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Abstract—This paper presents an efficient approach for analyzing the
long-time response of high-speed dispersive and lossy interconnects
terminated with nonlinear loads. In this approach, a fast real-
time convolution algorithm with computational cost O(N log2 N) is
suggested to tackle the long-time analysis of the high-speed dispersive
and lossy interconnects, which are modeled by S-parameters. In
addition, the acquirement of the S-parameters is recommended to
adopt wideband closed-form formulas. The time response of a
microstrip line with a nonlinear load is shown as a practical example.
The dominant parameters affecting the response of this microstrip line
is observed and discussed in detail. The approach demonstrates its
efficiency and accuracy in the analysis.

1. INTRODUCTION

The trend toward increasing the speed of modern digital systems
makes the requirement for signal integrity (SI) more stringent than
ever before. Signal integrity is also more troublesome to achieve in
the face of this requirement. Typically, the higher is the speed of a
digital signal, the wider is its frequency spectrum. As a consequence,
the dispersive and lossy effects of the digital signal propagating
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along an interconnect can be very pronounced and can worsen its SI
performance. Among SI failures, perhaps the intersymbol interference
(ISI) [1, 2] irritates most as the signal speed gets higher and the
period becomes shorter. ISI, interference among the symbols of the
signal, is caused predominantly by signal reflections at the loads of
an interconnect. To capture the full effects of ISI, it is important to
thoroughly analyze a long-time response persisting for tens of symbols.
In addition to high-speed digital devices, the high-frequency/high-
speed mixed analog-digital devices are being widely applied in modern
electronic systems. Thus, the dispersive and lossy interconnects are
more and more often terminated with nonlinear loads. However, few
numerical approaches can efficiently analyze such a long-time response.
The accurate analysis could be very time-consumptive and not be
acceptable when a large amount of such interconnects are involved
in practice.

Accurate analysis of dispersive and lossy interconnects terminated
with nonlinear loads has been a dilemma for decades. Analysis of a
dispersive and lossy interconnect is straightforward in the frequency
domain, but examination of its nonlinear loads is convenient in the time
domain. The finite-difference time-domain (FDTD) method [3–7] has
been proposed to solve this issue directly in the time domain. However,
it is not efficient for long-time analysis of high-speed interconnects
owing to the Courant condition. In addition, the late-time instability
of the FDTD method may occur, especially when both the dispersive
and lossy properties are considered at the same time. In general, the
FDTD method is not a reliable and simplified means for this purpose.

On the other hand, time-frequency transform methods [8–17]
have become popular for this purpose. These methods are more
straightforward and make it easier to model the arbitrarily dispersive
and lossy properties of an interconnect. The nonlinear loads,
however, prevent carrying out the convolution by the fast Fourier
transform (FFT) from these methods because FFT cannot be applied
directly in this situation. As a result, for N sampling points, the
direct convolution at O(N2) instead of O(N log N) utilizing FFT
is mandatory in order to implement the convolution between the
nonlinear terminations and the linear part.

In this paper, the long-time response of high-speed dispersive
and lossy interconnects terminated with nonlinear loads is analyzed.
An efficient approach is proposed to resolve this problem based
on the wideband closed-form formulas for expressing the S-
parameters of interconnects and the fast real-time convolution (FRTC)
algorithm [18, 19], which originates from the idea in [20]. The
computation time of the S-parameters by the formulas is in a
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flash. In addition, the FRTC can perform the convolution for the
interconnects terminated with nonlinear loads at the computational
cost O(N log2 N), which is a significant improvement over the
conventional O(N2) algorithm. Thus, the approach is rather efficient
when analyzing the long-time response of high-speed dispersive and
lossy interconnects terminated with nonlinear loads.

Using this efficient approach, the numerical results of the time
response of a dispersive and lossy microstrip line with a nonlinear
load are obtained and shown as an example. The structure of the
microstrip line is very common and is widely applied as interconnects
in printed circuit boards (PCBs), packages, and chips. Today’s high-
speed digital signals propagating along this kind of interconnect may
suffer more lossy effects owing to conductor and dielectric losses, as
well as more dispersive effects caused by current redistribution and
wave-mode coupling [21]. These effects can seriously aggravate SI
performance, and may make the analysis valueless if such effects are
not taken into account.

To save considerable time in performing a simulation, accurate
wideband closed-form formulas for describing the S-parameters of a
microstrip line were suggested in the analysis. The improved formulas
are listed in the appendix and have been well validated by a full-
wave numerical method. Analysis of the time response is not trivial
and therefore requires a thorough simulation. As expected in the
simulation, the distortion of signals in a dispersive and lossy microstrip
line terminated with a nonlinear load is clear and appreciable. The
signal distortion may depend on line properties, load characteristics,
and source features. On the basis of the analysis, the dominant
parameters for influencing the distortion can be clearly predicted.

2. FORMULATION

Figure 1 shows a high-speed dispersive and lossy interconnect with
a nonlinear load. This configuration is composed of a linear two-
port interconnect, a voltage source vg(t) with internal impedance Zg,
and a nonlinear load. For the linear two-port interconnect, the S-
parameters may be found by using numerical methods, measurement,
or closed-form formulas. For the analysis here, the S-parameters are
commendable for describing the two-port interconnect in contrast with
other parameters [10]. A set of improved wideband and accurate
closed-formulas for microstrip lines is listed in the appendix. It is
the most efficient way to obtain the S-parameters.

If the nonlinear load can be described by

i2(t) = −f(v2(t)), (1)
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Figure 1. Configuration of a high-speed dispersive and lossy
interconnect with a nonlinear load.

the time-domain nonlinear equation at Port 2 may be derived to

f(v2(t)) = x(t) ∗ v2(t) + y(t). (2)

In (2),

x(t) = F−1

{
4ZgS12S21 − ZgΔ1Δ2 − ZrΔΔ2

ZrΔ(ZrΔ + ZgΔ1)

}
, (3)

y(t) = F−1

{
2VgS21

ZrΔ + ZgΔ1

}
(4)

where

Δ = (1 + S11)(1 + S22) − S12S21, (5)
Δ1 = (1 − S11)(1 + S22) + S12S21, (6)
Δ2 = (1 + S11)(1 − S22) + S12S21. (7)

In (3) and (4), Vg denotes the Fourier transform of the voltage source
vg(t); F−1 denotes the inverse Fourier transform and “∗” stands
for convolution. S11, S12, S21, and S22 are the S-parameters of
the interconnect. Zg and Zr are the source impedance and the
reference impedance at ports, respectively. By direct convolution, the
computational cost of (2) is O(N2), which is exorbitant when the time
response is long or when the response is oversampled to avoid the
notorious aliasing. To expedite the convolution, we apply the FRTC
algorithm as described in the following paragraphs.

To perform the real-time convolution, we must use the entire
history of the convoluted signal. The key to speeding up this process
is to take advantage of the previously-solved unknowns of v2(t). Since
these unknowns have already been solved, the convolution for this part
can be performed by FFT back and forth instead of by the direct
convolution. By applying this idea recursively, the cost for the real-
time convolution is reduced to the computational cost O(N log2 N),
which is a big improvement over the O(N2) cost.
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The procedure and cost of the FRTC algorithm are illustrated in
Fig. 2 as a flow chart for solving (2). Here, the convolution in (2) can
be written as

x(t) ∗ v2(t) =
i∑

j=0

xi−jvj
2, t = iΔt, t′ = jΔt (8)

where Δt is the time step. First, we solve a few unknowns (power
of 2 to be exact) of (2) by the direct convolution in Step I. Next, we
recycle the solved unknowns in Step I and perform the convolution by
FFT back and forth in Step II. As mentioned earlier, the convolution
relies on both the present time and the previous history. Thus, Step II
accounts for the contribution from the history for later time steps, and
this part can be accelerated by FFT. Then, the convolution continues
as Step III by utilizing the results of Step II. Steps IV, V, VI and VII
are performed likewise. The divide-and-conquer procedure continues
as the blank “squares” and “triangles” in Fig. 2. In the “squares”,
we take the advantage of FFT, which is the key to accelerating the
convolution. Note that it will be one big triangle in Fig. 2 for the
direct convolution not applying the FRTC algorithm. It means that
the direct convolution does not take advantage of any solved unknowns
of v2(t) and it results in an inefficient O(N2) algorithm.

The cost of the direct convolution is shown as a “triangle” in Fig. 2
(Steps I, III, V and VII). The cost of the convolution by FFT back and
forth is shown as a “square” in Fig. 2 (Steps II, IV, and VI). The cost
of a “triangle” is O(m), m = p (p + 1)/2 and p is the number of points

t'

t

Figure 2. Flow chart of the FRTC algorithm in first few steps.
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for the direct convolution. The cost of a “square” is O(n log n) and
n varies depending on the different time steps. Apparently, the larger
the “square” is (or the longer the response is), the more time is saved
by the FRTC. When there are 2N points in total and N is large, the
cost is

O

(
N log N+2

(
N

2
log

N

2

)
+ 4
(

N

4
log

N

4

)
+ . . .

)
= O(N log2 N). (9)

To achieve the best performance, the number of time steps for
the direct convolution must be carefully determined. It is deduced
that 32 or 64 is the optimal choice [18]. It is worth mentioning that
the mismatch between Z0, f and Zr of the interconnect described by
S-parameters may greatly increase the response time [15]. Under this
circumstance, if this mismatch cannot be avoided, the FRTC can save
even more computational cost than the direct convolution.

3. RESULTS AND DISCUSSION

The long-time response of a high-speed dispersive and lossy microstrip
line with a nonlinear load is studied using the approach mentioned
earlier. The geometry of a typical microstrip line is shown in Fig. 3.
W , H, and T denote the strip width, substrate thickness, and strip
thickness, respectively. In addition, εr, tan δ, σc, and μc indicate
the dielectric constant of the substrate, the loss tangent of the
substrate, the conductivity of the conductor, and the permeability
of the conductor, respectively. For this line, the S-parameters can
be obtained by using closed-form formulas. Applying such formulas
can save much time in performing simulations and also can clearly
distinguish the physical mechanisms between dispersion and losses.
An improved set of accurate wideband closed-form formulas is listed

W
T

H

σc μc

ε r

tan δ

Figure 3. Dimensions and parameters of a microstrip line.
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in the appendix. These closed-form formulas, found in the literature,
have been modified here to obtain better accuracy for a wider frequency
band, which has been validated. As shown in Fig. 4, the S-parameters
of a dispersive and lossy microstrip line by using these formulas are in
good agreement with those computed by IE3D, a method of moments
(MoM) full-wave field solver. The microstrip line with its specified
dimensions and parameters in Fig. 4 is the basis for the following
analysis and discussion.

Figure 4. Accuracy test for the closed-form formulas. W = 0.2 mm,
H = 0.2 mm, T = 0.01 mm, � = 0.1 m, εr = 4.5, tan δ = 0.025,
σc = 5.8 × 107 S/m, μc = 4π × 10−7 H/m, and Rr = 50Ω.

Two loads at Port 2 are considered. The first load is a resistance
RL in series with a nonlinear device. The nonlinear equation of this
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Figure 5. Trapezoidal-pulse train.

device is written as

i(t) = IS

[
exp

(
v(t)
VT

)
− 1
]

(10)

where i(t) is the current (in amperes) passing through the device, v(t)
is the voltage (in volts) at the device, and VT = 0.025 volts. In this
paper, the saturation current, IS , is assumed to be 10−15A except in
Fig. 10, and the resistance, RL, is assumed to be 10Ω except in Fig. 9.
The second load is the static impedance, Z0, 0, of the microstrip line.
This load is quasi-matched to the considered line but cannot be exactly
matched because of the dispersive and lossy nature of the line.

The voltage source at Port 1 generates a trapezoidal-pulse train.
The associated parameters of each trapezoidal pulse are defined in
Fig. 5. In the following analysis and discussion, the pulse number
of the train is assumed to be 5. In addition, the pulse train is
launched at t = 0 and its duty cycle is 50%. For all the following
analyses, the internal impedance Zg of the source is assumed to be
30 Ω and the time response is observed at Port 2. Numerical results
for showing this response are computed by the FRTC algorithm. The
computation time by this algorithm is much shorter than that by the
direction convolution algorithm. The computation time means the
duration of all the S-parameter computations, all the S-parameter
transformations from the frequency domain into the time domain, the
nonlinear iterations and the realtime convolution. For the computation
of the nonlinear-load case in Fig. 6(a) having 131072 sampling points,
the computation time by the direct convolution algorithm is 4243
seconds when using a 1.73-GHz Pentium IV processor to compute a
1000-ns response. In contrast to such a long time, the computation
time by the FRTC algorithm is only 110 seconds, which is a thirty-
nine times improvement. In addition, it is worth of mentioning that
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(b)

(c)

(a)

Figure 6. Analysis with period τ as a parameter. Ap = 1 V,
τr = τf = 35 ps. (a) τ = 0.75 ns, τH = τL = 0.34 ns; (b) τ = 1.5 ns,
τH = τL = 0.715 ns; (c) τ = 2.25 ns, τH = τL = 1.09 ns.

the computation time for the S-parameters obtained by the closed-
formed formulas is less than one second.

Figure 6 shows the time response with the period τ of the pulse
train as a parameter. An accuracy test is given for a matched lossless
and non-dispersive microstrip line having dimensions and a dielectric
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(a)

(b)

(c)

Figure 7. Analysis with equal rise time τr and fall time τf as
a parameter. Ap = 1V, τ = 1 ns. (a) τH = τL = 0.465 ns,
τr = τf = 35 ps; (b) τH = τL = 0.395 ns, τr = τf = 105 ps; (c)
τH = τL = 0.29 ns, τr = τf = 210 ps.

constant the same as the line in Fig. 4. This computed result, shown as
the dashed line in Fig. 6(a), is exactly equal to the analytical solution
of this line. Another accuracy test is given for a dispersive and lossy
microstrip line terminated with a nonlinear load in Fig. 6(b). The
computed results are in good agreement with the results computed by
the traditional direct convolution, shown as discrete dots. In Fig. 6 and
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all the following figures, the thin solid line denotes the quasi-matched
load case while the thick solid line indicates the nonlinear load case.
It is obvious that the undesired distortion is much more serious in the
nonlinear load case. However, both the high- and low-level hold times
are shortened even in the quasi-matched load case. Physically, the
frequencies in the spectrum of the pulse train propagate at different
velocities and the higher frequencies suffer more loss in the dispersive
and lossy microstrip line. As a result, every pulse is rounded and
broadened. The distortion caused by ISI can be appreciable when
the microstrip line is terminated with a nonlinear load, especially as
the period is not large enough. For example, the voltage levels may
overshoot or undershoot. In addition, the rise and fall times may be
jittered manifestly. A practical rule suggests that the influence of ISI
is reduced when the period is larger than two times the propagation
delay of the line. However, following such a rule may be very risky. As
shown in Fig. 6(c), where the period is much larger than two times the
propagation delay (about 0.6 ns), the ISI is still large. Consequently,
the analysis of modern high-speed interconnects should not be based
on a rule, but requires a complete simulation instead.

The influence of the variation in rise and fall times is shown in
Fig. 7. The period of the pulse train is fixed here. It is obvious
that this influence is much less than that caused by the variation in
period, even though speeding up the rise and fall times may worsen
the impedance matching of the line. Fig. 8 shows the time response
with the pulse amplitude Ap as a parameter. The magnitude of the
observed pulses in the quasi-matched load case varies linearly with
respect to the variation in the amplitude. However, the pulses in
the nonlinear load case may be highly distorted owing to the huge
variation in the nonlinear characteristic of the load. As this figure
shows, the SI performance could be destroyed when assigning improper
pulse amplitudes.

The series resistance RL of the nonlinear load may provide a
tuning parameter for reducing the distortion, as shown in Fig. 9. This
resistance may result from chip contacts, bonding wires, package pins,
PCB interconnects, and/or resistors. If this resistance is neglected
during simulation, the SI performance could be totally different in a
real situation. In addition, the SI performance can be improved, from
a positive viewpoint, by properly controlling this resistance.

Using similar nonlinear devices having different saturation
currents may cause totally different distortion. Fig. 10(a) shows
that the distortion in the nonlinear-load case mainly results in
the overshooting defect, while Fig. 10(c) shows that the distortion
primarily causes the undershooting defect. In contrast to these two
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(a)

(b)

(c)

Figure 8. Analysis with amplitude Ap as a parameter. τ = 0.8 ns,
τr = τf = 70 ps, τH = τL = 0.33 ns. (a) Ap = 1 V; (b) Ap = 2V; (c)
Ap = 3 V.

cases, Fig. 10(b) shows that the SI performance could be good. Again,
these results demonstrate that the SI performance in the nonlinear
load case cannot be predicted by a simple means.

To summarize these analyses, the period and amplitude of a pulse
train are the dominant parameters influencing the SI performance
when the microstrip line is terminated with a nonlinear load. From a
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(a)

(b)

(c)

Figure 9. Analysis with resistance RL in the nonlinear load as a
parameter. Ap = 1V, τ = 0.8 ns, τr = τf = 70 ps, τH = τL = 0.33 ns.
(a) RL = 1Ω; (b) RL = 10Ω; (c) RL = 20Ω.

practical design aspect, the distortion caused by improperly choosing
these parameters should be carefully analyzed and avoided, based on
an overall simulation. In addition, the series resistance of the nonlinear
load is a convenient tuning parameter. Proper tuning of this resistance
may be an easy and flexible way to reduce the distortion, especially
after the final fabrication.
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(a)

(b)

(c)

Figure 10. Analysis with saturation current IS of the nonlinear
load as a parameter. Ap = 1 V, τ = 0.8 ns, τr = τf = 70 ps,
τH = τL = 0.33 ns. (a) IS = 10−15 A; (b) IS = 10−12 A; (c)
IS = 10−9 A.

4. CONCLUSION

An efficient approach, accelerated by the closed-form formulas and
the FRTC algorithm, has been proposed to compute the long-time
response of high-speed dispersive and lossy interconnects terminated
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with nonlinear loads. The implemented computer code is much more
efficient than traditional methods. Based on this approach, the SI
performance of a dispersive and lossy microstrip line terminated with
a nonlinear load is studied and discussed in detail. This response
is complicated and should not be underestimated even for a single
microstrip line. Because this response depends not only on the source
and load features but also on the nature of the line, a thorough
simulation should be performed to analyze such a phenomenon. The
proposed approach can be further extended to tackle any kinds
of multiconductor interconnects terminated with arbitrary nonlinear
loads.

APPENDIX A.

A set of accurate wideband closed-form formulas for expressing the
S-parameters of a microstrip line has been carefully selected from the
literature and is listed here. In addition, we have slightly modified these
formulas to achieve better accuracy and to make them more suitable for
the SI analysis. The geometry of the microstrip line is shown in Fig. 3.
W , H, and T denote its strip width (in millimeters), its substrate
thickness (in millimeters), and its strip thickness (in millimeters),
respectively. In addition, εr, tan δ, σc, and μc indicate the dielectric
constant of the substrate, the loss tangent of the substrate, the
conductivity of the conductor, and the permeability of the conductor,
respectively.

The closed-form formula for the dispersive effective dielectric
constant at frequency f (in Hz) is expressed as [21]

εeff , f = εr − εr − εeff , 0

1 + (f/fx)
m (A1)

where

fx =
fy

0.75 +
(
0.75 − 0.332ε−1.73

r

)
W/H

, (A2)

fy =
4.7746 × 1010

H
√

εr − εeff , 0
tan−1

(
εr

√
εeff , 0 − 1
εr − εeff , 0

)
, (A3)

m = m0mc, (A4)

m0 = 1 +
(
1 +

√
W/H

)−1
+ 0.32

(
1 +

√
W/H

)−3
, (A5)

mc =

{
1+ 1.4

1+W/H

[
0.15 − 0.235 exp

(
−0.45f

fx

)]
for W

H ≤0.7

1 for W
H >0.7

. (A6)
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In [22], an accuracy better than 0.6% is claimed for all frequencies over
the validity ranges: 1 ≤ εr ≤ 128, 0.1 ≤ W/H ≤ 10, and any value of
H. These ranges are sufficient for practical uses. The validity of the
formula has also been confirmed by experiment [23]. After the effective
dielectric constant is obtained, the dispersive characteristic impedance
at frequency f can be written as [24]

Z0, f = Z0, 0
εeff , f − 1
εeff , 0 − 1

√
εeff , 0

εeff , f
(Ω). (A7)

In (A1) and (A7), εeff , 0 and Z0, 0 are the static effective dielectric
constant and the static characteristic impedance, respectively. Their
accurate closed-form formulas are well developed and reported
in [25, 26].

Attenuation in a microstrip line is caused by its dielectric loss
and conductor loss, and these losses can be described by the dielectric
attenuation coefficient and the conductor attenuation coefficient,
respectively. The dielectric attenuation constant is frequency-
dependent and its closed-form formula can be found in [26, 27] as

αd = 1.0472 × 10−8f
εr

εr − 1
εeff , f − 1√

εeff , f
tan δ (Np/m). (A8)

Note that εeff , 0 in the same equation as (A8) in [26, 27] has been
replaced by εeff , f here for considering the dependence on frequency.
The closed-form formula for the conductor attenuation coefficient can
be derived by the conformal mapping technique and appears to agree
well with experimental results [26]. This formula can be written as

αc =

⎧⎪⎪⎨
⎪⎪⎩

RDC

2Z0
for f = 0

RAC, strip + RAC, ground

2Z0, f
for f > 0

(Np/m). (A9)

In (A9),

RDC =
106

σcWT
(Ω), (A10)

RAC, ground =
103

H [W/H + 5.8 + 0.03 (H/W )]

√
πfμc

σc
(Ω), (A11)

RAC, strip =
103Lr

W

[
1
π

+
1
π2

ln
(

4πW

T

)]√
πfμc

σc
(Ω) (A12)
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where

Lr =
{

1 for W
H ≤ 0.5

0.94 + 0.132W
H − 0.0062

(
W
H

)2 for W
H > 0.5

. (A13)

Note that Z0, 0 in the same equation as (A9) in [26] has been replaced
by Z0, f here. In addition, the dc resistance RDC should be considered
at f = 0. Consequently, the propagation constant obtained from (A1),
(A8), and (A9) can be written as

γ = αc + αd + j2.0944 × 10−8f
√

εeff , f . (A14)

For a dispersive and lossy microstrip line, the reflection and
transmission properties can be solved by the transmission-line
equations and expressed in terms of the following S-parameters:

S11 = S22 =
Z2

0, f − Z2
r

Z2
0, f + Z2

r + 2Z0, fZr coth(γ�)
, (A15)

S21 = S12 =
2Z0, fZrcsch(γ�)

Z2
0, f + Z2

r + 2Z0, fZr coth(γ�)
(A16)

where � is the length, and Zr is the reference impedance at ports.
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