 S/m, εr1 = 8.45, ρ1 = 0.96 g/cm3, σ2 = 0.71 S/m,
εr2 = 91.6, and ρ2 = 1.02 g/cm3 [21]. The coil has four compactly
wound turns, inner radius a1 = 5.4 cm and outer radius a4 = 6cm.
The wire, 0.2 cm in diameter, carries a current of 1A. The coil-to-
subject spacing and fat layer thickness are respectively h = 3.5 cm
and d = 2.25 cm. At first, the distribution of the SAR is evaluated
at depth z′ = z − d = 3.5 cm below the fat-muscle interface and at
the frequency of 27.12 MHz. The obtained results, depicted in Figs. 4
and 5, show that the maximum of the deposited power is not on the
axis of symmetry of the coil and is not restricted to a small region, but
it is spread circularly under the edge of the coil.
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Figure 4. 3D view of the SAR distribution induced by the round coil
in the muscle tissue 3.5 cm below the fat-muscle interface.

Figure 5 also illustrates the comparison among the SAR values
obtained by applying (15) and those provided by the zero-order
quasistatic model [10–13] and the FDTD method. Results achieved
with the proposed high-order solution agree well with the FDTD data.
On the contrary, the plotted curves demonstrate how the quasi-static
assumption leads to overestimating the EM energy absorption, and
this is a consequence of ignoring the attenuation of the electric field
strength due to the depth of penetration. The absolute error generated
by the zero-order model increases with the radial distance from the coil
axis, up to the maximum value of 78 mW/kg at r ∼= 12 cm (Fig. 6).
Thereinafter, the absolute error diminishes indefinitely.

As far as the relative error is concerned, it increases as the radial
distance increases, with values comprised between 10% and 50% in the
range r = 3–17 cm, where heating is at least one-third the peak value.
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Figure 5. Radial distribution of the SAR induced by the round coil
in the muscle tissue 3.5 cm below the fat-muscle interface.
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Figure 6. Radial distribution of the relative and absolute errors
resulting from the SAR calculated by applying the zero-order approach.

For r > 17 cm, the relative error is greater than 50%, but has little
relevance because of the poor heating.

Notice that fifty poles have been used for fitting the function (2).
The fitting process has taken about 8 seconds on a 1.6 GHz PC, and
the generated root-mean-square relative error is less than 10−13. The
real and imaginary parts of f(λ, z) and the corresponding rational
approximations are shown in Fig. 7.

It should be observed that the above analysis is referred to the
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particular operating frequency of 27.12 MHz, and to the depth of
z′ = 3.5 cm from the muscle layer upper boundary.

At higher operating frequencies or deeper observation points the
effective electric field amplitude is even more reduced with respect
to that evaluated ignoring the depth of penetration. This aspect
is pointed out in Fig. 8, where the relative error that results from
computing the peak heating by applying the zero-order model rather
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than the proposed one is plotted against frequency. The plotted curves
show that at the frequency of 1 MHz and lower the relative error
produced by the zero-order model is almost null for every depth z′
of the observation point in the muscle tissue. In fact, at 1 MHz the
values of depth of penetration in fat and muscle are large if compared
respectively to the thickness of the fat layer and the depth of the
observation point from the muscle upper boundary, and the total and
the incident electric fields are substantially coincident. Thereinafter,
the relative percent error grows up with increasing frequency and, for
the same frequency, higher errors are generated at deeper locations. At
40.68 MHz and for z′ ≥ 5 cm the relative percent error exceeds 30%.

3.2. Figure-eight Geometry

As a special case of multiple-coil configuration, the figure-eight or
butterfly-shaped coil is considered in this paragraph. This geometry
consists of a coplanar pair of oppositely connected round coils (see
Fig. 9), and produces a localization of the deposited power under the
point of intersection, where the eddy current densities induced by the
two coils are additive.

The SAR deposited in the muscle tissue is expressed as:

SAR =
σ2

(
E2

x + E2
y

)
ρ2

, (21)

where Ex and Ey are given by (18) and (19). The SAR is computed
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Figure 9. Geometry and coordinates for a figure-eight coil.
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at depth z′ = 3.5 cm from the fat-muscle boundary, assuming that
the coil has six turns, with a1 = a4 = 2 cm, a2 = a5 = 2.2 cm,
and a3 = a6 = 2.4 cm, and carries a current I = 3A at 27.12 MHz.
Notice that the electric field components (18) and (19) are calculated
by using the same set of poles and residues found for the single round
coil. Numerical results are shown in Figs. 10 and 11, which present,
respectively, a 3D view and the profile along the x-axis of the absorbed

-15 -10 -5
 0  5  10  15 15

10
5

0
-5

-10
-15

 0

 20

 40

 60

 80

 100

S
A

R
 (

m
W

/k
g)

90
70
35
20
15
10
7
6
5
4

x (cm)

y (cm)

Figure 10. 3D view of the SAR distribution induced by the butterfly
coil in the muscle tissue 3.5 cm below the fat-muscle interface.
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power density.
Figure 11 illustrates the SAR profiles arising from both the

butterfly coil (upper dashed line) and its left wing alone centered at
the origin of the x-y plane (solid line). From the comparison between
these two curves it turns out that closing together two round N -turn
coils to form a butterfly geometry increases the peak heating. This
is made at the cost of doubling the required Joulean and magnetic
field energies. In fact, if the total resistance and self-inductance are,
respectively, RB and LB for the butterfly coil with 2N turns, RW and
LW for the single wing with N turns, it results [11]:

RB(2N) = 2RW (N), LB(2N) ∼= 2LW (N), (22)

and, consequently,

PB(2N, I) = RB(2N)I2 = 2RW (N)I2 = 2PW (N, I), (23)
UB(2N, I) = LB(2N)I2 ∼= 2LW (N)I2 = 2UW (N, I), (24)

where P = RI2 is the average power dissipated by R, and U = LI2

is the energy in the magnetic field when the current in the coil is
maximum (Imax = I

√
2). In order to discern whether the butterfly

coil is more efficient than the single wing or not, comparison should be
made between the heating patterns generated from the same amount
of energy. For this purpose, the values 2N ′ and I ′ for the number of
turns and the current in the butterfly coil are determined that make
the required active power PB(2N ′, I ′) and magnetic energy UB(2N ′, I ′)
equal respectively to PW (N, I) and UW (N, I). The system of equations
to be solved is the following

2RW (N ′)I ′2 = RW (N)I2, (25)

2LW (N ′)I ′2 = LW (N)I2, (26)

and can be further reduced to one equation by introducing the well-
known expressions for the resistance and self-inductance of a round
coil [11]

RW (N) = αRN2, LW (N) = αLN2, (27)

where αR and αL depend on geometrical factors (i.e., the inner and
outer radii). It yields:

2N ′2I ′2 = N2I2, (28)

that is, for fixed N and I, the equation of an equilateral hyperbola.
Notice that the function

Γ(N ′, I ′) =
PB(2N ′, I ′)
PW (N, I)

=
UB(2N ′, I ′)
UW (N, I)

= 2
(

N ′I ′

NI

)2

, (29)
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which represents the normalized dissipated power as well as the
normalized maximum magnetic energy in the butterfly coil, is
constantly equal to unity when moving along such hyperbola. Hence,
Equation (28) describes a level curve (contour line) of Γ.

It can be numerically verified that all the points (N ′, I ′) belonging
to a contour line (hyperbola) of Γ lead to the same heating pattern.
For instance, the SAR profile of Fig. 11 corresponding to Γ = 2 is
obtained either assuming (N ′, I ′) = (N, I) = (3, 3A), as it has been
made, or for any other choice of N ′ and I ′ such that N ′I ′ = NI = 9A.

From the analysis of the curve labeled with Γ = 1 it can be
concluded that, when the provided energy is the same for the two
configurations, the peak heating produced by the butterfly coil is about
one-fourth lower than that generated by the round one. Furthermore,
contrarily to what has been argued in previous works [10, 11], the
curve indicated with Γ = 1.4 demonstrates that both the Joulean and
magnetic energies required to induce a given SAR intensity with a two-
coil geometry are larger (by 40 percent) than and not about half those
required with a single round coil of the same inner and outer radii as
each of the two coils.

In fact, for Γ = 0.5 (that is for N ′ = N = 3 and I ′ = I/2 =
1.5 A), the maximum power density deposited by the butterfly coil
is 23.5 mW/kg. The round coil provides this value of SAR, which is
significantly less than the maximum, at radial distance r = 2.4 cm from
the axis, that is at a point approximately under the coil edge (located
at r = 2.6 cm). It is true that, after halving the energy supply, the
SAR calculated under the edge of a round coil does not change if it is
joined to another coil with identical dimensions. At the same time, it is
also true that the peak SAR diminishes by a factor of 3 (see Fig. 11).
Despite of increasing electric field focality, the butterfly geometry is
less energetically efficient than the single coil geometry. It has been
pointed out that the computational cost of the proposed approach is
significantly smaller than that implied by numerical techniques like
the FDTD method, whenever it is required to optimize the coil to
produce a prescribed heating pattern. However, this advantage might
be lost if the coil geometries that are going to be considered within
the optimization loop are not composed of circular turns. For such
more complicated sources, the FDTD method is then a more flexible
and standardized technique. Finally, it should be observed that the
energetic efficiency as well as the degree of localization (i.e. the
focality) of diathermy treatment can be directly deduced from the
spatial distribution of the power density deposited in the tissue. The
temperature rise in the tumor or treated area, instead, cannot be
quantified on the basis of the SAR alone, since it is heavily determined
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by the blood flow in local vessels. In fact, the increase in blood flow
due to vasodilatation has a cooling effect. Even the effectiveness of the
treatment does not depend uniquely on the SAR distribution induced
by the coil, as it varies also according to the patient pain tolerance.

4. CONCLUSION

A method has been developed that allows to determine a high-order
closed-form solution for the SAR distribution induced inside a fat-
muscle tissue by a diathermy induction coil. The method has been
derived starting from the exact complete expressions for the EM field
components generated by a current-carrying circular loop placed above
a stratified earth. The integral expression describing the elementary
contribution of the generic turn of the coil to the total produced
electric field is integrated according to an exact procedure, once the
non-oscillating part of the integrand is replaced with an accurate
rational approximation generated by a fitting algorithm. The process
of integration takes only few seconds, since the computational effort
is limited to the extraction of the poles and residues of the rational
approximation. The obtained closed-form solution is valid in a wide
frequency range, and is different from the commonly used zero-order
formulations that do not account for the attenuation of the electric
field magnitude in the tissue due to the depth of penetration.

In the case of flat multi-turn coils, the heating patterns induced
in tissues are computed by superposing the simple solutions valid for
the separate turns. Since the poles and residues to be determined
are the same for all the coplanar turns which constitute the coil, time
consumption is minimum and is only weakly affected by the number of
turns and the shape of the coil. Furthermore, the poles and residues
obtained for a particular coil geometry can be used for analyzing the
performances of an infinite number of coplanar geometries, with clear
advantages in terms of computational cost. This alone makes the
proposed methodology exceptionally useful when it is necessary to
search for the optimum coil that produces a desired field pattern, and
convenient with respect to any purely numerical technique commonly
used to solve electromagnetic boundary value problems, like the FDTD
or finite element methods. Spatial distributions of the SAR induced in
muscle tissue by round and figure-eight coils are computed by applying
the developed method. The obtained results are in excellent agreement
with those provided by FDTD simulations. Conversely, the observed
disagreement with numerical data produced by the zero-order model
confirms that the quasi-static expressions for the field components lead
to overestimating the EM energy absorption, and this is a consequence
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of ignoring the high-frequency effects of the depth of penetration in the
tissue. Finally, the investigation of the heating pattern of a figure-eight
coil has allowed to conclude that, surprisingly, such geometry is less
efficient than the round one, though doubtless capable of producing a
more localized electromagnetic field.
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