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Abstract—In this paper, we first review the Phase Extracted (PE)
basis functions by recalling the derivation which shows that the
induced current on a PEC surface has the propagating phase factor
the same as the incident wave in a scattering problem. The wide
band characteristic of this PE basis functions has been investigated by
demonstrating that very wide band radar response from PEC objects
can be simulated accurately by using PE bases, only based on a single
coarse mesh grid. Besides, the resulted current coefficients are shown
to vary slowly and smoothly with frequency changing and can be
interpolated and extrapolated in very wide band easily. The piecewise
cubic Hermite interpolation/extrapolation method with respect to the
current coefficients is used to obtain the coefficients in the frequency
band of interest. Numerical examples demonstrate very good accuracy
and high efficiency in wide band radar response prediction in terms of
the amplitude of the scattering field as well as its phase distribution.

1. INTRODUCTION

In the field of Computational Electromagnetics (CEM), wide band
radar response from PEC targets attracts much attention from
researchers. Generally speaking, both time domain and frequency
domain methods can be used to calculate the wide band response.
As methods that can calculate wide band response directly, the time
domain methods, such as FDTD and TDIE, can rarely be used in
the applications of the large targets in real world due to the high
computational and storage complexities.
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On the other hand, frequency domain methods have to calculate
the responses frequency by frequency, and then apply fast Fourier
transform to obtain time domain result, which definitely lower the
practicability of such kind of methods.

To overcome these problems, many wide band algorithms have
been developed. These algorithms usually consist of two aspects of
problem: the direct calculations at the frequency samples in a wide
frequency range and the reconstructions at the other frequency points.
In order to develop a wide band method that can deal with electrically
large objects in real world, one has to make efforts in both aspects.

Several data reconstruction methods, such as the asymptotic
waveform evaluation (AWE)/Padé approximation [1, 2], Cauchy
method [3–5], model-based parameter estimation (MBPE) [6–8],
impedance matrix interpolation [9, 10], and model order reduction [11]
etc., have been developed to obtain the scattering results at the points
beyond the frequency samples in the bandwidth without the direct
calculation.

In the above methods, AWE/Padé approximation method [1, 2]
needs to generate a full impedance matrix and calculate its inverse
and nth order derivative, which is very time and memory consuming.
Cauchy method [3–5] uses the ratio of two rational functions to
approximate the highly oscillatory function directly, which may
compromise the accuracy especially in electrically large problems.
MBPE [6–8] and impedance matrix interpolation methods [9, 10] need
to calculate the full impedance matrix. The latter needs much more
memory to store several full impedance matrices in order to save
computational time in the interpolation procedure.

Moreover, the above methods in formulation-domain modeling
based on the fulfilled impedance matrix are not available in Multilevel
Fast Multipole Algorithm (MLFMA) [12–15]. On the other hand
the methods in solution-domain modeling suffer from the difficulty of
accuracy due to the fast oscillating of the data.

A simple interpolation/extrapolation method for wide band
prediction is presented in [16, 17]. The main idea of the method is
to “normalize” the current coefficient obtained using either MoM [18–
23] or MLFMA [12–15] by an exponential function which is assumed to
be the frequency dependence factor of the induced current. After this
normalization, the residual part of current varies slowly via frequency
so that it can be interpolated and extrapolated with ease. However, in
order to obtain the accurate result at each frequency, the obstacle
has to be meshed at the highest frequency. Thus, the number of
unknown cannot be reduced at each sample frequency, even at the
lowest frequency. Obviously, this is not so cost-effective.
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In [24], a Phase Extracted (PE) basis function has been proposed
and a matrix sparsification and an impedance prediction technique
have been introduced in MoM. The differences between PE basis
functions and the existing methods have also been discussed in that
paper. In this paper, a method for wide band scattering based on
the Phase Extracted Basis Functions is introduced. From theoretical
derivation, it can be shown that the induced current in a scattering
problem has a phase dependence the same as the incident wave.
Therefore, by introducing this phase dependence into basis function,
it can lead to a residual amplitude part which is slowly varying. At
least two benefits can be observed evidently by use of PE bases in wide
band analysis. First, the current coefficients, which only represent the
amplitude and the initial phase of the induced current, vary very slowly
and smoothly with changing frequency. Secondly, owing to the wide
band characteristic of the PE bases, the scattering from PEC targets,
including the amplitude distribution of the far field (RCS) and the
corresponded phase distribution, can be calculated with high accuracy
only based on the single mesh grid produced at lowest frequency of
interest.

This paper is organized as follows. The phase dependence of
induced current in a PEC scattering problem is derived, and Phase
Extracted basis functions are reviewed briefly in Section 2. In
Section 3, the wide band characteristic of PE bases is examined.
A simple interpolation/extrapolation method based on the current
coefficients obtained from PE bases is introduced in Section 4. Some
wide band calculation results are given in Section 5 to demonstrate
the high efficiency and good accuracy of this method. After some
discussions in Section 6, the conclusion is finally made in Section 7.

2. PHASE EXTRACTED BASIS FUNCTIONS

To get the phase dependence of the induced surface current on the PEC
surface in scattering problems, we begin with the Maxwell’s equation:

∇× E = iωμH, (1)

the surface equivalence theorem:

J = n̂ ×H, (2)

and the constitutive relation:

D = εE (3)
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The induced current has the following relationship with electric
flux from above expressions:

J =
1

iωμε
n̂×∇× D, (4)

where ε and μ are constant in homogeneous background media. Curl
D can then be expressed in the local coordinate as:

∇× D =
(
∇t + n̂

∂

∂n

)
× (Dt + n̂Dn)

= ∇t × Dt + ∇t × n̂Dn + n̂× ∂Dt

∂n
(5)

where n̂ stands for the normal direction of the PEC surface at any given
point r; Dn and Dt are normal component and tangential component
of electric flux, respectively.

Note that ∇t × Dt = 0 because the partial derivative is taken on
the object’s surface where Dt ≡ 0 due to the boundary condition at
PEC surfaces. Hence,

J =
1

iωμε

(
∇tDn − ∂Dt

∂n

)
(6)

Taking the surface divergence on both sides of (6), and considering
the boundary condition of PEC

Dn = ρs, (7)

and the continuity condition of current:

∇t · J = iωρs, (8)

we have

∇t · J = iωρs =
1

iωμε

(
∇2

t ρs −∇t · ∂Dt

∂n

)
(9)

Therefore,

∇2
t ρs + k2ρs = ∇t · ∂Dt

∂n
(10)

Equation (10) is an inhomogeneous scalar Helmholtz equation that
surface charge should satisfy. Its solution can be expressed as the
summation of the general solution of the corresponding homogeneous
equation and a particular solution of this inhomogeneous equation.
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2.1. The General Solution of the Homogeneous Equation

By solving the homogeneous equation

∇2
t ρs + k2ρs = 0, (11)

one can construct the solution with following form:

ρs = Cmeikm·r, (12)

where km is a vector which amplitude equals to k. Note that in the
local rectangular coordinate system (û, v̂, ŵ), where ŵ = û× v̂ is the
outward unit normal:

km = (km
u , km

v , km
w ) (13)

r = (u, v, w) (14)

Submitting (12) into (11):

−
[
(km

u )2 + (km
v )2

]
Cmeikm·r + k2Cmeikm·r = 0 (15)

Therefore,

(km
u )2 + (km

v )2 = k2 (16)
km

w = 0 (17)

Finally, the general solution of this homogeneous equation can be
expressed as:

ρs (r) =
M∑

m=1

Cmeikk̂m
t ·r, (18)

where k = ω
√

με is the wave number in free space, and the direction of
unit vector k̂m

t could be any tangential direction of the PEC surface.
The homogeneous solution does not correspond to the excitation

condition. Therefore, it can be considered as the eigen-mode
(resonance mode) independent of the excitation.

2.2. The Particular Solution of the Inhomogeneous Equation

According to the boundary condition on PEC surfaces,

Dt (r)|r∈PEC = Dinc
t (r)

∣∣
r∈PEC

+ Dsca
t (r)|r∈PEC ≡ 0 (19)

Note that the tangential component of incident electric flux
has the traveling wave phase dependence which can be expressed
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as Dinc
t (r)

∣∣
r∈PEC

∼ eikk̂i·r. Due to the phase matching condition
implied in (19), the tangential component of scattering electric flux
has the same phase dependence Dsca

t (r)|r∈PEC ∼ eikk̂i·r along the
PEC surface. So the tangential component of the total D flux and its
partial derivative also have such phase dependence:

Dt (r)|r∈PEC ∼ eikk̂i·r (20)

∇t · ∂Dt

∂n
∼ eikk̂i·r (21)

Hence, the right hand side (RHS) of the inhomogeneous Eq. (10)
has the phase dependence of traveling wave. It is easy to figure out that
ρs with the same phase dependence of the RHS could be a particular
solution of the inhomogeneous equation, which can be expressed as:

ρs (r) ∼ eikk̂i·r (22)

2.3. The Phase Dependence of the Induced Sources

The general solution of (10) can be written as:

ρs (r) =
M∑

m=1

Cmeikk̂m
t ·r + D (r) eikk̂i·r (23)

Due to relationship (8), the induced surface current J has the same
phase dependence.

2.4. Discussions

1 The homogeneous solutions are the eigen solutions, which are
decided by the geometry shape of the object, and are independent
of excitation condition.

2 This inhomogeneous solution is caused by excitation, including
the incident angle and operating frequency.

3 If the shape of object was smooth and convex, the first term of (23)
could be neglected and the second term is dominant. However, if
there were many edges, corners, or even cavities involved in the
object, the first term of (23) turns out to be important and could
not be neglected.

Based on the above understanding, for smooth and convex
problems, the particular solution of the inhomogeneous equation is
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dominant. So we can just consider the propagating wave phase factor
in the induced current:

J ∼ eikk̂i·r (24)
Therefore, the basis functions with the same traveling wave phase
factor as the incident wave are used in this paper to solve scattering
from electrically large PEC object involving smooth and convex
surface. Termed as Phase Extracted (PE) basis functions, this kind of
basis functions can be expressed as the multiplication of an amplitude
factor and a phase factor. Considering its accuracy in representing
arbitrary curvilinear surfaces, the curvilinear triangular patches are
used to discretize the surface of scatterer, and CRWG (curvilinear
RWG) functions [25–28] is chosen as the amplitude term of the PE
basis functions in this paper because of its excellent performance, while
the phase factor is an exponential function as shown in (24). Thus

J(r) = j(r)eikk̂i·r (25)

where j(r) is the unknown amplitude factor, which can be
approximated as the superposition of CRWG basis functions:

j(r) =
N∑

n=1

anjn(r) (26)

where jn(r) is CRWG basis functions; eikk̂i·r is the analytic phase
factor.

Multiplying the phase term, the PE basis functions can be finally
constructed and the induced current can be expanded with the PE
basis functions jn(r)eikk̂i·r:

J(r) =
N∑

n=1

anjn(r)eikk̂i·r (27)

After the phase extraction, the residual part of the basis needs to
express the amplitude distribution only. Compared to the oscillatory
phase term, the amplitude term of induced current varies much slower.
As a result, they can be defined on much larger mesh patches compared
with the traditional basis functions which do not involve any phase
information.

3. WIDE BAND CHARACTERISTIC OF PE BASES

Taken account of the phase variation caused by frequency (by means
of wave number k), the PE bases have an inborn capacity of describing
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the wide band response of a target. For convex objects with smooth
surfaces, the phase variation is the main factor that causes the variation
of the induced current distribution through different frequencies. Now,
such variety has already been expressed by basis functions themselves,
leaving amplitude distribution, which is only a slowly varying term, to
be described by CRWG functions and their coefficients. As a result,
one needs only very small number of unknowns to expand the slowly
varying amplitude term of induced current. Namely, one can use only
one set of very coarse mesh grid to discretize the objects in the wide
frequency range of interest.

In this section, it is shown by two examples that the PE bases
can have very accurate computation results obtaining frequency by
frequency in a very wide band, which could not be achieved using
conventional basis functions without phase information.

Through out the paper, two numerical models are used for
examples. They are a PEC sphere with radius of 1.0 m (shown in
Fig. 1), and a missile-shaped object with total length of 2.0 m (shown
in Fig. 2). The mesh grids are also shown in these two figures, and the
mesh densities are 0.125 m and 0.03 m, which are the λ/8 mesh grids
at 300 MHz and 1.25 GHz of the two models, respectively, leading to
the numbers of unknowns of 3,528 and 6,387.

MLFMA is employed in order to accelerate the computation and
save memory.

In the first example, far field scatterings of model 1 are calculated.
The electromagnetic field incidents from the angle θ = 0◦, ϕ = 0◦, and
is HH polarized. Responses under three frequency points, 700 MHz,
3700 MHz, and 6700 MHz, are calculated by employing PE bases and
Combined Field Integral Equation (CFIE, combination factor is 0.5).

Figure 1. Model 1. PEC sphere
with radius of 1.0 m.

Figure 2. Model 2. PEC missile-
shaped object with total length of
2.0 m.
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(c) 6700 MHz, RMS error of RCS data: 0.8798 dB.

(a) 700 MHz, RMS error of RCS data: 0.2522 dB. (b) 3700 MHz, RMS error of RCS data: 0.9967 dB.
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Figure 3. Far field response of Model 1. PE basis functions use the
same coarse mesh grid with unknowns of 3,528.

Using the same mesh density (0.125 m), the electrical radii of the sphere
are 2.33λ, 12.33λ, and 22.33λ. And the corresponding electrical patch
sizes are about 0.292λ, 1.542λ, and 2.792λ, respectively. Figs. 3(a), (b),
and (c) are the far field response at the corresponding frequencies,
where the upper one is the result of bistatic RCS and the lower one
is the phase distribution of far field, both as a function of observation
angle. In these figures, the solid grey lines are results obtained from
Mie series, and the dashed red lines are calculated by MLFMA using
PE bases. It can be observed that the excellent agreement is obtained
in the wide frequency range. The RMS errors of the RCS under these
frequencies are only 0.2522 dB, 0.9967 dB, and 0.8798 dB, respectively.

For comparison, the RCS and phase distributions of model 1 under
these three frequencies are calculated with traditional CRWG basis
functions, using the same mesh grid as PE bases. Figs. 4(a), (b),
and (c) show the results. Apparently, CRWG basis functions can
obtain correct result only at 700 MHz. However, the RMS error still
exceeds 1.0 dB. The results at 3700 MHz and 6700 MHz are totally
wrong. In fact, to generate accurate results using CRWG basis
functions, one needs to discretize this model to about 400,000, and
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(a) 700 MHz, RMS error of RCS data: 1.0009 dB. (b) 3700 MHz, RMS error of RCS data: 13.4655 dB.
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(c) 6700 MHz, RMS error of RCS data: 13.0125 dB.
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Figure 4. Far field response of Model 1. CRWG basis functions use
the same coarse mesh grid with unknowns of 3,528.

1,400,000 unknowns under the 3700 MHz and 6700 MHz, respectively,
far more than 3,528 unknowns needed by PE bases.

Far field responses of model 2 are calculated where the incident
fields are set to propagate from the direction θ = 90◦, ϕ = 45◦ (the side
of the missile), HH polarized, and the normal direction of scanning
plane is set to be θ = 90◦, ϕ = −45◦. Bistatic RCS as well as phase
distributions under frequencies 1.50 GHz, 4.50 GHz, and 7.00 GHz are
demonstrated in Figs. 5(a), (b), and (c), respectively. Under these
three frequencies, the corresponding total electrical lengths of this
object are 10.0λ, 30.0λ, and 46.7λ. Employing PE bases and coarse
mesh, the electrical patch sizes under the calculation frequencies are
0.15λ, 0.45λ, and 0.70λ, respectively. The results calculated by CFIE
(combination factor: 0.5) when using PE bases are shown in dashed red
lines, while the referenced results obtained by CRWG bases under fine
mesh of 0.10λ under each frequency are illustrated in solid grey lines.
In Figs. 5(a) and (b), the solid and dashed lines meet with each other
very well, not only the bistatic RCS, but also the phase distributions,
showing that very accurate results (real part and imaginary part of
far scatter field) can be acquired with PE bases even very coarse mesh
is used. Some differences occurred at angle range from 270◦ to 300◦
in Fig. 5(c), which makes the overall RMS error slightly big. It is
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(a) 1.50 GHz, RMS error of RCS data: 0.5238 dB. (b) 4.50 GHz, RMS error of RCS data: 2.5905 dB.
Observation Angle (Deg.) Observation Angle (Deg.)

Observation Angle (Deg.)
(c) 7.00 GHz, RMS error of RCS data: 4.3246 dB.

Ph
as

e 
(D

eg
.)

B
is

ta
tic

 R
C

S
   

 (
dB

sm
)

Ph
as

e 
(D

eg
.)

B
is

ta
tic

 R
C

S 
(d

B
sm

)

Ph
as

e 
(D

eg
.)

B
is

ta
tic

 R
C

S 
(d

B
sm

)

0 30 60 90 120 150 180 210 240 270 300 330 360

0 30 60 90 120 150 180 210 240 270 300 330 360

0
90

180
270
360

-20
0

20
40

-40
-60

PE-MLFMACRWG (7.00 GHz)

0 30 60 90 120 150 180 210 240 270 300 330 360 0 30 60 90 120 150 180 210 240 270 300 330 360

0 30 60 90 120 150 180 210 240 270 300 330 360 0 30 60 90 120 150 180 210 240 270 300 330 360

0
60

120
180
240
300
360

0
60

120
180
240
300
360

-30
-20
-10

0
10
20
30

-40
-50
-60

-30
-20
-10

0
10
20

-40
-50
-60

PE-MLFMA PE-MLFMACRWG (1.50 GHz) CRWG (4.50 GHz)

Figure 5. Far field response of Model 2. CRWG basis functions use
fine mesh grid (0.10λ) under each frequency, while PE basis functions
use the same coarse mesh grid with unknowns of 6,387.

because that model 2 is not a rigorous convex smooth target. It has
wings and boundaries, which are responsible to these differences and
they are small compared with the main lobe of the RCS data. However,
in real applications, the very small RCS values are not so important.
Generally speaking, the results of model 2 also demonstrate the good
accuracy in direct calculation with PE bases under very coarse mesh.

Table 1 lists the computational data of Model 2. Using the same
number of unknowns, the PE bases are capable to save several times
of memory and CPU time, while do not compromise much accuracy.

From the above examples, it can be concluded that, the PE bases
have an excellent characteristic in wide band calculation. A very broad
band response could be predicted accurately with the very coarse mesh.

4. INTERPOLATION AND EXTRAPOLATION

As mentioned in Section 1, there are two crucial aspects in a wide
band algorithm: (a) the direct calculations at the frequency samples
in a wide frequency range, which could be accomplished fast and
accurately by solving the integral equations with PE bases, and (b) the
reconstructions of concerned quantities at the other frequency points
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Table 1. Comparison of computational data for Fig. 5.

Missile-Like (CFIE) Unknown 
Total Memory Requirement 

(Mb) 

PE bases (1.5 GHz) 6,387 22 49.1 349 

CRWG bases (1.5 GHz) 14,079 25 102.8 1, 259 

2.20 2.09 3. 61 

PE bases (4.5 GHz) 6,387 14 190.6 1,445 

CRWG bases (4.5 GHz) 141,930 25 946.6 13,393 

22.22 4.97 9.27

PE bases (7.0 GHz) 6,387 12 394.92 5, 208 

CRWG bases (7.0 GHz) 323,577 26 2,256.8 29,602 

50.66 5.71 5. 68 

Time (sec.)
Computational

Improvement Ratio

Improvement Ratio

Improvement Ratio

Iteration Step 

using methods such as interpolation or extrapolation, which is to be
discussed in this section.

The main idea is that we first solve the scattering problem at some
sample frequencies using PE bases and obtain the current coefficients,
expressed as an in (27), in these frequency samples. This could be
achieved by either Method of Moment or any kind of fast algorithm
such as MLFMA or Adaptive Integral Method (AIM). Then we use
some interpolation and/or extrapolation method to generate current
coefficients at other frequency points of interest.

Similar idea can be found in [16] and [17], in which the
conventional basis functions are employed to solve the scattering
problems at sample frequencies. Since the current coefficients are
oscillatory using conventional basis functions, they are “normalized”
by a phase factor the same as here involving the PE basis functions.
The “normalized” current coefficients are shown to vary very slowly
in the frequency range of interest, and could be easily interpolated to
other frequency points.

Differently, such phase variation has already been included in
the PE basis functions. If PE basis functions, rather than some
conventional bases, are used to solve the scattering problems, the
resulted current coefficients are already slowly varying quantities, and
do not need such “normalization” procedure anymore. As a result,
one can directly use a linear or low order polynomial interpolation to
generate current coefficients at the frequency points beyond the sample
points

In this section, it is first shown that the coefficients of PE bases
vary slowly as a function of frequency from the calculation results of
model 1 and 2. Then, a simple interpolation and extrapolation method
is used to generate current coefficients at other frequencies.
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4.1. Current Coefficients at Sample Frequencies

In the following calculations, the mesh grid and excitation settings
remain the same as Section 3. Results under sample frequencies are
calculated in the brute-force way (directly, frequency by frequency)
with PE bases, so that the current coefficient can be examined.

In model 1, responses under 11 frequency samples are calculated.
They are from 700 MHz to 6700 MHz with a frequency step of 600 MHz.
We randomly choose four basis functions (with basis numbers of 1,
500, 1764, and 2646) to examine their coefficients’ variation in the
wide frequency band. From Fig. 6, it is clear that the coefficients of
these randomly chosen basis functions almost remain unchanged in the
broad frequency range from 700 MHz to 6700 MHz, which suggests that
it is very easy to have accurate interpolation and extrapolation results
at other frequencies. Then the location of the four basis functions
has been checked and found that basis number 1764 locates at the lit
region of the sphere, and the bases number 1 and 2646 locate at the
shadow region, while the 500th basis function happens to locate at the
boundary of lit region and shadow region.

Analogy to model 1, we also examine model 2 when the frequency
varies from 1.5 GHz to 7.0 GHz, with 12 sample frequencies. Four basis
functions (with basis numbers of 1, 1597, 3194, and 4791) are also
chosen randomly. The results are shown in Fig. 7. The real parts and
imaginary parts all vary very slowly as frequency changes. Then the
locations of these basis functions are examined and found that the basis
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Figure 6. Current coefficient as a function of frequency, Model 1.
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Figure 7. Current coefficient as a function of frequency, Model 2.

functions number 1 and 4791 locate between wings, at shadow region
and lit region, respectively, while the 1597th and 3194th basis functions
locate at shadow region and lit region, respectively. The variation
situations of these bases’ coefficients agree with the physics behind
their geometry locations well, i.e., when located at the region that
has strong multiple coupling, the current coefficient will have stronger
variation.

From these discussions, it can be concluded that, after phase
extraction, the current coefficients are shown to vary slowly and
smoothly. Therefore, either some simple interpolation scheme, such
as the linear or low order polynomial interpolation method, or some
more complicated ones, Cauchy method for example, could be used
here to generate current data on a very broad frequency range based
on the current coefficients calculated under sampled frequencies.

4.2. Interpolation and Extrapolation Method

In this paper, a very simple and basic interpolation method, the
piecewise cubic Hermite interpolation and extrapolation method [29],
is employed in order to preserve the monotonicity and the shape of the
data.

Suppose the current coefficients an in (27) are continuous functions
of frequency an(f), n = 1, 2, . . . , N , where N is the number of
unknowns. Since the current coefficients are shown to vary smoothly, it
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is implied that the first order derivative (with respect to frequency f)
of the functions an(f) should also be continuous functions. Therefore,
we need to construct a cubic polynomial Hn(f) such that:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Hn(fi) = an(fi)
Hn(fi+1) = an(fi+1)
H ′

n(fi) = a′n(fi)
H ′

n(fi+1) = a′n(fi+1)

, i = 1, 2, . . . , k − 1 (28)

In (28), fi are the sample frequency points, and k is the number of
sample frequencies.

In each frequency interval [fi, fi+1]:

Hn(f)=an(fi)αi(f)+an(fi+1) αi+1(f)+a′n(fi)βi(f)+a′n(fi+1)βi+1(f)
(29)

In (29):

αi(f) =
(

1 + 2
f − fi

fi+1 − fi

)(
f − fi+1

fi − fi+1

)2

αi+1(f) =
(

1 + 2
f − fi+1

fi − fi+1

)(
f − fi

fi+1 − fi

)2

βi(f) = (f − fi)
(

f − fi+1

fi − fi+1

)2

βi+1(f) = (f − fi+1)
(

f − fi

fi+1 − fi

)2

(30)

It is easy to prove that the interpolation polynomial in (29)
satisfies the boundary condition (28) within each frequency interval
and the connection condition (31) between adjacent intervals:

{
Hn (fi − 0) = Hn (fi + 0) = an (fi)
H ′

n (fi − 0) = H ′
n (fi + 0) = a′n (fi)

, i = 1, . . . , k (31)

In the above expressions (28)–(31), an (fi) are current coefficients
at sample frequencies fi, which can be obtained from solving the
scattering problem with PE basis functions. And a′n (fi) is the first
order derivative of current coefficients at frequency fi. In practical
computation, we simply use frequency difference instead of derivative:

a′n (fi) ≈ an (fi+1) − an (fi)
fi+1 − fi

(32)
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Following (29), the current coefficients could be interpolated
or extrapolated within or without the overall sample frequency
range [fmin, fmax]. Considering their slow varying property, the
real and imaginary parts of current coefficients are interpolated and
extrapolated with such a method independently. And we can consider
Hn (fj) as a good approximation to the actual current coefficients
an (fj) at frequency fj beyond the sample frequencies. Wide band
responses can then be calculated using the newly generated coefficients
with very high efficiency.

5. WIDE BAND CALCULATION RESULTS

In this section, wide band calculation results of model 1 and 2 are
presented in order to demonstrate the good accuracy of the proposed
method.

Figure 8(a) shows the forward RCS of model 1. The interpolated
results (shown in red circles) from 700 MHz to 6700 MHz are generated
based on the sample frequencies (shown in green blocks) the same as
those in the previous section. Very good extrapolated results are also
obtained from 300 MHz to 700 MHz and from 6700 MHz to 7800 MHz
(shown in blue triangles). All results agree very well with the result
from Mie series (shown in grey solid line), which is totally covered
by data from interpolation and extrapolation. Wide band scattering
at another observation angle, 160 degree, has also been illustrated in
Fig. 8(b) and all data meet with each other well. From Fig. 8, very
accurate results can be obtained using method proposed in this paper
at a very wide frequency range with a bandwidth of 1 : 26, while only
11 frequency samples (with a bandwidth of only 1 : 9.57) and only very
coarse mesh grid are needed.
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Figure 8. Wide band response from 300 MHz to 7800 MHz, Model 1.
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        (a) Interpolated result, 
1600 MHz, RMS error: 0.4493 dB.

        (b) Interpolated result, 
4000 MHz, RMS error: 0.6652 dB.

     (c) Extrapolated result, 
7200 MHz, RMS error: 0.9614 dB.

      (d) Extrapolated result, 
7500 MHz, RMS error: 0.9879 dB.
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Figure 9. Bistatic RCS and phase distributions at interpolated and
extrapolated frequencies, Model 1.

Figures 9(a) and (b) are the interpolated bistatic RCS and phase
distribution at 1600 MHz and 4000 MHz, while (c) and (d) represent the
extrapolated results at 7200 MHz and 7500 MHz, respectively. All these
results are in good agreement with Mie series, with the RMS errors of
only 0.4493 dB, 0.6652 dB, 0.9614 dB, and 0.9879 dB, respectively. One
more observation from results of model 1 is that after interpolation and
extrapolation, the frequency band has been extended of about 25%
(from 700 MHz∼6700 MHz to 300 MHz∼7800 MHz).

The wide band responses of model 2 are given in Figs. 10
and 11. Figs. 10(a) and (b) show the forward RCS and RCS at
140 degree, respectively. The interpolated results are from 1.50 GHz to
7.00 GHz with the sample frequencies from 1.5 GHz to 7.0 GHz, with
a frequency step of 0.5 GHz (12 frequency samples in total). And the
extrapolated results are calculated from 1.00 GHz to 1.45 GHz and from
7.05 GHz to 7.25 GHz. From the Fig. 10(b), we can observe an evident
predominance of the interpolation and extrapolation method based on
current coefficients. Namely, the method based on current coefficients
has the ability to restore the oscillatory property of far field response,
which may be lost by methods directly based on far field data.
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(a) Forward RCS (b) RCS at 140 Degree
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Figure 10. Wide band response from 1.00 GHz to 7.25 GHz, Model 2.

(b) Interpolated result, 3.25 GHz, RMS error: 1.9236 dB.  

 

(c) Extrapolated result, 7.25 GHz, RMS error: 5.4575 dB.

(a) Extrapolated result, 1.00 GHz, RMS error: 3.21713 dB. 

Figure 11. Bistatic RCS and phase distributions at interpolated and
extrapolated frequencies, Model 2.

Figures 11(a), (b) and (c) are interpolated and extrapolated
bistatic RCS and phase distributions at 1.00 GHz, 3.25 GHz and
7.25 GHz, respectively. All results are compared with accurate
solutions obtained from CRWG bases with the 0.125λ mesh data at
each frequency. Obviously, they all meet each other well. In this
example, the frequency band can be extended from 1 : 4.67 to 1 : 7.25,
with a bandwidth extension of about 13.6%.
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6. DISCUSSIONS

From the investigations in the previous sections, it can be concluded
that the proposed wide band method can reduce the computational
time and memory requirement dramatically:

(1) Due to the use of PE basis functions and MLFMA, the
computational time and memory requirement in the brute-force
calculation at sample frequency points can be reduced by several
times compared with method using traditional basis functions, as
shown in Table 1.

(2) The interpolation and extrapolation are simple to implement,
and very little time is needed in this procedure which could be
neglected.

(3) The reconstruction procedure does not need to solve the integral
equation, since the current coefficients have already obtained.
Therefore, reconstruction procedure is also effective and does not
need much CPU time and memory.

Some comparisons can be made to show the advantages of
proposed method in this paper:

(1) Compared with methods involving the entire impedance matrix,
such as AWE/Padé approximation [1, 2], MBPE method [6–8],
and impedance interpolation method [9, 10], the proposed method
avoids the handling of full impedance matrix. Apparently, in a real
world application, which may involve millions of unknowns (for
instance, the case shown in Fig. 3(c) and Fig. 4(c)), it is impossible
to generate and store the entire impedance matrix. Differently,
the proposed method only needs to solve the scattering problem
at some sample frequency points, which could be achieved by any
method like MoM, MLFMA, Conjugate Gradient - Fast Fourier
Transform (CG-FFT), or AIM.

(2) Compared with Cauchy method [3–5], which can also be based on
the interpolation of current coefficients, the proposed interpolation
method is much more simple to implement. The interpolation
polynomial has explicit formula which could be handled with ease.
However, the Cauchy method generally needs to solve a total least
square (TLS) problem with Singular Value Decomposition (SVD),
which could be rather complicated. This advantage of proposed
method is achieved by the use of the PE basis functions, which
leads to a rather slowly and smoothly varying data. In fact, many
other interpolation methods such as piecewise linear interpolation,
cubic spline interpolation method [30] can also be used besides the
piecewise cubic Hermite interpolation method used in this paper.
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(3) Compared with method introduced in [16] and [17], the method
proposed in this paper needs much less unknowns in direct
calculation. The mesh grid could be generated only once at the
lowest frequency of interest. This leads to much less work in
geometrical modeling which would be rather complicated in real
world applications. Moreover, the proposed method in this paper
does not need the “normalization” process, thanks to the PE basis
functions.

At the same time, owing to the limitation of PE basis functions,
the proposed method also has some inconvenience when the object
has some strong multiple coupling structures such as edges or cavities,
because the homogenous solution (18) cannot be neglected in such case.
Apparently, it is not enough to express the actual phase variation with
only PE basis functions. To overcome this problem, some homogeneous
solutions should also be taken into account to construct a more
complete basis set. This would be the next work of our research.

7. CONCLUSION

In this paper, the wide band characteristic of PE bases has been
investigated and applied to analyze the wide band scattering from
PEC objects. By employing PE basis functions, the scattering
problem can be solved with much less memory consuming and CPU
time in the brute-force way. And the resulted current coefficients
vary very slowly with frequency changing, which allows us to use
a very simple interpolation and extrapolation method to obtain the
current coefficients at other frequency points beyond the sample points.
With the proposed method, very high precision can be observed
in the calculation of both amplitude and phase distributions of the
scattering far field in the numerical examples. As a result, wide band
radar response from electrically large PEC targets can be calculated
efficiently and accurately with the method reported in this paper.
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