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Abstract—A circulator is needed in a C-band airborne synthetic
aperture radar system which employs single antenna configuration.
The circulator provides full-duplex capability to transmit high-
power RF signal and receive the echo signal via the same antenna
simultaneously. Commercially available circulators with moderate
isolation are inadequate for this application. An innovative
Cancellation Network (CN) has been designed to enhance the
performance of the conventional circulator. This paper highlights
the conceptual design and measurement results of the CN. An
improvement of more than 27 dB has been achieved.

1. INTRODUCTION

A circulator is a three-port non-reciprocal device that passes microwave
energy in a forward direction but provides isolation in reverse direction.
Circulator has been widely used in transmit and receive (T/R) modules
of communication and radar system as a duplexer [1,2]. Other
applications include time delay switching application [3] and phase
shifter [4]. Conventional ferrite circulators are constructed with
permanent magnets and ferrite materials on microstrip circuit. The
non-reciprocal action is brought by gyromagnetic action [1]. A new
approach for realization of microwave circulator makes use of the non-
reciprocal properties of microwave field effect transistor [5-7]. This
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active circulator can be implemented by Indium Gallium Arsenide
(InGaAs)/Indium Aluminum Arsenide (InAlAs)/Indium Phosphide
(InP) based microwave monolithic integrated circuit (MMIC) which
offers small size and weight, and lower cost [7-11]. Recent development
includes integrated active circulator antenna which combines hybrid
active circulator with a passive microstrip antenna [12-14]. They
are lightweight and low cost solutions for high-volume milimeter-wave
system.

A number of articles on theory and design of three-port
circulator can be found in the literature. The emphasis is on
performance improvement in terms of insertion loss [15-17], wide band
operation [20,22,28,29], temperature stabilization [29,30], isolation
bandwidth [15,16,23], miniaturization [28,30-32], isolation [17,24]
and high power operation [19,21,26,30]. Isolation performance is
critical in some radar systems. Insufficient isolation may result in the
transmitter power leaking into the receiver input and causes saturation
and intermodulation distortion to the receiver front-end circuit. In this
paper a novel technique to improve isolation of a circulator is described.
The circuit has been used on a C-band airborne synthetic aperture
radar (SAR).

2. DESIGN THEORY AND IMPLEMENTATION

The basic block diagram of a radar system is shown in Fig. 1. Its major
function is to isolate different part of an electronic system from one
another. Poor isolation of the circulator may give rise to significantly
large leakage signal from the transmitter to the sensitive receiver and
interfere the reception of return echo.

Transmitter

Antenna

Receiver Circulator

Figure 1. Radar system block diagram.

The block diagram of a circulator is shown in Fig. 2. With an
input signal at port P1, most of the energy will appear at port P2,
with small energy lost due to the insertion loss from P1 to P2. The
coupling from P1 to P3 is undesirable and is characterized by the
isolation of the circulator. On the other hand, a signal connected to
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Figure 2. Component level diagram of a single circulator.

P2 will be routed to P3. For radar application, the transmitter is
connected to P1, antenna to P2 and receiver to P3. This configuration
allows simultaneous transmission and reception.

Commercial on-the-shelf circulators have moderate isolation over
its operation bandwidth. It is possible to cancel the leakage signal
by injecting a sample of the transmitter signal in equal amplitude but
opposite phase into the receiver input. Fig. 3 shows the component
level diagram of the cancellation network (CN) together with a
circulator. The CN consists of 2 directional couplers, C1 and C2,
a variable attenuator, R1, and two fixed-length coaxial cables. The
sample of transmitter signal is coupled from main line by C1 and
injected into the receiver by C2. The lengths of the cables are trimmed
to provide the desired 180° phase shift and the variable attenuator
controls the amplitude.

The CN has been implemented in an experimental airborne
SAR sensor designed and developed at Multimedia University [33, 34],
Malaysia. The airborne system is an inexpensive C-band, single
polarization, linear-FM airborne radar sensor. The block diagram of
the airborne SAR sensor is shown in Fig. 4.
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Figure 3. Component level diagram of a cancellation network.
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Figure 4. Component level diagram of the C-band SAR transmitter
and receiver.
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Figure 5. CN based on C-band circulator.

3. EXPERIMENTAL SETUP

In order to reduce the leakage signal from port P1 to port P3, the
amplitude and phase of the signal coupled from CN to the receiver must
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be properly adjusted. A commercial on-the-shelf C-band circulator was
used. Fig. 5 shows the C-band circulator and the CN. The specification
of the commercial circulator used in this experiment setup is list in the
table below.

Table 1. Technical specification of circulator.

Model H175FFF-S (Microwave Technology Corporation )
Frequency range 5.5-6.5 GHz
Isolation 35dB
Insertion Loss 0.3dB
VSWR 1.15:1 (max)
Power 10 W average, 100 W peak

3.1. Measurement of Leakage Signal from P1 to P3

The leakage signal can be measured by terminating both directional
couplers with matched loads. The measurement setup is shown in
Fig. 6. Both the phase and amplitude of Sy; is measured over the
operating bandwidth of our SAR system, i.e., 6 GHz center frequency
with 20 MHz bandwidth. An Agilent Vector Network Analyzer (VNA)
is used to perform the measurement.

Figure 7 shows the Ss; of single circulator obtained from the
measurement. It shows an average 35dB isolation. Such isolation is
not sufficient for the radar system which uses high power transmitter.
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Figure 6. S>; measurement setup of leakage signal.
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Figure 7. Sy of single circulator measured by VNA.

3.2. Measurement of Injected Signal

In order to cancel the leakage signal, the RF cables must be properly
selected so that the electrical length of the cables will produce a total
phase shift of 180° compared to the leakage signal. The isolation of CN
is measured using the setup shown in Fig. 8. The variable attenuator
is adjusted until the S5; of the CN has the same magnitude as that of
the single circulator. The length of the RF cables is trimmed to obtain
the desired 180° phase difference.

The directional couplers are then connected to the circulator. The
performance of CN is shown in Fig. 9, which indicates an excellent
isolation of more than 62 dB throughout the 20 MHz bandwidth. This
result represents an improvement of more than 27 dB. Fine-tuning of
the variable attenuator is possible to achieve a better result.
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Figure 8. Measurement setup of injected signal by CN.
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Figure 9. S3; of CN measured by VNA across the operation
bandwidth of SAR sensor.

4. CONCLUSION

A new approach for improving isolation of circulator has been
successfully demonstrated. This CN is incorporated in a prototype
airborne SAR sensor developed by Multimedia University. It has been
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shown that with proper injection of amplitude and phase, the leakage
signal can be reduced significantly. An improvement of more than
27 dB can be achieved. The CN technique can be applied to other full-
duplex communication systems to improve the isolation performance.
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