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Abstract—We present the theoretical development of the 3D
multipole probability tomography applied to the electric Self-Potential
(SP) method of geophysical exploration. We assume that an SP
dataset can be thought of as the response of an aggregation of poles,
dipoles, quadrupoles and octopoles. These physical sources are used to
reconstruct, without a priori assumptions, the most probable position
and shape of the true SP buried sources, by determining the location
of their centres and critical points of their boundaries, as corners,
wedges and vertices. At first, a few synthetic cases with cubic
bodies are examined in order to determine the resolution power of
the new technique. Then, an experimental SP dataset collected in the
Mt. Somma-Vesuvius volcanic district (Naples, Italy) is elaborated in
order to define location and shape of the sources of two SP anomalies
of opposite sign detected in the northwestern sector of the surveyed
area. The modelled sources are interpreted as the polarization state
induced by an intense hydrothermal convective flow mechanism within
the volcanic apparatus, from the free surface down to about 3 km of
depth b.s.l.
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1. INTRODUCTION

Probability tomography is an algorithm used to image the most
probable localization and shape of the buried sources of the anomalies
appearing in a geophysical dataset. This approach was originally
formulated for the electric self-potential (SP) method [1, 2] and
successively applied to other prospecting methods [3–9]. In all of
these developments, the sources were assimilated to aggregates of polar
and/or dipolar point sources.

An extension of the original theory has recently been proposed
for the geoelectric method, by assuming a dataset to be the conjoint
response of poles, dipoles and quadrupoles. In practical applications,
these simple sources have been used to find the most probable location
of the centres and some peculiar points of the boundaries of the real
bodies [10, 11].

The aim of this paper is to adapt the new formulation to the
specific properties of the SP electrical field, by also including the
response due to octopoles. This extended multipole analysis may
allow a much denser set of critical points to be imaged for a better
delineation of the full shape of the most probable SP sources, within
the limits of the dataset information content. A few tests on simple
cubic models and the analysis of a field SP survey in the active volcanic
area of Mt. Somma-Vesuvius (Naples, Italy) will be discussed, in order
to evaluate both feasibility and reliability of the new approach to the
SP source modelling.

2. OUTLINE OF THE SP METHOD

2.1. The SP Phenomenology and Measuring Technique

The SP measurements refer to that part of the natural electrical
field which is stationary in time, or slowly varying in relation to the
time span required for the execution of a survey, and whose current
source system is generated and sustained by phenomena occurring
underground within geological structures. The most important source
mechanism in rocks, which has been proposed to explain SP field
data both in exploration geophysics and in tectonophysics, is the so
called electrokinetic effect related to the movement of fluids in porous
systems in presence of an electrical double layer at the fluid-rock
matrix interface. Basically, the electrokinetic effect is included within
the constitutive relationships that formalise Onsager’s coupled flow
theory [12]. From the physical point of view, the common aspect
of the many source models is that an electrical charge polarization
is developed, which is assumed to be responsible for the electrical
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current circulation in conductive rocks. It follows that the detected
SP anomalies are simply the surface evidence of a more or less steady
state of electric polarization.

SP data are collected in field surveys as potential drops, ΔU ,
across a passive dipole, normally consisting of a pair of liquid junction
copper-copper sulphate porous pots as grounded electrodes. If the
dipole length is sufficiently small relative to the expected anomaly
wavelengths, the ratio SP drop to dipole length gives an estimate of the
component of the natura1 electrical field along the dipole axis on the
measurement surface. The sequence of progressive readings of this ratio
along a survey line is currently known as the gradient technique and is
the most commonly used procedure in difficult areas. Furthermore, a
standard polarity cable-connecting convention, with reversal of leading
and trailing electrodes between successive measurements, known as the
leapfrog profiling technique, permits measurement of SP data which is
virtually free of electrode polarization error. Finally, the use of loops
or two-way profiles helps to eliminate virtually any spurious effects of
SP drift, by distributing the tie-in closure error among all the readings
around the closed circuit [13].

2.2. Structure of the SP Electric Field Surface Components

Let us consider a reference system with a horizontal (x, y)-plane placed
at sea level and the z-axis positive downwards, and a 2D datum domain
S as in Figure 1. The S-domain is generally a non-flat ground survey
area described by a topographic height function z(x, y). We indicate
with ES(r) the SP electrical field vector at a set of datum points
r ≡ [x, y, z(x, y)], with r ∈ S.

In areas with rough topography and inaccessible sites the current
practice in collecting SP data consists of a continuous displacement
of the measuring dipole along a generally irregular network of closed
circuits and/or two-way interconnected branched lines. In order
to provide a uniform and dense distribution of ES(r) data, a pre-
processing is required according to the following three steps [2].

The first step consists in assigning a zero potential value to an
arbitrary reference point in the area, where an electrode had been
placed, and in recovering from the original sequence of SP drops,
a new sequence of SP values by simple algebraic summation. The
second step consists in contouring the new set of potential data, in
order to draw a SP anomaly map covering the entire survey area, as
sketched in Figure 1. The third step consists in selecting a double set
of curvilinear ϕ- and ψ-profiles following the height variations of the
ground, such that their projections onto the horizontal (x, y)-plane are
parallel to the x-axis and y-axis and equally spaced from each other
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Figure 1. The datum domain (S-domain) generating the SP map on
top. The (x, y)-plane is placed at sea level and the z-axis points into
the earth.

by the spacings Δy and Δx, respectively. Along any ϕ-profile or ψ-
profile, the sampling interval projection onto the (x, y)-plane, equal
to Δx or Δy, respectively, is assumed constant and, for the sake of
easier calculations, such that Δx = Δy = Δτ , where Δτ is taken
from now on as the unique distance discretization element. Using a
regular square grid on the (x, y)-plane, at each cross point of every
pair of perpendicular x-line and y-line, a pair of values of the electrical
field components, Eϕ(r) and Eψ(r), is assigned. These are estimated
by interpolation from the SP map across dipoles of length Δϕ and
Δψ, respectively and attributed to the midpoint of the projected
dipoles, both of length Δτ . By indicating with ΔUϕ and ΔUψ the
potential difference across Δϕ and Δψ, respectively, we readily obtain
the estimates of Eϕ(r) and Eψ(r) as

Eϕ(r) = −ΔUϕ(r)
Δϕ

= − ΔUϕ(r)

Δτ
[
1 + (Δz/Δτ)2

]1/2
, (1a)

Eψ(r) = −ΔUψ(r)
Δψ

= − ΔUψ(r)

Δτ
[
1 + (Δz/Δτ)2

]1/2
. (1b)
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3. THE SP PROBABILITY TOMOGRAPHY THEORY

3.1. The SP Electric Field Vector Function and Its Power

We assume that ES(r) can be discretised as

ES(r) =
M∑
m=1

(pm · Pm) s(r, rm) +
N∑
n=1

(dun · Lun) s(r, rn)

+
G∑
g=1

(
quvg · Suvg

)
s(r, rg) +

H∑
h=1

(ouvw
h · Cuvw

h ) s(r, rh), (2)

i.e., as a sum of effects due to:
- a set of M poles, the mth element of which is located at rm ≡

(xm, ym, zm) and has strength pm ·Pm, where pm and Pm are the
pole moment and a point operator 0th-order tensor, respectively;

- a set ofN dipoles, whose nth element is located at rn ≡ (xn, yn, zn)
with strength (dun · Lun) (u = x, y, z), where dun and Lun are the
dipole moment and a line operator 1st-order tensor, respectively;

- a set of G quadrupoles, whose gth element is located at rg ≡
(xg, yg, zg) with strength (quvg · Suvg ) (u, v = x, y, z), where quvg
and Suvg , respectively, are the quadrupole moment and a square
operator 2nd-order tensor;

- a set of H octopoles, whose hth element is located at rh ≡
(xh, yh, zh) and has strength (ouvw

h ·Cuvw
h ) (u, v,w = x, y, z), where

ouvw
h and Cuvw

h are the octopole moment and a cube operator 3rd-
order tensor, respectively.
The dot in the definition of the source strength tensors indicates

inner product. The operator tensors P, Lu, Suv and Cuvw (u, v,w =
x, y, z) are made geometrically explicit in Figure 2.

The effect of the M , N , G and H source elements at a point
r ∈ S is determined by the vector kernel s(r, ri) (i = m,n, g, h), which
represents the electrical field vector due to a point positive charge of
unitary strength. The components sϕ(r, ri) and sψ(r, ri) of s(r, ri) over
the S-domain are explicitly given as

sϕ(r, ri) =
(x− xi) + (z − zi) z′x[

(x− xi)
2 + (y − yi)

2 + (z − zi)
2
]3/2

x′ϕ, (3a)

sψ(r, ri) =
(y − yi) + (z − zi)z′y[

(x− xi)
2 + (y − yi)

2 + (z − zi)
2
]3/2

y′ψ, (3b)
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Figure 2. Explicit representation of the symbolic tensor operators
appearing in the definition of the strengths of the pole, dipole,
quadrupole and octopole source elements defined in Eq. (2).

where it is z′x = ∂z/∂x, z′y = ∂z/∂y, x′ϕ = dx/dϕ and y′ψ = dy/dψ.
We define the information power Λ, associated with ES(r), over

the surface S as
Λ =

∫

S

ES(r) · ES(r)dS, (4a)

which, using Eq. (2), is expanded as

Λ=
M∑
m=1

pm

∫

S

ES(r) · s(r, rm)dS+
N∑
n=1

∑
u=x, y, z

dun

∫

S

ES(r) · ∂s(r, rn)
∂un

dS

+
G∑
g=1

∑
u=x,y,z

∑
v=x,y,z

quvg

∫

S

ES(r) · ∂
2s(r, rg)
∂ug∂vg

dS

+
H∑
h=1

∑
u=x,y,z

∑
v=x,y,z

∑
w=x,y,z

ouvwh

∫

S

ES(r) · ∂3s(r, rh)
∂uh∂vh∂wh

dS (4b)



Progress In Electromagnetics Research B, Vol. 14, 2009 317

3.2. The SP Source Pole Occurrence Probability

We consider a generic mth integral of the first sum in Eq. (4b) and
apply Schwarz inequality, thus obtaining

[ ∫

S

ES(r) · s(r, rm)dS
]2 ≤

∫

S

E2
S(r)dS

∫

S

s2(r, rm)dS. (5)

Inequality (5) is used to define a source pole occurrence probability
(SPOP) function as [2]

η(p)
m = C(p)

m

∫

S

ES(r) · s(r, rm)dS, (6a)

where

C(p)
m =

[∫

S

E2
S(r)dS

∫

S

s2(r, rm)dS
]−1/2

(6b)

and s(r, rm) has the role of source pole scanner. The explicit formulae
of the components sϕ(r, rm) and sψ(r, rm) of s(r, rm) over the S-
domain are those reported in Eq. (3a) and Eq. (3b), respectively,
putting i = m.

The 3D SPOP function, which satisfies the condition −1 ≤ η
(p)
m ≤

1, is given as a measure of the probability of a source pole of strength
pm placed at rm, being responsible for the observed ES(r) field. Each
η

(p)
m indicates the occurrence probability of a positive, null or negative

electrical charge in each location.
For computational purposes, we proceed as follows. We assume

that the projection of S onto the (x, y)-plane can be fitted to a rectangle
R of sides 2X and 2Y along the x-axis and y-axis, respectively. Using
the topography surface regularization factor g(z) given by [2]

g(z) =
[
1 + (∂z/dx)2 + (∂z/dy)2

]1/2
(7)

Eq. (6a) is definitely written as

η(p)
m = C(p)

m

+X∫

−X

+Y∫

−Y
ES(r) · s(r, rm)g(z)dxdy, (8a)
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with

C(p)
m =

[ +X∫

−X

+Y∫

−Y
E2
S(r)g(z)dxdy ·

+X∫

−X

+Y∫

−Y
s2(r, rm)g(z)dxdy

]−1/2
. (8b)

3.3. The SP Source Dipole Occurrence Probability

We take a generic nth integral of the second sum in Eq. (4b) and apply,
as previously, Schwarz’s inequality to each u-component. We can thus
define a source dipole occurrence probability (SDOP) function as [9]

η(d)
n,u = C(d)

n,u

+X∫

−X

+Y∫

−Y
ES(r) · ∂s(r, rn)

∂un
g(z)dxdy, (u = x, y, z) (9a)

with

C(d)
n,u=

[ +X∫

−X

+Y∫

−Y
E2
S(r)g(z)dxdy ·

+X∫

−X

+Y∫

−Y

∣∣∣∂s(r, rn)
∂un

∣∣∣2g(z)dxdy
]−1/2

. (9b)

Also η
(d)
n,u falls in the range [−1, 1]. Thus, at each rn, 3 values

of η(d)
n,u can be computed. They are interpreted as a measure of the

probability of a single source dipole located at rn, being responsible of
the whole ES(r) field. Each first derivative of s(r, rn) has the role of
source dipole scanner. The first derivatives of the components sϕ(r, rn)
and sψ(r, rn) of s(r, rn) over the S-domain are derived, respectively,
from Eq. (3a) and Eq. (3b) as

∂sϕ(r, rn)
∂xn

=
3(x− xn)A1,n(x, z) − |r − rn|2

|r− rn|5
x′ϕ, (10a)

∂sϕ(r, rn)
∂yn

=
3(y − yn)A1,n(x, z)

|r− rn|5
x′ϕ, (10b)

∂sϕ(r, rn)
∂zn

=
3(z − zn)A1,n(x, z) − |r− rn|2 z′x

|r− rn|5
x′ϕ, (10c)

∂sψ(r, rn)
∂xn

=
3(x− xn)B1,n(y, z)

|r− rn|5
y′ψ, (10d)

∂sψ(r, rn)
∂yn

=
3(y − yn)B1,n(y, z) − |r − rn|2

|r− rn|5
y′ψ, (10e)
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∂sψ(r, rn)
∂zn

=
3(z − zn)B1,n(y, z) − |r− rn|2 z′y

|r− rn|5
y′ψ, (10f)

with A1,n(x, z) = (x−xn)+(z−zn)z′x, B1,n(y, z) = (y−yn)+(z−zn)z′y.

3.4. The SP Source Quadrupole Occurrence Probability

Accordingly, we consider now a generic gth integral of the third sum in
Eq. (4b) and apply Schwarz’s inequality to each uv-element (u, v =
x, y, z), which allows a source quadrupole occurrence probability
(SQOP) function to be defined as [10]

η(q)
g,uv = C(q)

g,uv

+X∫

−X

+Y∫

−Y
ES(r) · ∂

2s(r, rg)
∂ug∂vg

g(z)dxdy, (11a)

with

C(q)
g,uv=

[ +X∫

−X

+Y∫

−Y
E2
S(r)g(z)dxdy ·

+X∫

−X

+Y∫

−Y

∣∣∣∂2s(r, rg)
∂ug∂vg

∣∣∣2g(z)dxdy
]−1/2

. (11b)

As before, the 3D SQOP function also falls in the range [−1, 1].
Thus, at each point rg, 9 values of η(q)

g,uv are taken as a measure of the
probability for a quadrupole source located at rg, to be responsible of
the ES(r) dataset. Since Suvg is a symmetric square tensor, it follows

that η(q)
g,uv = η

(q)
g,vu. Therefore, at each rg, the 3 diagonal plus the 3 right-

up or left-down off-diagonal terms of η(q)
g,uv are sufficient. However, as

we are interested in finding the position of the corners of a source body,
we will finally consider only the 3 off-diagonal terms (u �= v) [10].

Each second derivative of s(r, rg) has the role of source quadrupole
scanner. The useful second derivatives of the components sϕ(r, rg) and
sψ(r, rg) of s(r, rg) over the S-domain are derived, respectively, from
Eq. (3a) and Eq. (3b) as

∂2sϕ(r, rg)
∂xg∂yg

=
3(y − yg)

[
5(x− xg)A1,g(x, z) − |r− rg|2

]

|r− rg|7
x′ϕ, (12a)

∂2sϕ(r, rg)
∂xg∂zg

=
15(x−xg)(z−zg)A1,g(x, z)−3A2,g(x, z)|r−rg|2

|r− rg|7
x′ϕ, (12b)

∂2sϕ(r, rg)
∂yg∂zg

=
3(y − yg)

[
5(z − zg)A1,g(x, z) − |r − rg|2 z′x

]

|r− rg|7
x′ϕ, (12c)



320 Alaia, Patella, and Mauriello

∂2sψ(r, rg)
∂xg∂yg

=
3(x− xg)

[
5(y − yg)B1,g(y, z) − |r − rg|2

]

|r− rg|7
y′ψ, (12d)

∂2sψ(r, rg)
∂xg∂zg

=
3(x− xg)

[
5(z − zg)B1,g(y, z) − |r − rg|2 z′y

]

|r− rg|7
y′ψ, (12e)

∂2sψ(r, rg)
∂yg∂zg

=
15(y−yg)(z−zg)B1,g(y, z)−3B2,g(y, z)|r−rg|2

|r− rg|7
y′ψ (12f)

with A1,g(x, z) = (x−xg)+(z−zg)z′x, A2,g(x, z) = (z−zg)+(x−xg)z′x,
B1,g(x, z) = (y− yg)+ (z− zg)z′y and B2,g(x, z) = (z− zg)+ (y− yg)z′y.

3.5. The SP Source Octopole Occurrence Probability

Finally, we consider a generic hth integral of the fourth sum in
Eq. (4b) and apply again Schwarz’s inequality to each uvw-term
(u, v,w = x, y, z), allowing a source octopole occurrence probability
(SOOP) function to be defined as

η
(o)
h, uvw = C

(o)
h, uvw

+X∫

−X

+Y∫

−Y
ES(r) · ∂3s(r, rh)

∂uh∂vh∂wh
g(z)dxdy, (13a)

with

C
(o)
h,uvw=

[ +X∫

−X

+Y∫

−Y
E2
S(r)g(z)dxdy ·

+X∫

−X

+Y∫

−Y

∣∣∣ ∂3s(r, rh)
∂uh∂vh∂wh

∣∣∣2g(z)dxdy
]−1/2

. (13b)

As noted above, the 3D SOOP function falls in the range [−1, 1].
At each rh, 27 values may now be calculated, each interpreted as a
probability measure of a single octopole source located at rh, being
responsible of the whole ES(r) dataset. However, as we are interested
in finding only the position of the vertices of a source body, we will
limit our analysis only to the SOOP function with u �= v �= w.

Each third derivative of s(r, rh) takes the role of source octopole
scanner. The useful third derivatives of the components sϕ(r, rh) and
sψ(r, rh) of s(r, rh) over the S-domain are derived, respectively, from
Eq. (3a) and Eq. (3b) as

∂3sϕ(r, rh)

∂xh∂yh∂zh
=

15(y−yh)
[
7(x−xh)(z−zh)A1,h(x, z)A2,h(x, z) |r − rh|2

]
|r−rh|9

x′
ϕ, (14a)

∂3sψ(f
¯
r, rh)

∂xh∂yh∂zh
=

15(x−xh)
[
7(y−yh)(z−zh)B1,h(y, z)−B2,h(y, z) |r−rh|2

]
|r− rh|9

y′
ψ (14b)
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with A1,h(x, z) = (x−xh)+(z−zh)z′x, A2,h(x, z) = (z−zh)+(x−xh)z′x,
B1,h(x, z) = (y−yh)+(z−zh)z′y and B2,h(x, z) = (z−zh)+(y−yh)z′y.

4. SYNTHETIC EXAMPLES

We show some synthetic examples, in order to outline the main aspects
of the multipole generalisation of the SP probability tomography.

4.1. The Coaxial Cube Model

At first, we consider a coaxial cube model with sides 6 m long parallel
to the coordinate axes and centre at x = 0, y = 0, z = 6 m. A positive
charge of 0.5 C is assumed uniformly distributed on the surface of the
cube with a charge surface density Δσ ∼= 2.315 · 10−3 C/m2. The SP
data have been computed at the nodes of a Cartesian grid where the
elements are unit squares, using a 1m step from −18 m to 18 m along
both x-axis and y-axis. Figure 3 shows the synthetic SP map on the

Figure 3. The SP map for the cube model with a positive charge
surface density Δσ ∼= 2.315 · 10−3 C/m2, sides 6m long and centre at
x = 0, y = 0 and z = 6 m.
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(a) (e)

(b) (f)

(c) (g)

(d) (h)

Figure 4. The SPOP (a), x-SDOP (b), y-SDOP (c), z-SDOP
(d), xy-SQOP (e), xz-SQOP (f), yz-SQOP (g) and xyz-SOOP (h)
tomographies derived from the SP synthetic map in Figure 3. The
body with blue lines is the cube model.
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(a) (b)

Figure 5. A joint representation of the SPOP (red), SDOP (light
blue), SQOP (green) and SOOP (purple) nuclei, viewed from top (a)
and laterally (b), useful to retrieve the source body of the SP map in
Figure 3.

(x, y)-plane.
Figure 4 shows the results from the application of the multipole

probability tomography algorithm to the SP map in Figure 3. Since
no topographic effects have been simulated, the scanner functions used
to compute the η-functions have been obtained from the previous
formulae putting z′x = z′y = 0, x′ϕ = y′ψ = 1 and g(z) = 1. For the
sake of clarity, in all of the 3D probability tomography plots we will
show sufficiently small SPOP, SDOP, SQOP and SOOP nuclei, each
enclosing the maximum absolute value (MAV) of the corresponding
η-function.

The SPOP image shows a positive nucleus around the cube centre.
The SDOP image shows, instead, three distinct doublets of nuclei with
opposite signs very close to the centres of the corresponding opposite
faces of the cube. Three distinct quadruplets appear around the centres
of the cube sides in the SQOP tomographies of the off-diagonal terms,
and an octoplet located at the vertices of the cube is the peculiar result
from the SOOP image. The parameters of the nuclei in Figure 4 are
listed in Table 1. A shift of 0.1 m along z-axis is estimated for the cube
centre from its true position. Furthermore, an average error of about
3% affects the estimate of the side length of the cube, from the distance
between the MAV points of two opposite nuclei in each multiplet.

The practical interest is to retrieve shape and position of the
source body. Figure 5 suggests that a quick modelling can be done, by
plotting into a single image all of the nuclei drawn in Figure 4.
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Table 1. Characterization of the SPOP, SDOP, SQOP and SOOP
nuclei in Figure 4. A: nucleus type; B: selected bounding isosurface
level; C: maximum absolute value (MAV); D: (x, y, z) of the MAV
point.

A B C D 

SPOP (+) )( p
m =0.950 

max

)( p
m =0.952 (0.0, 0.0, 5.9) 

x-SDOP (+) )(
,
d
xn =0.450 

max

)(
,
d
xn =0.491 ( 3.1, 0.1, 6.0) 

x-SDOP ( ) 
)(

,
d
xn = 0.440

max

)(
,
d
xn =0.467 (3.1, 0.0, 6.0) 

y-SDOP (+) 
)(

,
d
yn =0.460 

max

)(
,
d
yn =0.494 ( 0.1, 3.0, 6.0) 

y-SDOP ( ) 
)(

,
d
yn = 0.440

max

)(
,
d
yn =0.467 ( 0.1, 3.0, 6.0) 

z-SDOP (+) )(
,
d
zn =0.450 

max

)(
,
d
zn =0.481 (0.0, 0.1, 3.0) 

z-SDOP ( ) 
)(

,
d
zn = 0.450

max

)(
,
d
zn =0.484 (0.0, 0.0, 9.0) 

xy-SQOP (+) 
)(

,
q
xyg =0.280 

max

)(
,
q
xyg =0.297 (3.0, 3.0, 5.9) 

( 3.0, 3.0, 5.9) 

xy-SQOP ( ) 
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4.2. The Single Point Charge Model

The SP map in Figure 3 has a very close resemblance with the map
due to a point charge. To this aim, we consider a point charge of 0.5 C
placed at x = 0, y = 0, z = 6m. The SP map has been computed
at the nodes of a square grid with the same characteristics as in the
previous case. Figure 6 depicts the SP map thus obtained.

Figure 7 shows the results from the application of the multipole
tomography imaging. As in the coaxial cube case, the SPOP image
gives a clear indication as to the correct position of the point
charge. However, in spite of the fact that the source is a single pole,
SDOP, SQOP and SOOP nuclei also appear so regularly located that,
considered singularly, no difference can be detected with respect to
the previous cube model. The situation changes considerably if we
plot the SDOP, SQOP and SOOP nuclei altogether into a multipole
image as in Figure 8. It is no longer possible, now, to combine a set
of SDOP, SQOP and SOOP nuclei crossed by a single plane as in the
previous case. In other words, a cube’s face can no longer be traced.
The multipole analysis seems thus able to differentiate the response of
a cube from that of a point source.

Figure 6. The SP map due to a point charge of 0.5 C placed at x = 0,
y = 0 and z = 6 m.
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(a) (e)

(b) (f)

(c) (g)

(d) (h)

Figure 7. The SPOP (a), x-SDOP (b), y-SDOP (c), z-SDOP
(d), xy-SQOP (e), xz-SQOP (f), yz-SQOP (g) and xyz-SOOP (h)
tomographies derived from the SP map in Figure 6.
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(a) (b)

Figure 8. A joint representation of the SPOP (red), SDOP (light
blue), SQOP (green) and SOOP (purple) nuclei under two different
angles of view, derived from the SP map in Figure 6.

The fact that SDOP, SQOP and SOOP nuclei are developed
also for the single point charge model must be interpreted as the
consequence of the probability meaning attributed to the η-functions.
These functions allow the points where they obtain the maximum
occurrence probability to be detected. An array of multipoles is thus
highlighted, providing a SP response equivalent to that of a single point
source. In other words, the multipole source geometry in Figure 8 is
likely to represent the most probable polyhedral figure generating a SP
response equivalent to that drawn in Figure 6. The parameters of the
SPOP, SDOP, SQOP and SOOP nuclei are listed in Table 2.

4.3. The Rotated and Tilted Cube Model

We show now what happens when the sides of the cube are no longer
parallel to the reference coordinate axes. A new model is thus analysed
by rotating the cube previously dealt with by 45◦ around both the
vertical z-axis and y-axis through the centre. Figure 9 shows the SP
map of this new source body configuration.

Figure 10 illustrates the results from the application of the
multipole tomography imaging. The SPOP image still shows a nucleus
located around the centre. On the contrary, the SDOP, SQOP and
SOOP nuclei exhibit a mixed behaviour compared with that of the
coaxial cube model. While in the former case they distinctly represent
the faces, corners and vertices of the cube, respectively, now the same
multiplets can simulate any of these geometrical features, depending
on how the body is collocated with respect to the assumed reference
coordinate system. Nevertheless, the nuclei are always revealed in
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Table 2. Characterization of the SPOP, SDOP, SQOP and SOOP
nuclei in Figure 7. A: nucleus type; B: selected bounding isosurface
level; C: maximum absolute value (MAV); D: (x, y, z) of the MAV
point.
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Figure 9. The SP map for the tilted cube model with same parameters
as in Figure 3, rotated by 45◦ around the vertical and horizontal axes
through the centre.

homologous pairs. However, it must be stressed that this behaviour
is not casual, since the procedure simply implies the search for the
MAV points of the first, second and third order crossed derivatives of
the kernel function with respect to the reference axes. When plotted
altogether, the SDOP, SQOP and SOOP nuclei still make possible
to delineate the cubic shape of the source body, as clearly visible in
Figure 11.

4.4. The Coaxial Two-prism Model

The forth example is the coaxial two-prism model, whose aim is to
test the resolution power of the new tomography method. The first
prism is a cube with Δσ ∼= 5.787 · 10−4 C/m2, and the second one is a
parallelepiped with Δσ = −4.822 · 10−4 C/m2. Three cases are shown
with three different distances between the centres of the two prisms.
Position and side lengths of the two bodies are detailed in the caption
of Figure 12. The SP datasets have been computed at the nodes of a
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(a) (e)

(b) (f)

(c) (g)

(h)(d)

Figure 10. The SPOP (a), x-SDOP (b), y-SDOP (c), z-SDOP
(d), xy-SQOP (e), xz-SQOP (f), yz-SQOP (g) and xyz-SOOP (h)
tomographies derived from the SP synthetic map drawn in Figure 9.
The body with light blue lines is the inclined cube model.
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(a) (b)

Figure 11. A joint representation of the SPOP (red), SDOP (light
blue), SQOP (green) and SOOP (purple) nuclei, under two different
angles of view, useful to retrieve the source body of the SP map in
Figure 9.

square grid by a 1m long step in the rectangle [−60, 60]× [−30, 30] m2.
Figure 12 shows the SP maps for the three cases in order of decreasing
distance between the centres from the top (a) to the bottom plot (b).
It is quite evident that the decreasing distance is the cause of an
increasing compression of the SP contour lines in the region of highest
mutual interference.

Figure 13 displays the tomography results for the three cases,
where, for brevity, only the combined multipole images are reported.
In the top one, which refers to a distance between the centres greater
than 3 times the average side length of the bodies, the interaction
between the two prisms is rather negligible and their true shape can
still be recognised. In the middle image, which refers to a distance
between the centres of about 2.5 times the average side length, all of the
facing SDOP, SQOP and SOOP nuclei depart from their initial places
to converge to the centre of the two bodies’ system. Finally, in the
bottom picture, which refers to a distance a little greater than 2 times
the average side length, the detached facing nuclei of the same type are
wholly melted midway between the prisms. The facing faces, corners
and vertices of the two nearby bodies have therefore completely lacked
resolution. This localised effect is not to be considered a weakness
of the proposed multipole approach, but rather an intrinsic physical
limitation due to the relatively small distance between the two bodies
with respect to the depth of burial.

5. A FIELD CASE-HISTORY

As well documented, in natural hydrothermal systems SP signals are
generated mainly by electrokinetic flows. Generally speaking, in active
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Figure 12. The SP map for the two-prism model made of: (1) a cube
with Δσ ∼= 5.787 · 10−4 C/m2, sides parallel to the three coordinate
axes and 12 m long each, and centre at x = 20 m (a), x = 14.5 m
(b) and x = 11 m (c), y = 4 m, z = 15 m; (2) a parallelepiped with
Δσ ∼= −4.822 · 10−4 C/m2, x- and z-oriented sides 13 m long and y-
oriented sides 13.5 m long, and centre at x = −20 m (a), x = −15m
(b) and x = −11.5 m (c), y = −4.75 m, z = 15 m.
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(b)

(a)

(c)

Figure 13. A joint representation of the SPOP (red), SDOP (light
blue), SQOP (green) and SOOP (purple) nuclei for the two-prism
model with decreasing distance between the centres of the two prisms.
The sequence of the images is the same as that of the SP maps in
Figure 12.

volcanic areas, SP positive anomalies correspond to upward migrating
fluids, while negative ones to a downward fluid movement [9, 14].

We illustrate now the application of the SP 3D multipole
probability tomography to an SP survey carried in the volcanic area
of Mt. Somma-Vesuvius (Naples, Italy), which aimed to configure the
main plumbing system of the volcanic complex. Mt. Somma-Vesuvius
is a polygenic strato-volcano, whose most recent period of history
(1631–1944) was characterized by a semipersistent, relatively mild
activity (lava fountains, gases and vapour emission from the crater),
frequently interrupted by short quiet periods that never exceeded seven
years. From 1944 to the present time, Mt. Somma-Vesuvius has
remained quiet.

The SP data were collected in 1996 by the gradient technique with
a 100 m long passive dipole, continuously displaced along a wide net
of randomly distributed circuits within an area of about 144 km2 [15],
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Figure 14. The Mt. Somma-Vesuvius survey area.

sketched in Figure 14. Figure 15 shows the behaviour of the SP field
in mV, resulting from the processing of 1250 measurements [15, 16].
As the area is characterized by a strongly uneven topography, the
3D multipole tomography algorithm with topographic effects has been
used. A similar SP map realised in 1995 was elaborated by the
probability tomography method, limitedly, however, only to the source
pole and dipole analysis [9, 15, 16].

The SPOP image in Figure 16 displays a pair of nuclei of opposite
sign containing two poles with the highest occurrence probability. They
are interpreted as the centres of the polarised bodies responsible of
the SP biggest anomalies of opposite sign drawn in Figure 15. The
negative and positive poles appear located, respectively, beneath the
Somma caldera northern rim and the Vesuvius cone. Combining in
pairs and altogether the SPOP, SDOP, SQOP and SOOP nuclei into
single plots, the images in Figure 17 are obtained.

Figure 17 shows a quite regular assemblage of the SDOP, SQOP
and SOOP multiplets. All the related nuclei appear clustered around
the two poles of Figure 15, thus defining two distinct blocks. Compared
with the results from the two-prism model, the two blocks appear
so sufficiently distant from each other as to exclude any interaction
between them, as in Example (a) in Figure 13. The parameters of
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Table 3. Coordinates in km of the points with relative maximum
absolute values for the SPOP, SDOP, SQOP and SOOP nuclei in
Figure 17.

Anomaly SPOP (+) SPOP ( ) 
SPOP (5.4, 6.3, 1.5) (6.5, 9.9, 0.9) 

x-SDOP (+) (4.3, 6.2, 1.6) (7.3, 10.0,1.0) 
x-SDOP ( ) (6.9, 6.2, 1.6) (5.4, 9.8, 1.0) 
y-SDOP (+) (5.3, 5.4, 1.8) (6.3, 11.6, 1.0) 
y-SDOP ( ) (5.3, 7.0, 1.7) (6.4, 9.0, 0.9) 
z-SDOP (+) (5.5, 6.3, 0.9) (6.4, 9.9, 1.9) 
z-SDOP ( ) (5.5, 6.3, 2.7) (6.5, 9.9, 0.4) 

xy-SQOP (+) 
(4.6, 5.5, 1.8) 
(6.5, 6.9, 1.8) 
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the SPOP, SDOP, SQOP and SOOP nuclei in Figure 17 are listed in
Table 3, from which the source bodies are estimated to be confined
within the first 3 km of depth b.s.l.

The geometry of the SP source bodies is now much better
delineated than in the former study limited to the SPOP and SDOP
analysis [9]. In conclusion, the SP field in the Mt. Somma-Vesuvius
volcanic area can be explained by the existence of a shallow geothermal
system, made of a single dominant convective cell. The descending
branch of this circuit, where cooled fluids, occasionally mixed with
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meteoric water, percolate, should reasonably correspond with the
negatively charged block beneath the Somma caldera northern rim.
The ascending branch, where the fluids heated from below rise up,
should instead correspond with the positively charged block beneath
the Vesuvius cone, and likely form the reservoir feeding the active
fumaroles located in the top central crater.

Figure 15. The Mt. Somma-Vesuvius SP map.

Figure 16. The Mt. Somma-Vesuvius 3D SPOP tomography of the
SP map reported in Figure 15. The yellow and red nuclei represent
the negative and positive poles, respectively.
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(d)

(a) (b)

(c)

Figure 17. A joint representation of the SPOP and SDOP (a),
SPOP and SQOP (b), SPOP and SOOP (c), SPOP, SDOP, SQOP and
SOOP (d) nuclei, resulting from the application of the 3D multipole
tomography method to the Mt. Somma-Vesuvius SP map in Figure 17.

6. CONCLUSION

We have exposed the theory of the 3D multipole probability
tomography for the SP method by a generalised approach including a
combination of poles, dipoles, quadrupoles and octopoles as elementary
point sources of the SP anomalies. These physical sources have been
used to detect the position of the centres of the true sources and to
highlight the features of their boundaries. Improving the geometrical
definition of the sources of the SP anomalies has thus been the main
purpose of the new approach.

A few synthetic examples have been analysed in order
to understand the full capabilities of the multipole probability
tomography in the search for the most probable location and shape
of the buried sources. Finally, a field case-history related to an SP
survey carried out in the volcanic area of Vesuvius (Naples, Italy) has
been presented in order to delineate the geometry of the SP sources in
the central volcanic area within the first 3 km of depth below sea level.

To conclude, we emphasise the role of the tomography approach
in the definition of the sources of the SP anomalies which are observed
on the ground surface in many application fields, among which
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volcanology, as in this study, seismology [17] and archaeology [10, 11].
We also stress the importance that the probability tomography
can have in the study of the time evolution of the SP signals in
high-risk volcanic areas, where the electrokinetic source field may
undergo a rapid increase of intensity in conjunction with an increase
of the volcanic emission activity. The 4D tomography is in fact
becoming a very promising monitoring technique especially in fast flow
visualization [18].
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