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Abstract—A through-wall imaging problem is tackled by means a
linear inverse scattering approach described and numerically analyzed
in previous works by the same authors. Here, such an approach is
checked for against experimental data. To this end, a CW-SF ultra-
wideband radar system is used to take measurements in a controlled
environment as well as for in situ experiments. Different types of
scatterers and of obscuring walls are considered.

1. INTRODUCTION

The development of imaging algorithms to see-through an obscuring
obstacle is now addressed in the scientific literature as a through-wall
imaging (TWI) problem. Such a research field has been receiving
increasing interest since many civilian and law enforcement scenarios
require tackling the problem of detecting and localizing objects which
are hidden behind a wall [1–5].

For example, a typical scattering scenario for TWI is the search
for hostage and suspects located inside a building [6].

As electromagnetic waves can propagate through nonmetallic
building materials, such a task is in principle possible by adopting
radar systems [7]. However, even though TWI shares most of the
scientific/technical aspects of free-space imaging, it is definitively more
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difficult from an applicative point of view due to the presence of the
wall [6].

First, the attenuation the electromagnetic waves undergo while
propagating through the wall set an upper limit to the exploitable
frequencies. Experimental observations have shown that most of the
building materials are relatively transparent up to 2–3 GHz and for
higher frequencies the attenuation begins to increase rapidly [8, 9].

Second, the imaging algorithms have to account for the
propagation path through the wall, otherwise blurred images are
obtained where the scatterers appear distorted and dislocated from
their actual positions.

In order to comply with the above mentioned constraints different
TWI algorithms have been developed. For example, in [10] a
beamforming algorithm is exploited, in [11] a chaos modulation
imaging technique is adopted whereas in [3] and [12] the reconstruction
approaches are based on nonlinear and linear inverse scattering theory,
respectively.

In this paper, we present the experimental validation of the linear
inverse scattering approach described in [12]. In fact, the experimental
validation is a mandatory step towards the definitive assessment of the
effectiveness of any imaging scheme.

We first test the imaging algorithm by means of measurements
taken in a semi-anechoic controlled environment. Then we consider in
situ scattering experiments under realistic conditions.

In particular, the measurements are taken thanks to a portable
ultra-wideband continuous wave stepped frequency (CW-SF) radar.

The paper is organized as follows. In Section 2, we describe the
geometry of the problem, the measurement configuration and briefly
recall the imaging algorithm. In Section 3, we introduce the adopted
instrumentation. Section 4 is devoted to showing the experimental
results. Finally, conclusions end the paper.

2. SCATTERING CONFIGURATION AND IMAGING
ALGORITHM

Figure 1 depicts the reference scenario used to develop the scattering
model upon which the imaging algorithm is based. The TWI problem
is addressed by considering a simple “background” medium consisting
of three layers. The first and the third ones are assumed free-space and
their dielectric permittivity and magnetic permeability are denoted as
ε0 and μ0, respectively.

The second layer represents the wall. Such a layer is assumed
homogeneous and nonmagnetic (i.e., its magnetic permeability is the
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Figure 1. Geometry of the problem.

same as the one of the free-space) with εw and σw denoting its dielectric
permittivity and conductivity, whereas d is its thickness.

As dictated by the TWI problem, the scatterers and the antennas
are located on the opposite sides of the wall. In particular, the
transmitting (TX) as well the receiving (RX) antennas are located
in the first layer whereas the targets are located in the third layer.
A measurement aperture Σ = [−xM , xM ] is synthesized at a given
standoff distance h from the wall. More in detail, the TX and RX
are separated by a fixed offset so that measurements are collected at
a fixed distance from the source while the latter moves. For each
source position measurements are taken at different frequencies within
a frequency band f ∈ [fmin, fmax]. Accordingly, a multibistatic/multi-
frequency configuration is achieved.

The targets are assumed to be infinitely long and invariant along
the y-axis whereas the sources of the incident field are modeled as
a filamentary current directed along the same axis. Therefore, we
develop the TWI imaging algorithm for a two-dimensional scalar
geometry. Finally, we assume that the targets are located within an
investigation domain D = [−xinv, xinv] × [zmin, zmax].

Under the Born approximation the imaging problem amounts to
inverting the following integral relationship [13]

ES(xO, f)=H(f)
∫∫

D
G(xO, x, z, f)Einc(xO, x, z, f)χ(x, z)dxdz, (1)

where H(·) is a slowly varying function of f , xO ∈ Σ is the observation
position, G(·) is the Green’s function pertinent to the addressed three-
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layered background medium and Einc(·) is the field impinging on the
scatterers, that is the field radiated by the filamentary source and
transmitted in the third layer beyond the wall. ES(·) is the datum of
the problem and represents the field scattered by the objects which
propagates through the wall (in the direction opposite to the one
of Einc) and collected over the measurement aperture Σ. Whereas
the unknown is given by the so-called contrast functionχ(·) which
represents the unknown scatterers in terms of the relative difference
between the background dielectric permittivity, in this case ε0, and
the objects one εobj(·), that is χ(·) = εobj(·)/ε0 − 1 [13–15]. The Born
model works for the so-called weak scatterers. However, it is shown
that it allows to obtain qualitative information about the location and
the geometrical features of the scatterers even for the case of metallic
objects [12].

It is important to note that in Eq. (1) the data of the problem
(hereinafter addressed as the scattered field) are given in terms
of the difference between the total scattered field (i.e., the actual
measurements which consist of the field reflected by the wall plus
the field scattered by the obscured objects) and the background field
(i.e., the field reflected by the wall only). This means that before
inverting Eq. (1) the scattered field ES(·) has to be derived from the
measurements. This requires the knowledge of the wall parameters or
their estimation [16]. The knowledge of the wall is also necessary to
define the kernel of the operator in Eq. (1) to be inverted.

Here, however, we assume to know the wall parameters.
According to the previous discussion, once the scattered field

has been obtained, the reconstruction problem consists in solving eq.
(1) for the contrast function χ(·). As is well known, this entails
tackling an ill-posed problem [17]. In particular, as the integral
operator in eq. (1) is compact even a small amount of noise on
data can result in a completely meaningless reconstruction. In order
to build up an inversion scheme which is robust against noise one
must establish a trade-off between accuracy and stability. In other
words, a regularization scheme has to be adopted. Here, we adopt
the truncated-singular value decomposition (TSVD) inversion scheme.
Thus, a regularized solution of the integral Eq. (1) is obtained as

Rχ =
N∑

n=0

〈ES , vn〉
σn

un, (2)

where Rχ is the regularized reconstruction, N is the truncation
index, the set {σn}∞n=0 denotes the singular values ordered in a non
increasing sequence, whereas {un}∞n=0 and {vn}∞n=0 form orthonormal
bases in the unknown and data spaces, respectively [17]. The TSVD
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Figure 2. Picture of the scattering experiment in a semi-anechoic
environment.

achieves regularization by reducing the unknown functional space
dimension. Accordingly, the key question is the choice of truncation
index N which has to be done by accounting for the noise level, the
mathematical features of the operator to be inverted and available
a priori information about the unknown. Different methods exist to
select N . Such methods can explicitly exploit the knowledge of the
noise level, (such as the Morozov discrepancy principle) or not (such
as the generalized cross validation) [18]. In general, the higher the
noise the lower N . For the problem at hand, the singular values
decay with an exponentially law beyond a certain index. This is
shown analytically, for example, for the one-dimensional case in [4]
but approximately also holds for the two-dimensional case. In- deed,
this reflects the fact that the scattered field has finite number of degrees
of freedom [19]. Therefore, when the noise is white, it is natural to set
the truncation index roughly in correspondence to the index where the
singular values start to decay quickly. In the following we will adopt
such a criterion. In particular, a visual inspection of the singular
value behaviour suggests to retain in eq. (2) the singular functions
corresponding to the singular values not below 20dB the maximum
one.

3. RADAR SYSTEM

In this section, we briefly describe the instrumentation we adopted to
collect measurements. We used a portable continuous wave stepped
frequency radar system (see Fig. 2) developed and implemented under
a cooperation between the Second University of Naples and Ingegneria
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dei Sistemi [20]. The main components of such a system are the
electronic unit, the automatic positioning system and the antennas.
The data acquisition procedure is supervised by a laptop via a USB
port thanks to a customized software written in Labview language. In
particular, the software permits to choose the number and the step
of the working frequencies, the radiated power and the number and
spacing of the spatial measurement as well as the kind of acquisition.

The electronic unit is made up of a transmitter and two receiving
channels which work in the frequency 800 MHz–4 GHz band. The
maximum number of frequencies that can be taken is 3200. Hence
a minimum frequency step of 1MHz is allowed. Each single frequency
measurement requires roughly 1 ms. The I and Q components of the
signal are acquired. The maximum transmitter power is 0 dBm. The
electronic unit permits to control three antennas, one transmitting and
two receiving. The antennas are automatically positioned thanks to a
slide driven by a stepped motor. The slide is 2.5 m long and allows
a measurement line of 2m at most. The offset between the antennas
is fixed but it can be adjusted manually at any desired value between
10 cm and 1m.

In the following experiments we used only two antennas (one
acting as transmitting one and the other as receiving one), two
rectangular ridged horns (Schwarzbeck mod. BBHA9120A) which can
work between 800 MHz and 5 GHz, linearly polarized along the y-axis.

A more detailed description of the hardware system can be found
in [20].

4. EXPERIMENTAL RESULTS

This section is devoted to showing some experimental reconstructions
in order to assess the reconstruction capabilities of the inversion
algorithm. In particular, the reconstructions are given first for a
scattering scenario within a semi-anechoic environment and after for
in situ experiments.

The imaging problem for realistic situations is intrinsically a
three-dimensional problem. However, for the sake of simplicity, we
perform the reconstructions according to the reference scenario and
the measurement configuration described in Section 2. In other words
we assume to deal with a two-dimensional and scalar problem and thus
the results will be presented in terms of a two-dimensional slice of the
scene.

In particular, for all the following reconstructions the modulus of
the regularized retrieved contrast function normalized to its maximum,
that is |Rχ(x; z)|/max|Rχ(x, z) is displayed.
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4.1. Calibration

Before proceeding to the reconstructions, the radar system must be
calibrated to remove the systematic errors due to the radar circuitry,
the cables, the cable-antenna transitions and to the antennas. Indeed,
from the actual measurements concerning the scattering parameter S21

the scattered field has to be obtained.
As to the radar system, the coherence loss is due to the

different electrical path that different sub-bands of the received signal
experience. This is because the different sub-bands share only part
of the internal circuitry. To compensate for such an effect the system
includes a phase auto-calibration circuit. Such a circuit requires first
to acquire a full CW-SF scan in a controlled path, then the successive
scans are calibrated using this data to correct phase misalignment.
Moreover, the information acquired during the calibration process
allows a complete equalization of the subsystems in terms of phase
and amplitude. The calibration process is completely automated and
repeated at regular intervals during measurements, allowing the effect
of system thermal drift to be tracked and corrected.

After such an automatic internal calibration, the path through the
cables and the antennas still remains to be compensated for. To this
end, measurements collected for a copper plate scatterer located at a
known distance from the antennas are exploited. In particular, the
plate distance is chosen so that the reflection coming from the copper
plate is easily discernable from the antennas’ direct coupling. This
allows us to estimate the time-position (after a Fourier transformation
as data are in the frequency domain) of the plate, and hence, as
the free-space path is known, the cable-antenna path length zca is
determined. Therefore, the scattered field is approximated simply as

ES(xO, f) = S21 exp (j4πfzca/c), (3)

c being the speed of light in free-space.
Note that the antennas’ frequency behavior is not accounted for by

the calibration stage. According to Section 2, all the following results
will be achieved by assuming a two-dimensional filamentary current as
antenna in the model.

4.2. Experiments in Controlled Environment

The set up of the first experiment is shown in Fig. 2.
It refers to the case of two hollow metallic cylinders of 2m in height

with circular cross sections of diameters 10 cm and 6 cm, respectively,
whose centers are located at a depth of z = 40 cm (with respect to the
reference system reported in Fig. 1) that is at about 30 cm from the
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second interface of the wall. Such scatterers are located behind a tuff
wall of size 1× 1× 0.11m3 (0.11 m being the thickness). The dielectric
permittivity and conductivity of the tuff wall are assumed known in
the imaging algorithm. In particular, we set εw = 4ε0 according to the
outcome of the electromagnetic characterization procedure reported
in [19]. The dispersive nature of the tuff as well as its losses are not
considered in the inversion model.

The radar system is placed in front the wall so that the antennas
are at 10 cm apart form the first wall interface. The measurements
exploited in the inversion range from 800 MHz to 3200 MHz with
a frequency step of 60 MHz. Moreover, a synthetic aperture Σ =
[−0.5, 0.5] m has been synthesized where the scattered field is collected
at a spatial step of 2.5 cm.

Finally, the scattering scene is located in a semi-anechoic
environment where three sides of the room are covered with absorbing
panels 2.5 × 2.5m2 sized.

As to the imaging algorithm, an investigation domain D =
[−0.5, 05] × [0.11, 1]m2 has been assumed and the TSVD truncation
index N , in Eq. (2), is chosen so as to retain the singular functions
corresponding to the singular values not below 20 dB of the maximum
one. It is worth remarking that only half of the measurements are
exploited in the imaging algorithm. That is, for imaging purposes, we
retain in the inversion only the measurements collected at a spatial
step of 5 cm. Thus, the numerical procedure is computationally more
effective and it is possible by resorting to the results concerning the
degrees of freedom of the scattered field [20].

According to the previous discussion two different sets of data have
been acquired in presence (total scattered field) and in absence of the
scatterers (background field) so that the scattered field is obtained as
their difference. The results concerning a two-dimensional slice taken
at an height of about 0.35 m are reported in Fig. 3. In particular, in
panel (a) of such a figure the time-domain normalized amplitude of
the scattered field is reported as a function of the receiving antenna’s
position (i.e., the so-called radargram) and obtained by Fourier
transforming, for each trace, the frequency domain measurements
collected by the radar system with a 1MHz frequency step. As can
be seen, the visual inspection of such a figure makes a user aware only
of the scatterers presence and little else. Note that the radargram has
been obtained from non-calibrated data which only entails a shifting
along the depth. Instead, the tomographic reconstruction reported in
panel (b), obtained from calibrated data, is definitively better as the
number and the locations of the scatterers can be clearly discerned
(even though the antennas’ behavior as well as the tuff dispersive law
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Figure 3. (a) Radargram (non-calibrated normalized amplitude
Fourier transformed data), (b) image obtained by the imaging
algorithm, the actual scatterers’ cross sections are also depicted as
white and red circles.

Figure 4. Picture of the in situ scattering experiment.

have been not accounted for).

4.3. In Situ Experiments

As a second example we go on to consider a more realistic scenario
(see Fig. 4) in order to check the imaging algorithm in very realistic
conditions. For such a case we placed the radar system so that the
antennas are about 1 cm away from the wall. In particular, an external
bearing wall of the ground floor of one of the buildings of the Faculty
of Engineering of the Second University of Naples has been chosen
to perform the experiments. The scatterers to be imaged are located
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outside the building on the opposite side of the wall (see panels (a) of
Figs. 6 and 7).
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Figure 5. (a) Radargram (non-calibrated normalized amplitude
Fourier transformed data), (b) pictorial view of the reinforcing grid.
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Figure 6. (a) Picture of the scattering scene, (b) reconstruction of a
metallic cylinder located at 1 m beyond the wall, (c) reconstruction of
a metallic cylinder located at about 2.6 m beyond the wall.
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The measurements exploited in the inversion range from 800 MHz
to 3200 MHz with a frequency step of 1MHz, over an aperture of 2m
with a spatial step of 2 cm and at an height of 0.74 cm from the floor.

We know that the wall is made of tuff. Moreover, at the height
measurements are taken, the wall is 24 cm thick. Accordingly, in
the imaging algorithm we adopted εw = 4ε0 and d = 24 cm. As in
the previous case, the wall conductivity and dispersion law have not
considered in the inversions.

As can be seen from Figs. 4 and 6 the scattering scenario is rather
complex. The wall has a non-homogeneous thickness and above the
place where the radar system is located there is a window. In this
case it is also interesting to have a look at the radargram reported
in Fig. 5 panel (a). The radargram reveals the existence of a periodic
distribution of scatterers inside the wall which should be strong because
the wall interfaces are not visible. Some information about the wall
structure confirmed that a steel reinforcing grid (see Fig. 5 panel (b)
for a pictorial view of the grid) was present inside the wall.

However, we do not account for the reinforcing grid in the imaging
algorithm still retaining the scattering model of Section 2. Moreover,
the scattered field data are again obtained as the difference from the
total field and the background one.

As in the previous case, while achieving the reconstruction we
consider measurements taken at a double the spatial step (i.e., at
4 cm) used to obtain the radargrams. Furthermore, a measurement line
Σ = [−0.8, 0.8] m, shorter than the one adopted for the radargram, is
used. Finally, the data are also decimated in frequency. That is, we
consider a frequency band [1, 2.5] GHz sampled at a step of 75 MHz.
This assures that waves penetrate through the grid and are not too
affected by the attenuation introduced from the wall.

Finally, in all the following reconstructions the TSVD has been
truncated at the same level as done for the previous test-case.

The first in situ experiment concerns the case of a hollow metallic
cylinder of circular cross section with a diameter of 6 cm (see Fig. 6
panel (a)). In such a figure we consider two different situations. In
panel (b), the cylinder center is located at [0.18, 1.24] m, that is at
1 m beyond the wall, and an investigation domain D = [−0.8, 0.8] ×
[0.9, 2.2]m2 is assumed. In panel (c), the cylinder is located at a
greater distance from the wall [0.03, 3] m, that is at about 2.6 m from
the wall, and an investigation domain D = [−0.8, 0.8] × [2.65, 3.5]m2

is exploited in the imaging algorithm. As can be seen, in both cases
the scatterer is detected and almost correctly localized despite all the
assumption upon which the inversion scheme relies on.

As a final example we consider the case of a human being as
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Figure 7. (a) Picture of the scattering scene in the case of human
scatterers, (b) corresponding tomographic reconstruction.

scatterer (see Fig. 7 panel (a)). In particular, the center of such a
scatterer is roughly located at 30 cm from the wall and slightly shifted
to the left with respect to the center of the measurement line.

According to the reference frame depicted in Fig. 1 the scatterer’s
location is about [−0.1, 0.55] m. For such an example we consider an
investigation domain D = [−0.8, 0.8]×[0.25, 1]m2. The corresponding
reconstruction reported in the same figure in panel (b) shows that the
imaging algorithm works well in detecting and localizing this scatterer
as well.

5. CONCLUSIONS

We have tackled a TWI problem for scattering objects hidden by a
known wall layer. As through-wall imaging has a great relevance in a
number of different applicative contexts, many imaging algorithms are
being developed. However, to assess the performance that an imaging
algorithm can actually achieve it is mandatory to validate it against
experimental data in particular for realistic scenarios.

This is just the aim we have pursued in this paper. In particular,
we have checked the imaging algorithm based on an inverse scattering
approach we have presented in [12] against experimental data collected
both in a controlled environment and on in situ experiments.

It is shown that the proposed imaging algorithm is able to detect
and localize the scatterers even in complex scattering scenarios whose
features are not completely accounted for by the adopted model.
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