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Abstract—This study introduces the notion of 2-D and 3-D Phase
Projection in our search for a simple and elegant solution to
further reduce noise during InSAR post-processing steps with multiple
baselines. Projection is a powerful tool to reduce noise in a system of
more than two satellites. It does so by noting that the geometry of
the satellite configuration restricts the range of values over which the
wrapped phases can assume. Projection in general reduces noise in
the system by utilizing the information provided by the configuration
of the satellites to reduce the set of allowed phase points, thereby
improving the robustness of the system in the presence of noise. Our
results show that, for most cases, whether with the extremely small
baseline distance or non-integer baseline ratios, using 3-D Projection
gives better height inversion results.

1. INTRODUCTION

A big problem in interferometry has been to figure out how to reduce
noise in a system of satellites [1–4]. Correct height retrieval is an
integral part of many applications using InSAR, such as remote sensing
[5, 6], and data correction using multiple satellites may also benefit
other SAR applications [7–9]. Simple ways like using a low-pass
(averaging) filter have been proposed, and they work well sometimes.
However, one can do better if there are more than 2 satellites in place.
Let us assume that we have 3 satellites, although the argument would
hold with more satellites as well. The presence of 3 satellites gives us
a whole new dimension to work with: When there are only 2 satellites,
there just isn’t an extra degree of freedom that can help us narrow down
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the effects of noise. However, when we introduce an extra satellite,
the very position of this third satellite should give us information on
whether the unwrapped phase data is coherent. This promises to be a
powerful tool to mitigate noise in our system: Since noise is assumed to
be randomly distributed but data are not, the partial effects of noise
might be picked up and corrected more easily if we use 3 satellites
instead of 2. A big portion of this paper will be devoted to investigating
this work.

2. 2-D PROJECTION METHOD

In this section, we investigate a noise-reduction technique when 3
satellites are present in a system. This technique, called Phase
Projection or simply Projection, is a powerful tool that can potentially
lead to increased robustness of the InSAR height retrieval process
[10–12]. In essence, projection relies on the very configuration of
the satellites to deduce the behavior of the phases, and thus, gives
us the ability to classify any other behavior of the phases as the
actions of noise. Because projection relies heavily on the physical
configuration of satellites, the method inevitably will be jeopardized
when the configuration itself is noisy or not ideal. Nonetheless, we
press ahead to investigate how projection can help reduce noise in a
multibaseline system. Figure 1 shows the 3 satellite configuration.

The values of the parameters used are shown below.

Table 1. Values of baseline lengths used for 3 baselines.

Parameter Value Used
B12 (m) 150
B23 (m) 50
B13 (m) 200
α (degrees) 35

Δx (m) 5
X (m) 3 · 105

H (m) 5 · 105

Δy (m) 5
Y (m) 3 · 105

λ (m) 0.03 (X-band)

Note that B13 = B23 + B12, as required by the geometry. To
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Figure 1. InSAR configuration for 3 satellites, collinear arrangement.

study the configuration in details, consider the following close-up of
the 3 antennas:

Since the slant ranges (ρ1, ρ2, and ρ3) are on the order of 105 m
while the baselines (B12, B23, and B13) are on the order of 102 m, the
slant range vectors to be essentially parallel to one another. This in
essence means there are 3 similar triangles that make up the geometry
of the satellites, each identified by a baseline. The actual phase values
and slant range differences are related by the following simple equation:

φ12, 13, 23 =
4π
λ

Δρ12, 13, 23 (1)

Since phase values are always measured as wrapped values,
Equation (1) decomposes into the following:

ψ12, 13, 23 + k1, 2, 3 · 2π =
4π
λ

Δρ12, 13, 23 (2)

In addition, by the rule of similar triangles, the slant range differences
and baselines have to be related by simple ratios:

B12

Δρ12
=

B13

Δρ13
=

B23

Δρ23
(3)
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Thus, we have the following relationships between the wrapped phase
values, which we measure, and the baseline lengths, which we know:

ψ13 + k2 · 2π
ψ23 + k3 · 2π =

B13

B23
≡ URM1 (4a)

ψ12 + k1 · 2π
ψ23 + k3 · 2π =

B12

B23
≡ URM2 (4b)

From Equation (4a), it is clear that the wrapped phase ψ13 is a linear
function of ψ23, with the slope being URM1, where URM stands for
Unambiguous Range Magnification [13]. Since both ψ13 and ψ23 are
wrapped values, they are bound within a 2-D space of length 2π. Xu
et al. were the first to process these wrapped phases in this manner to
achieve an URM bigger than 2π [13], and it is known that as long as
URM is a rational number, the number of line segments will be finite,
i.e., they will reconnect in a wrapped sense when they hit the edges
of the domain. Theoretically, the URM technique allows us to expand
the unambiguous range to any arbitrary size — just by increasing the
ratio of B13 to B23. However, when there is noise in the system, points
will get shifted away from the line segments (Figure 3). Points that
do not lie on a line segment will be inconsistent with Equations (4a)
and (4b), which are derived purely from the geometry of the satellite
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Figure 2. Close-up of the 3 InSAR antennas of Figure 1.
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configuration. This is thus a clear indication that noise has disrupted
the real values of the wrapped phases. Xu et al. [14] suggested that the
best way to resolve this problem is to use the “Projection Method” —
whenever a point lies away from a line segment, we place it back onto
the nearest line segment with the shortest Euclidean distance. This
ensures that the phase values maintain consistency of the geometry
of the 3-satellite configuration, and also allows us to place the phase
points closer (or even onto) the actual wrapped points. Figure 3 shows
this process in action.

23 

13 

line segment

noise moves point 
here, (x1, y1)

point is 
originally here

Projection method moves point 
back onto the line, (xa , ya )

Known point on the line 
segment, (x0 , y0)

ψ

ψ

Figure 3. Illustration of the projection method.

Now, we try to frame the 2-D Projection in a solid, mathematical
framework. Referring to Figure 3, we name a few key points on the
diagram by the following names:

1. A known point on the line segment is defined as (x0, y0)
2. An actual ψ23-ψ13 phase couplet defined by the interferogram is

defined as (x1, y1)
3. The point that we want to find, i.e., the point on the line segment

that is of the shortest Euclidean distance to (x1, y1) is defined as
(xa, ya).

With that, we get the following closed form expressions:

xa =
x1 − URM1 · y0 + URM1 · y1 + URM2

1 · x0

1 + URM2
1

(5)

ya = URM1 · (xa − x0) + y0 (6)

One important thing to note is that since there are going to be more
than 1 line segment in the plane, there will also be more than one
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possible (xa, ya) points that (x1, y1) can map to. Since we are only
interested in mapping to the line segment that is nearest to (x1, y1), we
only need to calculate the distances between (x1, y1) and all possible
(xa, ya) pairs:

distance =
√

(xa − x1)
2 + (ya − y1)

2 (7)

and pick the appropriate pair. As an example, Figure 4 illustrates
phases with noise of 30 degrees, while Figure 5 shows the results after
implementing projection.

We can qualitatively see the inverse relationship between phase
noise and effectiveness of Unambiguous Range Magnification. With a
larger and larger URM value, the ψ13-ψ23 plane gets more and more
cluttered with line segments, which would mean a larger and larger
unambiguous interval for the phases. In the noiseless case, this would
be ideal. However, in the presence of noise, points are shifted away
from the line segments. If URM is large, the high density of line
segments implies that the distance between 2 adjacent line segments
is small. If the noise is high or the URM is high, we could very well
be moving points onto the wrong line segments since the segments are
so close to one another. The assumption that the closest line segment
is where the noisy point originally came from will therefore be wrong,

Figure 4. ψ13 and ψ23 after noise of 30 degrees is added.
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Figure 5. Figure 4 after points are projected onto line segments.

and we would have introduced even more noise into the system than if
we had just left the points where they were. Therefore, we cannot
make the URM arbitrarily large without eroding the noise budget
— a clear engineering trade-off. Up to this point, we have assumed
that our baseline ratios (which are equivalent to the URM ratios by
Equations (4a) and (4b)) are integers. However, as mentioned before
and also in [13], there will be a finite number of line segments as long
as the URM ratio is in the set of rational numbers (of which the set
of integers is a subset). We now investigate the scenarios under which
URM is a non-integer rational number. Since every rational number
can be expressed as a ratio of 2 integers, we let URM = p

q , where p and
q are both elements of the set of non-zero integers. Then, Equation (4a)
becomes:

ψ13 + k2 · 2π
ψ23 + k3 · 2π =

p

q
(8)

The k’s merely denote that the phases are wrapped. After we link the
line segments together and plot ψ13 against ψ23, the resulting line will
have a slope of p

q . This means that after linking, the unambiguous
range for the horizontal axis is expanded q · 2π times, while that for
the vertical axis is expanded p · 2π times. This has some obvious
consequences:
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1. If we want to expand the range of ψ13 by 4 times, we can use
a baseline ratio of 4

3 instead of 4
1 , which allows us to place the

satellites much closer to each other and hence ensuring good
coherence between the signals.

2. The drawback of using non-integer values of URM to achieve point
1 is that you now have a higher density of lines wrapped in the
2π by 2π box in the first place. From the previous section, we
discussed that a higher density of lines leads to a degradation of
noise budget.

In addition, if p
q is a rational number close to an integer (e.g., 2.8),

several line segments would appear very close to one another. Figure 6
shows the line segments for B13 = 125 m, B23 = 50 m, which means
a p

q of 5
2 . Note the increased density of lines, as well as the increased

unambiguous range for both the phase values of the horizontal and
vertical axes. Figure 7 shows a p

q of 2.8.

Figure 6. Line segments in the ψ13-ψ23 plane with a URM =2.5.

We can introduce the notion of “noise distance” to describe
the phenomenon of decreasing noise budget in exchange for a larger
unambiguous range. The noise distance, dn, is defined as 1/2 of the
shortest straight line distance (in radians) between 2 adjacent line
segments in the 2π by 2π box, as shown in Figure 8. Qualitatively,
this tells you how much the points can deviate from the line segments
before they become too close to the adjacent line segment, and thus
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Figure 7. Line segments in the ψ13-ψ23 plane with a URM =2.8.

dx
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Figure 8. Illustration of the “noise distance” dn.

when adjusted, will get mapped onto a wrong line segment and thus a
wrong ψ13-ψ23 value pair.

The noise distance dn can be shown as the following:

dn =
1
q

π

URM
sin

(
tan−1 (URM)

)
(9)

The implication of Equation (9) is clear. A small dn (something we do
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not want) will appear if q is large, and that easily happens if our URM
ratio is some rational number which has a large integer denominator
when it is expressed as a ratio of integers. Noise budget is really
high for integer values and rational numbers that can be expressed
as ratios of very small integers (e.g., 1, 2, 3, 1.5, 2.5. 1.2, etc.), but
it degrades significantly when the URM ratios become ratios of huge
integer numbers.

3. 3-D PROJECTION METHOD

Xu et al. only suggested using a 2-D (i.e., ψ13 and ψ23, ψ12 and ψ23)
plane to place points back onto the line segments. However, it is
intuitive to see that we should not be projecting points in the ψ13-
ψ23 plane independently from those in the ψ12-ψ23; after all, they
share the ψ23 axis; and you can easily get any phase difference value,
e.g., ψ23 if you know the other 2 phase difference values, ψ13 and ψ12.
Projecting the points in the 2 planes independently will hence cause
inconsistent phases that do not obey the geometry of the satellite
equation. Although we are not using any value of ψ23 to construct
our final heights, it seems that resolving this inconsistency may help
to achieve more accurate results, since that further adheres to the
geometry of the satellite configuration. As such, we propose to apply
the projection method in the 3-D space of ψ13-ψ12-ψ23.

We can make the following statements regarding 2-D and 3-D
Projection:

1. 2-D Projection moves the noisy points back onto the nearest line
segment in the 2-D plane.

2. When viewed from another angle, the noisy point is really not on
the line segment at all; it only looks as if it is on the segment if
viewed down the correct plane.

3. 3-D Projection truly moves the noisy point onto the line segment
(the point is on the line no matter from which angle you are looking
at).

The line segments guarantee consistency as is defined by the
satellite configuration (Equation (2)), and so only 3-D Projection
satisfies the consistency requirement.

The line segments are shown in Figure 9, while Figure 10 shows
the noisy points scattered around the line segments. Figure 11 shows
the noisy points after 3-D Projection is performed.

Once again, just like 2-D Projection, we would want to frame 3-D
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Figure 9. Line segments in the ψ13-ψ12-ψ23 space.

Figure 10. Noisy points in the ψ13-ψ12-ψ23 space (noise = 30 degrees).
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Figure 11. Figure 10 after points are projected back onto line
segments.

projection in a solid, mathematical framework.

xa= x1−URM1·y0+URM1 ·y1+URM2
1 ·x0+URM2

2 ·x0−URM2 ·z0+URM2 ·z1

1+URM2
1+URM2

2

(10)

ya = URM1 · (xa − x0) + y0 (11)
za = URM2 · (xa − x0) + z0 (12)

One important thing to note is that since there are going to be
more than 1 line segments in the plane, there will also be more
than one possible (xa, ya, za) points that (x1, y1, z1) can map to.
Since we are only interested in mapping to the line segment that is
nearest to (x1, y1, z1), we only need to calculate the distances between
(x1, y1, z1) and all possible (xa, ya, za) triplets:

distance =
√

(xa − x1)
2 + (ya − y1)

2 + (za − z1)
2 (13)

and then pick the appropriate triplet. All this is analogous to our
mathematical formulation of 2-D Projection. There is one subtle,
though nevertheless critical, point that we have not taken into
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Figure 12. Illustration of a possible scenario during projection.

consideration. Observe the following figure, which illustrates a possible
scenario when noise is added to a system.

In Figure 12, imagine a point originally on the line segment as
shown. A tiny bit of noise added to the system disrupts the point,
such that the point is moved outside of the 2π by 2π box. Because of
the wrapping process, the point is now mapped onto some place far
away from where it should be. In essence, a tiny bit of noise has been
magnified by the projection process.

This problem can actually be solved relatively easily, as long as we
know that it does exist. In the scenario offered in Figure 12, suppose
that we now introduce one more line segment outside of the 2π by 2π
box. This new line segment is exactly like that shown in Figure 12,
except that it is shifted to the left by 2π. Figure 13 illustrates this
issue.

As shown in the figure above, the replication of the original 2π by
2π box in the region outside leads to a projection that, when wrapped
back, produces results much closer to the original value. This is critical,
as it further improves the value of projection in both 2-D and 3-D
algorithms. We also have to recognize that the original 2π by 2π box
has to be replicated in all directions so as to perform the best possible
job in noise rejection. To accomplish such an end means that in 2-D
Projection, we would need an extra 8 2π by 2π boxes in addition to
the original one. In 3-D Projection, we would need an extra 26 2π
by 2π by 2π cubes in addition to the original one. These additional
boxes or cubes would have the same line segments (i.e., same slopes
and same relative positions) as those in the original one, just shifted
by the appropriate distances.
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Figure 13. Illustration of Figure 12, with an extra line segment placed
outside of original 2π by 2π box.

4. 3-D PHASE PROJECTION FOR A CARTWHEEL
CONFIGURATION OF SATELLITES

Now, we step beyond what the previous section has considered and
investigate the case where the satellites are fixed in a cartwheel [15],
and rotate about a fixed point as they fly in the azimuthal direction.
We utilize the cartwheel for the purpose of obtaining all the possible
URM ratios. By rotating them as they fly, every single URM ratio
can be obtained by virtue of the changing baseline ratios due to the
rotation of the cartwheel. Figure 14 below shows this setup.

One thing to take note of is that we have really assumed that the
cartwheel is much, much smaller in size than any other distances that

θ Azimuth
axis 

Range axis 

Satellite 3
Satellite 2

Satellite 1

B23

B12

B23

B12

Figure 14. Illustration of cartwheel configuration that allows full
range of URM values.
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we care about, e.g., the range distance and the height of the satellites
above ground. In such a scenario, the 3 satellites are essentially at the
same point in space in the azimuth-height plane, and so the cartwheel
configuration collapses to a two dimensional problem as desired. This
approximation is good so long as that assumption holds true. However,
if satellites start to get further and further away, serious problems may
arise in our assumptions. For the remainder of the paper, we will take
it that those approximations hold.

First, we need a mathematical relationship that describes the
transformation from the tilt angle θ to the URM ratios. Letting the
shortest straight-line distance between any pair of satellites be R, it is
fairly straightforward to show that the relationship is as follows:

B13 = R cos (θ) (14)

B12 = R cos
(π

3
− θ

)
(15)

URM1 =
B13

B23
=

2
1 −√

3 tan (θ)
(16)

URM2 =
B12

B23
=

1 +
√

3 tan (θ)
1 −√

3 tan (θ)
(17)

From the geometry and the equations, it is clear that we can obtain
all the URMs that we can possibly get just by sweeping θ from 0 to 30
degrees. All other tilt angles will also map to the same URM range,
so we only consider θ ranging from 0 to 30 degrees. Plotting URMs
against θ, as θ varies from 0 to 30 degrees, Figure 15 gives us the
following plot.

We note that the URM ratios approach infinity asymptotically
as we approach 30 degrees, because B23 gets increasingly small, and
reaches 0 at θ = 30 degrees. It is imperative to decide what URM ratios
to be actually used for any actual satellite geometry and configuration.
For example, if the baselines are such that the ratio is 3.12648, do
we use that actual ratio (and thus have lots of line segments), or do
we choose an alternate URM ratio to do the projection? We seek to
investigate this by performing the following experiment:

1. Change the tilt angle such that URM1 is 3.35.
2. During the projection module, map the noisy points onto the

line segments defined by URM1 and URM2, where URM1 ∈
{3.1, 3.2, 3.3, 3.4, 3.5, 3.6}, and URM2 = URM1 − 1.

3. After mapping onto the chosen URM values, find the mean RMS
error in height.

4. Repeat for all other URM values, until the set is exhausted.
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We then plot the mean RMS errors in height as a function of URM1,
and present the results in the Figure 16.

From Figure 16, we can see that we get the lowest RMS height
errors when we map onto URM values closest to 3.35 (3.3, 3.4), and
the results degrade as we map onto values further away from 3.35.
This shows that we should always try to map onto URM values that
are closest to the actual URM ratio. Intuitively, this makes sense,
since the mapping process inherently disturbs the data and so might
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introduce noise of its own as well, and mapping data points onto a
URM value that is significantly different from the actual URM based
on the satellite geometry will inevitably introduce more noise.

So, now we have the algorithm for 3-D Projection as follows:
1. From the geometry of the satellite configuration, determine the

actual URM values.
2. Determine the URM values to be used for projection. Mathemat-

ically, this is:

URMto-be-used =
�10 · URMactual�

10

It simply means rounding the actual URM value to the nearest
0.1.

3. Map the noisy points to line segments of the URMto-be-used values
in 3-D space.

4. Continue with the height retrieval process using these newly
corrected phase values.

Increasing levels of noise invariably introduces increasing errors in
the heights retrieved from the phases of the interferogram. Using
Projection method in tandem with other noise filtering techniques
such as wavelet denoising or complex averaging [16], significant
improvements can be expected. Using a satellite configuration with
a more realistic of URM1 = 3.35, we investigate the merits of 3-D
Projection by finding the RMS height errors as we change the phase
noise level. The results are shown in Figure 17.

From Figure 17, it is clear that 3-D projection does not fare worse
than not-using Projection; in fact, for higher noise levels, the noise
reduction capability of 3-D Projection is fairly significant. In the cases
of when noise level is fairly low (between 0 and 40 degrees), it is
inconclusive from the graph whether projection helps or hurts noise
filtering. It is worth noting that even at a noise level of 0 degrees,
there is still some height error. This is due to the fact that complex
averaging is used as a denoising technique when the interferograms are
retrieved. It has been shown that complex averaging does give much
better results, but also inadvertently introduces errors when there is
no noise.

We now look at the relationships among the satellite configuration,
i.e., as the cartwheel is rotated through different angles, the amount
of noise in the system, and the mean RMS errors in height. Fifty
random and different values of URM (and thus 50 different satellite
configurations) are picked from within the set in the set [0, 30) degrees
(which will provide us with any URM value in the set [2, ∞)). We vary
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noise values from 0 to 90 degrees to test for behavior of the different
methods as noise increases. The results are shown in Figure 18.

From Figure 18, the following is clear:

1. At low noise levels, 3-D Projection even in the general case of
non-integer URM ratios still does not introduce more error than
if we do no projection at all.

2. At higher noise levels, 3-D Projection fares significantly better in
terms of RMS height errors.
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3. At tilt angles close to 30 degrees, the RMS error due to 3-D
Projection seems to decrease significantly. This can be reasoned
as follows: Even though there is the rapidly shrinking B23, which
directly leads to a huge URM13-23 and URM12-23 and thus short
noise distances, this effect does not show itself because of weighted
averaging.

5. CONCLUSION

By adding a third antenna to the InSAR system, Unambiguous Range
Magnification (URM) is possible, with the URM ratio being the ratio
of baselines. Since there are 3 pairs of satellites now, there would
be 2 independent URM ratios (and hence 2 independent slopes). 2D
Projection is a technique based on the underlying geometry of the
satellites to reduce the noise in the system. It is able to reduce the
effects of noise on the unwrapped phases. In contrast, 3D Projection
takes into account of the consistency offered by all 3 satellites, and thus
achieves even better results than 2D Projection. We can obtain all
URM ratios in the set [2, ∞) by rotating the satellites in the cartwheel
configuration from 0 to 30 degrees. In addition, simply mapping all
URM ratios to the set of {2.1, 2.2, 2.3, . . . , 3.1, 3.2, . . .} gives us better
results than not doing the mapping at all. 3-D Projection fares much
better than 2-D Projection in almost all noisy cases across all tilt
angles. Specifically, at tilt angles close to 30 degrees, the improvement
is the most significant. This is because mathematically, 2-D Projection
is simply a special case of 3-D Projection. Thus, we can reap all benefits
of 2-D Projection using 3-D Projection.
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