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Abstract—Adaptive array processing algorithms have received much
attention in the past four decades. Modern radars have to consider
various sources of noises and interferences for accurate and real
time detection. In addition to interferences arising between the
target and receiver, such as clutter and jammers, the use of the
conventional techniques applied to the jammers cancelation in radars
systems, especially when sources to cancel are moving (i.e., a dynamic
environment as it is usually the case for air-and space-based radar),
requires an adaptive arrays of several hundreds and/or thousands of
elements. These methods are inefficient because of the large amount
of data that describes the problem, which can limit considerably
the achievement of the optimal performances due to the great
computational complexity, costs and the very long time of both
convergence and tracking. In this paper, we propose the study of a
newly optimized algorithm, based on the known Least Mean Square
(LMS) method due to its simplicity and effectiveness especially when
work is driven toward the moving target tracking. Our proposed
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algorithm contains two main issues, (i) the use of partial adaptively
scheme and (ii) the use of the block processing method. We present
here our performances in the improvement of the signal to interference
plus noise ratio (SINR) obtained due to these two aspects in cancelation
of jammers and tracking. Since all the signal transformations are
simple and straightforward, good matching between these results was
achieved, and our new process can be significantly faster than the LMS
algorithm while its effectiveness is well comparable to that when the
LMS algorithm is used directly.

1. INTRODUCTION

The use of the adaptive array processing techniques to circumvent
and/or to cancel the intentional or unintentional interference signals is
largely employed. The main advantage of using an adaptive array is
its ability to track variations in the noise environment due to factors
such as the movement of the array or jammers. In addition, depending
on the algorithm employed, an adaptive array may also be able to
compensate for the use of nonideal physical components such as radio
antennas. Habitually, the effect of using these nonideal components is
equivalent to that of having some unknown perturbations on the noise
environment. An adaptive beamformer is collection of sensor elements
whose outputs are combined by iteratively adjusted weight vector so
as to pass a desired signal with minimum distortion while rejecting
interfering signal. Since this form of array processing provides system
antijam performance, it has become an essential requirement for the
military and high resolution radars, communications and navigation
systems [1–11].

LMS Implementation Outlines

In certain applications of the adaptive beam forming, the arrays
can be composed of several hundreds, and/or thousands of elements.
An application as the cancelation of jammers in a rectangular array
is an example very running in the field of the radar. In such
applications, the algorithms have a great computation complexity to
be implemented. Using of the least mean square (LMS) algorithm [12]
to reject interferences in adaptive arrays is well known. The main
advantage of this algorithm is its simplicity. However, its major
disadvantage is that its convergence behavior is dependent on the
external noise environment and thus can be very slow in severe
jamming situations [13]. To improve the speed of the LMS algorithm
without sacrificing too much of its implementation simplicity, null



Progress In Electromagnetics Research C, Vol. 7, 2009 195

steering beamformers [14] can be employed as the underlying array
processing structure. Khanna and Madan [15] have proposed a narrow-
band linearly constrained adaptive array based on such a beamformer
in which the residue power from each stage of the beamformer is locally
minimized by controlling the weights in that stage. However, this local
minimization procedure will not result in optimal signal-to-noise ratio
(SNR) improvement, particularly if some jammers have roughly the
same output powers [16]. The use of perturbation and estimation-
based algorithms [17] on a beamformer with only phase shifters has
also been recently investigated on a power inversion array. In [18],
Capon et al. invented linearly constrained adaptive beamforming, and
Griffiths and Jim [19] advanced the generalized sidelobe canceler, which
was equivalent to a Frost’s beamformer under certain conditions. It
is well known that in the conventional time domain and adaptive
filtering problem, the convergence rate of the adaptive LMS algorithm
depends highly on the Eigen value spread of the input autocorrelation
matrix. Recently, many fast algorithms were proposed to improve the
performance when the disparity of Eigen values is large [20]. The
normalized LMS (NLMS) algorithm implemented in the transformed
domain is perhaps one of the most popular algorithms used in practice.
The main advantage of the NLMS algorithm implemented in the
transformed domain over other fast algorithms is that there exist
many fast computation algorithms for computing the corresponding
orthogonal transformations. While the discrete Fourier transform
(DFT) is theoretically attractive, its complex coefficients limit its
application. The discrete Hartley transform (DHT) and discrete cosine
transform (DCT), with real coefficients, are usually preferred [21], since
both DHT and DCT have the capability for decorrelating the input
autocorrelation matrix for most signals encountered in practice.

In general, these may allow the NLMS algorithm to achieve
desirable performance. The conventional Frost’s linear constraints
LMS (LCLMS) [22] adaptive beamforming algorithm is very sensitive
to an environment in which the power ratio between jammers
is relatively large. This is very similar to the time domain
LMS algorithm, where convergence speed decreases as the Eigen
value spread of the input autocorrelation matrix increases. To
overcome this problem, pre-processing structures based on the adaptive
computing of Eigen values and eigenvectors [23] and the Gram-Schmidt
orthogonalization [24] have also been suggested. Although the methods
just described may improve the performance under certain conditions,
the computational requirement will be increased dramatically.

In the last decade, numerous works relating to the comparative
evaluation between LMS algorithm and RLS algorithm (Recursive
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Least Square) were carried out and published [25, 26]. The drawn
general conclusion is that, LMS algorithm presents a better behavior
especially in tracking. For this reason we often adopted this algorithm
for the cancelation of jammers in a non-stationary environment (case
of mobile target and/or mobile jammers). Indeed, in a real world
jammer scenarios, the radar applications require often a real time
processing on targets (or jammers) moving at significant velocity.
One of these most promising alternatives LMS algorithms is the
partial adaptability LMS, which is proposed to reduce the cost in
computational complexity [25]. Two algorithms with partial adaptively
schemes are mostly described [27]. They are indicated by “BLMS”
(Bloc LMS algorithm) and SLMS (Sequential LMS algorithm).

In this paper, a new LMS algorithm which is a hybrid combination
of the modified BLMS and SLMS is proposed to circumvent
the problem due to the large disparity in the multiple jammers
environment, and two performances analysis are investigated. The
basic idea behind the new algorithm indicated by Sequential Block
LMS (SBLMS) is to combine the two alternatives of the LMS algorithm
to improve the total performances by reducing computation complexity
and the times of both tracking and convergence. SBLMS algorithm is
applied here to the case of an adaptive rectangular array used for
jammers cancelation with moving sources scenario. Our proposed
algorithm contains two main issues, (i) the use of partial adaptively
scheme and (ii) the use of the block processing method. We present
here our performances in the improvement of the signal to interference
plus noise ratio (SINR) obtained due to these two aspects in cancelation
of jammers and tracking.

2. BEAMFORMING IN THE CASE OF RECTANGULAR
ARRAY

Problem Formulation

The conventional linear arrays present several limitations, especially
to follow — at the same time — variations in direction of the moving
signal sources, in both the elevation and azimuth angles. However, a
planar array in the 2 dimensions (2D) is necessary to real time radar
applications, where various signals can come from the same angle. We
described here the popular rectangular array scheme.

Suppose the N1 × N2 identical elements, uniformly spaced and
positioned in the xoy axes as depicted in Figure 1.

Suppose that the array is subjected to K uncorrelated sources of
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Figure 1. Schematic illustration of a rectangular sensor array.

signals, we can express the total received vector as follows [28]:

X(t) =
K∑

i=1

si(t)Ai + N(t) (1)

where X(t) is the N1 × N2 data matrix, and N(t) is a matrix
representing the received noise vector which can be considered here
as Gaussian, spatially white, of null mean and σ2

N variance.
The directional vector of the ith signal Ai is the Kronecker

product [29] between columns and rows [28]. si(t) is the amplitude
of the ith received signal.

For the adaptive beamforming using a conventional LMS
algorithm, the adaptive weights are adjusted by the Mean Square Error
(MSE) approach, which minimises the error between the output signals
of the array, and given by

y(t) = W HX(t) (2)

where W represent the weight vector, (·)H expresses the conjugate
transpose. The weight vector W is given by:

W = [W11,W21, . . . ,WN11 ,W12, . . . ,WN1N2 ]
T (3)
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For conventional LMS algorithm, the misadjustment M can be
approached by the known formula [30]:

M ≈ μNλave (4)

where λave represents the mean of Eigen value of the input
autocorrelation matrices (μ is the algorithm step size).

We notice that the misadjustment increases linearly with the
number of sources array elements, and hence, the reduction of
the elements array dimensionality decreases M , which give arise
for algorithms with partial adaptability (i.e., the use of sub-arrays
concept).

3. CONFIGURATION OF SUBARRAYS

Optimum processing at subarray level seems to have the most
advantages for reasons of performance and practical implementation.
However, subarray configuration is not a trivial problem in array
signal processing. A proper subarray configuration is important to
improve the detectability of any given array. The question of how
adaptive interference suppression with multifunction phased array
radar with subarray beamforming should habitually be considered.
The problem of how to arrange the subarray is crucial. Among the
various possible subarray configurations, the most efficient and simple
architecture is the one which consists in grouping the elements of the
array which are directly “followed”, to form what is largely called the
“simple subarray”. Nonetheless, the inherent problem of this efficient
configuration is the fact that the “phase-centers-subarray” are spaced
with several wavelengths [31]. This situation gives place to the known
phenomenon of “Grating lobes”.

To circumvent this problem, alternative configuration which can
be more adapted to the rectangular array geometry used here is the
“row-column precision array” [31]. In this configuration, the resulting
number of weights is equal to the number of rows plus the whole
number of columns of the array. We use this configuration in our
problem formulation because it deals well to the partial adaptivity.

4. SEQUENTIAL BLOCK LEAST MEAN SQUARE
(SBLMS) ALGORITHM

Since we are using rectangular array architecture, sequential LMS
algorithm (SLMS) seems to be well adequate to reduce the number
of elements of the adaptive array [32]. The configuration in partial
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adaptivity by row/column precision array gives place to two subsets:
One for the row-elements, and another for the column-elements.

To reduce the convergence-time while keeping the possibility of
increasing μ, the best way is the use of the block LMS algorithm
(BLMS) [33].

Combination of these two algorithms gives place to a newly hybrid
algorithm calling here as “SBLMS” (this hybrid algorithm will be
analyzed in the next section).

The weight vector of the BLMS algorithm can be given by:

w(k + 1) = w(k) + 2
μB

L
XT (k)e(k) (5)

where L is the block length and μB represent the adaptation step of
BLMS algorithm, and

e(k) = d(k) − W (k)HX(k)

is the error vector, and k represents the order of the samples’ block.
For SLMS algorithm, the weight vector is given by:

w(k + 1) = w(k) + 2μXT (k)Iie(k) (6)

where Ii is the matrix-identity used to choose the ith set of the weights
from the P sets. In this case, k indicates the sample’s iteration. Finally,
the weight vector of the resulting algorithm (SBLMS) is given by:

w(k + 1) = w(k) + 2
μB

L
XT (k)Iie(k) (7)

where Ii is the matrix-identity of an appropriate dimension. It
represents the sets formed in partial adaptivity. When we adopted
the “row-column precision array” configuration, then we obtain two
subsets and the matrices-identity will be I1 and I2.

Two important conclusions can then be drawn:

(i) Godavarti shows that the SLMS algorithm converges in the mean
if the LMS algorithm converges in the mean [8], and hence, the
same conclusion can be extended to the SBLMS algorithm.

(ii) By realising the mean of gradient vectors of SBLMS algorithm, the
resulting variance will be smaller than that of the conventional
LMS algorithm, giving a rise to use a larger step of adaptation
than that used in LMS algorithm.
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5. SIMULATION RESULTS

To carry out the cancellation performances and the tracking
possibilities of our newly designed SBLMS algorithm — compared to
conventional LMS algorithm — various situations and examples were
simulated. The goal is to examine the efficiency of algorithms, the
conventional LMS and the SBLMS one, in their ability to
(1) Follow angular displacements (D.O.A) of both target and jam-

mers,
(2) To preserve the signal coming from the desired direction, and
(3) To cancel all contributions of the jammer.
For that, we simulated mobile sources, deviating in a linear way of 10◦
during the number of samples of processing.

For LMS algorithm, we took a 6 × 6 rectangular array, the input
signal to noise plus interference ratio (SINR) is −20 dB. The input
signals of the array are shown in Figures 2(a) and 2(b), respectively.

(a) (b)

(c) (d)

Figure 2. Least mean square algorithm signals. (a) The desired
signal, (b) the input signal, (c) the error signal and (d) the output
signal.
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Figure 2(c) shows the error variation between the desired signal
and the output of the adaptive array. Thus, we observe that after
about sixty samples, the error is clearly minimized. Interestingly, the
algorithm could maintain the level of error under the value of 0.05. In
Figure 2(d), we show that the LMS algorithm could easily recover the
desired signal.

The three dimensional representation of the beam pattern makes
it possible to clearly show the change in the output beam pattern after
adaptation (See Figure 3).

(a) 

(b) 

Figure 3. The array beam pattern. (a) Before and (b) after
adaptation.
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On Figure 3(b), one can note that in the direction of the target
energy is maintained largest (see arrows). The representation of the
beam pattern in the contour form makes it possible to better see the
shift of the main lobe from 0◦ to 10◦ (i.e., 0.18 in the sin(θ) · cos(φ)
axes).

We will now remake the same simulations with SBLMS algorithm,
by using 1000 samples divided into two (02) blocks. Thus, the number
of iteration is 500. The weight vector size in this case is 6 + 6.

According to Figure 4, we note that the desired signal was
succefully recovered and the error highly minimized, with a much faster

(a) (b)

Figure 4. The SBLMS algorithm signals. The output (a) and (b) the
error signal.

Figure 5. The array beam pattern after adaptation.
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convergence, i.e., in a smaller number of samples than that obtained
in the case of the conventional LMS algorithm.

The modification of the beam pattern, after the use of SBLMS
algorithm, is carried out by the 3-dimensional representation.

Figure 5 shows that, the beam pattern after adaptation presents a
higher level amplitude in the direction of the desired signal compared
to that of the array beam pattern before adaptation (Figure 3(a)),
whereas in the direction of the jammer, it’s strongly attenuated.

It is worth noting here that the speed of the jammer-displacement
and/or the target influence obviously the tracking behavior of the
algorithm. A conventional evaluation method of the robustness of
algorithms for a given array consists in calculating their output signal
to noise plus interference ratio (SINR).

For simulation, we took the same conditions as previously, applied
to 8×8 uniform rectangular arrays (URA). The input SINR is −20 dB,
in 800 iterations.

Figure 6 clearly shows that for the two algorithms (LMS and
SBLMS), the angular shift has increased, as a result of a deterioration
of the performances of the adaptive systems, and hence, a reduction
of the SINR. In fact, we do note that performances of SBLMS
algorithm are definitely better than those of conventional LMS, in
particular when the angular shift increases. Thus, for an abrupt
displacement of 15◦, the output SINR passed to −1.2 dB for the LMS
and approximately to 8 dB for the SBLMS (See Figure 6).

Figure 6. The output SINR in tracking mobile sources by SBLMS
(solid curve) and LMS (dashed curve).
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Figure 7. Power jammer influence on the output SINR on: SBLMS
(solid curve) and LMS (dash curve).

Finally, we test the effect of the power of jammers on the behaviors
in tracking and cancelation of jammers. A comparison between the two
algorithms, LMS and SBLMS is then done. As expected, it’s a clear
that a comparison between SBLMS algorithm and LMS algorithm gives
the advantage to the SBLMS, where Figure 7 shows the degradation of
the output SINR of the adaptive array when the power of the jammer
increases.

6. CONCLUSION

In this paper, we have developed an adaptive beamforming algorithm
applied to a 2-D rectangular array, the designed algorithm is based on
LMS algorithm, it is intended for the tracking of mobile sources by
preserving the desired signal and attenuating the jammers impinging
from the undesirables DOA. As these tasks require an algorithm whose
times of convergence and capacity of tracking must be done in the real
time, two efficient techniques were used. The first one based on the
partial adaptivity in which part of the weight vector is adapted for all
iteration. This reduces the computational complexity. The processing
resulting from this technique was called “sequential processing”. The
second technique was based on the blocks processing, in which one
applies the algorithm only after having collected a block of samples.
This enables us to increase the step of adaptation. Such a combination
was resulting in a newly hybrid algorithm we called SBLMS (Sequential
Block LMS algorithm). We showed by simulations the highly efficiency
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of this algorithm to achieve the jammers suppressions tasks, and
its dominant convergence rate performance compared to that of the
conventional LMS.
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