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Abstract—An analytical investigation of the lightwave propagation
through dielectric optical fibers with helical clads is presented with
the emphasis on their hybrid field patterns. The helical clad section is
effectively realized by introducing conducting windings on the core-clad
boundary. Using Maxwell’s equations, a rigorous analytical approach
is implemented to determine the higher order field patterns in such
fibers. For simplicity, two particular values of the helix pitch angle
are considered, viz. 0◦ and 90◦. The nature of fields is presented
in both the situations corresponding to different allowed values of the
propagation constants and the fiber diameters. The radial distributions
of fields corresponding to hybrid modes are presented under different
situations, which exhibit the patterns like spikes. The observed smooth
match of the fields at the core-clad interface validates of our analytical
approach. The presence of a little higher amount of field in the fiber
clad section is essentially attributed to the helical windings introduced
over the fiber core. Further, the existence of considerable amount
of evanescent waves in such fibers opens up the possibility of their
applications in optical sensing.

1. INTRODUCTION

Since the transmission properties of optical waveguides essentially
depend on the cross-sectional geometry and the nature of the material
used to fabricate the guide, considerable amount of investigations
have been dedicated towards the wave propagation through guides
of varieties of cross-sections [1–13] as well as composites [14–20].
Most of the explored optical waveguides are now widely recognized,
and implemented in various issues related to optics and photonics.
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Discussions on a wide variety of such dielectric optical lightguides have
been presented by Choudhury and Singh [21], the studies of which have
been presented using numerical and partially analytical techniques.

Helical clad optical fibers also belong to the class, the
investigations of which are still less discussed in the literature.
Preliminary analyses on helical clad fibers with circular [22, 23],
elliptical [24–28] and other types [29] of cross-sections have appeared
in the literature. The studies related to the dispersion relations of such
fibers have been presented in the analogy of traveling wave tubes [30],
the analysis of which generally includes waveguides under slow-wave
structures with conducting sheath and tape helixes. Studies of helical
clad chirofibers are also recently reported by Lim et al. [31] emphasizing
their power characteristics.

Such helical clad fibers may also be implemented in the area
of sensing technology, particularly in optical sensor operations based
on the study of evanescent wave spectroscopy [32]. In this context,
investigation of the propagation behavior of fields in a simple helical
clad fiber would be of much interest. However, the relevant analysis
becomes much formidable because of the complicated nature of the
boundary conditions to be implemented in this case. In order to go
for an accurate analytical approach, the scalar field approximation [33]
cannot be employed in such a case, and therefore, the use of Maxwell’s
equations becomes essential which ultimately makes the analyses much
rigorous.

The present paper spotlights on the hybrid mode field patterns
of helical clad dielectric fibers of circular cross-section under the
assumption that the clad section is infinitely extended, and the fiber
core has a kind of helical winding, the pitch angle of which may be
altered. A number of cases are considered in respect of the allowed
values of the propagation constants, and the fiber diameters. For
simplicity, we considered two particular values of the helix pitch angle,
namely, 0◦ and 90◦ — in the former case, the windings are transverse
to the direction of propagation, whereas the latter one corresponds to
the longitudinal windings. The effects of the pitch angles on the field
patterns are illustrated through their radial distribution plots. The
analyses are carried out emphasizing only the first order of modes,
although a few other more complicated modes may also generate in
the structure. However, the transverse modal fields were seen to
be quite feeble. It is observed that the fields generally present a
smooth match at the core-clad interface, which effectively validates the
reported results obtained corresponding to the present boundary-value
problem. Further, the pitch angle is observed to play the determining
role to govern the field amplitudes in the guide.
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Figure 1. Schematic diagram of a helical clad fiber.

2. ANALYTICAL TREATMENT

We consider the case of an optical fiber with sheath helix (Fig. 1),
which has the structure like a cylindrical surface with high conductivity
in a preferential direction, and having helical windings at a constant
angle (called as the helix pitch angle ψ) around the core-clad boundary.
The technological importance of the pitch angle lies in that the
modal behavior of such fibers can be effectively controlled by suitably
introducing this. As such, the field and power characteristics of helical
clad fibers may also be tailored by a proper selection of the pitch angle.

We assume that the core/clad sections have their constant
refractive index (RI) values as n1 and n2, respectively. The analytical
treatment of the present boundary-value problem will essentially need
the implementation of cylindrical polar coordinate system (ρ, φ, z);
z-axis being the direction of wave propagation (i.e., the optical axis).
It can be shown that the longitudinal components of the electric and
the magnetic fields in the two regions of the fiber would be given as

Ez(ρ < ρ0) = C1Jν(γ1ρ)ejνφej(ωt−βz) (1a)

Hz(ρ < ρ0) = C2Jν(γ1ρ)ejνφej(ωt−βz) (1b)

Ez(ρ > ρ0) = C3Kν(γ2ρ)ejνφej(ωt−βz) (2a)

Hz(ρ > ρ0) = C4Kν(γ2ρ)ejνφej(ωt−βz) (2b)

In Eqs. (1) and (2), C1, C2, C3 and C4 are the arbitrary constants
to be determined by the boundary conditions. J (·) and K (·) are,
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respectively, Bessel and the modified Bessel functions [34], ν is the
mode-designating parameter that can take only arbitrary integer
values, and ρ0 represents the fiber core radius. Also, β is the z-
component of the propagation vector, ω is the angular frequency of
the wave in the unbounded medium, and γ1 and γ2 are, respectively,
the core and the clad parameters, given as

γ2
1 = k2

1 − β2 = ω2με1 − β2 (3a)
γ2

2 = β2 − k2
2 = β2 − ω2με2 (3b)

In Eq. (3), ε1 and ε2 are the dielectric constants, and μ is the
relative permeability of the medium (we assume μ ∼= μ0, the relative
permeability of the free-space as the medium is considered to be non-
magnetic in nature). It should be remembered that ni =

√
εi, where εi

refers to the relative dielectric permittivity of medium i (with i = 1, 2).
The transverse components of the electric/magnetic fields may be
obtained on the basis of the longitudinal field components.

We can now state the boundary conditions for the helical
waveguide structure under consideration. We have to remember that
the conductivity of the helix is zero in a direction normal to the
conduction [35]. Thus, the tangential components of the electric and
the magnetic fields must satisfy the following equations at the core-clad
interface ρ = ρ0:

(EZ1 − EZ2) cosψ − (Eφ1 − Eφ2) sinψ = 0 (4a)
(HZ1 −HZ2) sinψ − (Hφ1 −Hφ2) cosψ = 0 (4b)

Further, considering the tangential field components in the direction of
conductivity, we must have these components as zero. Thus, at ρ = ρ0,
we can have

EZ1 sinψ + Eφ1 cosψ = 0 (5a)
EZ2 sinψ + Eφ2 cosψ = 0 (5b)

The explicit forms of Eφ and Hφ are not incorporated into the
text. Upon implementing the boundary conditions, we can have four
different equations containing the constants C1, C2, C3 and C4, and the
consistency of those equations will be maintained if the matrix formed
by the coefficients of the unknown constants (in those equations)
vanishes. The final equation will then provide the dispersion relation
for the guide, which is not incorporated into the text. However,
the derived dispersion relation is used to obtain the allowed values
of the modal propagations constants in the helical clad fiber under
consideration.



Progress In Electromagnetics Research, PIER 91, 2009 73

After applying the boundary condition Eqs. (4) and (5) at the
layer interface (ρ = ρ0), the unknown constants C1, C2, C3 and C4

can be derived in terms of a single constant, so that the fields can be
normalized. In our analysis, the constants C1, C2 and C3 are deduced
in terms of the constant C4. Finally, the explicit expressions for C1,
C2 and C3 can be deduced as

C1 = C4
1

(R32R41 −R42R31)R11{
(R34R41−R44R31)R12 − 1

R23
(R33R41−R43R31)R12R24

}
(6a)

C2 = −C4
1

(R32R41 −R42R31)R23

{(R34R41 −R44R31)R23 − (R33R41 −R43R31)R24} (6b)
(6c)

C3 = −C4
R24

R23

In Eq. (6), the different symbols have their meanings as follows:

R11 = Jν(γ1ρ0)
(

sinψ +
νβ

ρ0γ2
1

cosψ
)
, R12 = J ′

ν(γ1ρ0)
jωμ0

γ1
cosψ,

R23 = Kν(γ2ρ0)
(

sinψ +
νβ

ρ0γ2
2

cosψ
)
, R24 = K ′

ν(γ2ρ0)
jωμ0

γ2
cosψ,

R31 = Jν(γ1ρ0)
(

cosψ − νβ

ρ0γ
2
1

sinψ
)
, R32 = −J ′

ν(γ1ρ0)
jωμ0

γ1
sinψ,

R33 = Kν(γ2ρ0) − νβ

ρ0γ2
2

cosψ, R34 = K ′
ν(γ2ρ0)

jωμ0

γ2
sinψ,

R41 = −Jν(γ1ρ0) cosψ
(
jωε1
γ1

)
, R42 =Jν(γ1ρ0)

(
sinψ+

νβ

ρ0γ
2
1

cosψ
)
,

R43 = K ′
ν(γ2ρ0) cosψ

jωε2
γ2

, andR44 =Kν(γ2ρ0)
(
sinψ+

νβ

ρ0γ2
2

cosψ
)
.

Using the above equations, the radial components of the electric fields



74 Safie and Choudhury

in the core (Eρ1) and the clad (Eρ2) sections may be written as

Eρ1 =
(

jC4

n2
1k

2
1 − β2

)
×

⎡
⎣

⎧⎨
⎩Θ

J ′
ν(γ1ρ0) jωμ0

γ1
cosψ

Jν(γ1ρ0)
(
sinψ + νβ

ρ0γ2
1

cosψ
)

+Ξ
J ′

ν(γ1ρ0)K ′
ν(γ2ρ0) cos2 ψ

ω2μ2
0

γ1γ2

Jν(γ1ρ0)
(
sinψ + νβ

ρ0γ2
1

cosψ
)

⎫⎬
⎭βγ1J

′
ν(γ1ρ)

−
⎧⎨
⎩Θ−Ξ

K ′
ν(γ2ρ0) jωμ0

γ2
cosψ

Kν(γ2ρ0)
(
sinψ+ νβ

ρ0γ2
2

cosψ
)
⎫⎬
⎭

(
jνωμ0

ρ

)
Jν(γ1ρ)

⎤
⎦ejνφ (7a)

Eρ2 =−
(

jC4

β2 − n2
2k

2
2

)
×

⎡
⎣βγ2K

′
ν(γ2ρ)

K ′
ν(γ2ρ0) jωμ0

γ2
cosψ

Kν(γ2ρ0)
(
sinψ+ νβ

ρ0γ2
2

cosψ
)

+
ωμ

ρ
Kν(γ2ρ)

]
ejνφ (7b)

In Eqs. (7a) and (7b), we used the following two symbols:

Θ =

⎧⎨
⎩

ω2μ0ε1

γ1γ2
K ′

ν(γ2ρ0) sinψ cosψ

−Kν(γ2ρ0)
(
cosψ − νβ

ρ0γ2
1

sinψ
) (

sinψ + νβ
ρ0γ2

2
cosψ

)
⎫⎬
⎭⎧⎨

⎩
(

ω2μ0ε1

γ2
1

)
J ′

ν(γ1ρ0) sinψ cosψ

− Jν(γ1ρ0)
(
sinψ + νβ

ρ0γ2
1

cosψ
) (

cosψ − νβ
ρ0γ2

1
sinψ

)
⎫⎬
⎭

(8a)

Ξ =

cosψ

⎧⎨
⎩

(
jωε1

γ1

)(
Kν (γ2ρ0) − νβ

ρ0γ2
2

cosψ
)

+K ′
ν(γ2ρ0)

(
jωε2

γ2

)(
cosψ − νβ

ρ0γ2
1

sinψ
)
⎫⎬
⎭⎧⎨

⎩
(

ω2μ0ε1

γ2
1

)
J ′

ν (γ1ρ0) sinψ cosψ

− Jν(γ1ρ0)
(
sinψ + νβ

ρ0γ2
1

cosψ
) (

cosψ − νβ
ρ0γ2

1
sinψ

)
⎫⎬
⎭

(8b)

Eqs. (7a) and (7b), respectively, represent the radial electric field
components in the core and the clad sections of the helical clad
dielectric optical fiber. In the discussion part, we used the symbol
Eρ to represent the field components assuming that it will take the
value as either Eρ1 or Eρ2 depending on the value of the fiber core
radius. Thus, Eρ = Eρ1 for ρ < ρ0, Eρ = Eρ2 for ρ > ρ0.
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3. RESULTS AND DISCUSSION

We are now in a position to present the field patterns in a dielectric
helical clad fiber considering the variation of the field along the radial
direction. As such, we take the radial component of the electric field
as an illustration. As stated earlier, in our analytical investigation, we
consider the case corresponding to the first order mode only, i.e., ν = 1.
However, a few other higher order modes may also be generated, the
illustrations corresponding to which are not incorporated in the present
communication.

Figures 2 and 3, respectively, illustrate the cases corresponding to
the transverse variation of the radial component of the electric field in
the helical clad dielectric fiber corresponding to the situations when
the helical windings are transverse and longitudinal to the direction
of wave propagation. In these illustrative plots, we assume the fiber
core radius ρ as 10 µm, and the cladding is infinitely extended. The
RI values of the core and the clad are considered to be 1.5 and 1.46,
respectively. Further, throughout the numerical analysis, the operating
wavelength λ0 is kept fixed at 600 nm. Figs. 4 and 5 correspond to the
situations when the fiber core radius is 50 µm and the windings are
according to the two selected values of the pitch angle ψ. Also, in
all the illustrations, we consider two different allowed values of the
propagation constant β, namely, 10.5333 µm−1 and 10.5267 µm−1.

Figures 2(a) and 2(b), respectively, present the radial distribution
of the electric field corresponding to the allowed β values as
10.5333 µm−1 and 10.5267 µm−1. The helix pitch angle is taken to
be 0◦ in this case, which essentially represents the situation when the
windings will play the dominant role as they are just transverse to
the direction of wave propagation. We observe that the field patterns
exhibit spikes corresponding to various particular values of the radial
distance for the fiber axis, and also, with increasing radial distance, the
amplitudes of spikes go on decreasing; this is very much expected as
the launched light remains much confined near the optical axis of the
fiber. Further, the number of spikes as well as their positions remain
unaltered with the change in the propagation constant; corresponding
to lower value of β, the spike amplitudes show a decrease (Fig. 2(b)).
We also notice that the amplitudes of spikes are a bit a larger in
the fiber clad than that in the fiber core, and this is observable
corresponding to both the selected values of the propagation constants.
This aspect of helical clad fibers draws the attention towards their
possible applications in optical sensing. In particular, the usefulness
may be explored in sensing technology where the study of evanescent
wave spectroscopy remains vital. The most noticeable fact from
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Figure 2. (a) Plot of the radial component of the electric field
against the fiber radius corresponding to ρ0 = 10µm, ψ = 0◦ and
β = 10.5333µm−1. (b) Plot of the radial component of the electric
field against the fiber radius corresponding to ρ0 = 10µm, ψ = 0◦ and
β = 10.5267µm−1.

Figs. 2(a) and 2(b) would be that the fields match smoothly at the
core clad interface, which exits at ρ = 10µm in these two figures; this
is essentially an indication of correct computational approach.

In order to visualize the effect of helix pitch angle only, we
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Figure 3. (a) Plot of the radial component of the electric field
against the fiber radius corresponding to ρ0 = 10µm, ψ = 90◦ and
β = 10.5333µm−1. (b) Plot of the radial component of the electric
field against the fiber radius corresponding to ρ0 = 10µm, ψ = 90◦
and β = 10.5267µm−1 .

performed computations for ψ = 90◦, the case when the windings
are just parallel to the optical axis. The core radius is left
unchanged (i.e., 10 µm), and the corresponding plots are illustrated
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in Figs. 3(a) and 3(b) for two values of the propagation constants
as 10.5333 µm−1 and 10.5267 µm−1, respectively. We observe that
the field distributions exhibit similar characteristics in all aspects,
as observed in Figs. 2(a) and 2(b), except the fact that the spike
amplitudes are now substantially increased. The number of field spikes
as well as their radial positions remain unaltered. In the present
winding configuration, the windings are expected to have minimum
effect on the wave propagation as they are only in the longitudinal
direction. Thus, the effect of introducing helical windings may clearly
be observed, and it is noticed that these bear the controlling authority
when configured to be oriented in the transverse direction — the case
when the field confinements reduce. The smooth match of fields at the
core-clad interface is observed in this case too.

Next, in order to observe the effect of fiber dimension on the radial
field distributions, we repeated computations corresponding to a higher
value of the core radius, namely, 50µm. The cases of 0◦ and 90◦
helix pitch angles are again taken into account. Illustration of fields in
respect of 0◦ winding angle and 10.5333 µm−1 propagation constant is
made in Fig. 4(a). We observe in this case that the radial distribution of
fields show similar behavior except that they are now much crowded;
every major field spike is surrounded by some other closely spaced
neighboring spikes of lesser amplitudes. This is very much expected as
the core radius is much increased in this case, which enables more
accumulation of power in the fiber sections. Corresponding to a
smaller value of the propagation constant (= 10.5267 µm−1) the field
amplitudes are seen to be reduced (Fig. 4(b)) — the trend as observed
in the previous case of smaller fiber size. In both the situations, the
radial positions of the field spikes remain unaltered, and the radial
fields do exhibit a smooth match at the core-clad interface that exists
at ρ = 50µm.

Figures 5(a) and 5(b) correspond to the situation with the same
fiber core size and when the helical windings are parallel to the optical
axis (90◦ pitch angle). The field amplitudes are found to be increased
in both the cases, the event which is essentially owing to almost lifted
winding effects. Thus, the effect of introducing helical windings at the
core-clad interface may be easily visualized. For larger propagation
constant (Fig. 5(a)), the spikes are much crowded as compared to the
one corresponding to smaller propagation constant value (Fig. 5(b)).
Such a tendency is observed in other situations as well, as described
above.

As to the accumulation of the fields in the different fiber sections,
we have to state that the operating wavelength will also have a
determining role in this regard. The computational results of the
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present communication are obtained with the operating wavelength
as 600 nm. However, a change in wavelength will essentially bring
in modifications in the field distributions. Corresponding to a higher
value of operating wavelength, the number of field spikes is expected
to be reduced. The reports on this issue and other relevant details

β=10.5333 μm -1

ν=1

Eρ

ρ (μm)

(a)

β=10.5267 μm -1

ν=1

Eρ

ρ (μm)

(b)

Figure 4. (a) Plot of the radial component of the electric field
against the fiber radius corresponding to ρ0 = 50µm, ψ = 0◦ and
β = 10.5333µm−1. (b) Plot of the radial component of the electric
field against the fiber radius corresponding to ρ0 = 50µm, ψ = 0◦ and
β = 10.5267µm−1.
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Figure 5. (a) Plot of the radial component of the electric field
against the fiber radius corresponding to ρ0 = 50µm, ψ = 90◦ and
β = 10.5333µm−1. (b) Plot of the radial component of the electric
field against the fiber radius corresponding to ρ0 = 50µm, ψ = 90◦
and β = 10.5267µm−1 .

in respect of transverse (corresponding to zero azimuthal mode index)
modal propagation behavior of such helical clad fibers are expected to
be taken up in a future communication.
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4. CONCLUSION

The foregoing discussion presents an analysis of hybrid fields in
simple dielectric fibers with helical clads by implementing rigorous
Maxwell’s equations. Results in respect of the radial field distributions
corresponding to hybrid modes are presented considering variations in
respect of helix pitch angles, modal propagation constants and the
fiber dimensions. The inference can be drawn that a change in either
of these parameters introduces prominent effect on the field patterns
within the fiber structure. In this context, the winding pitch angle
is expected to play the determining role, and it is observed that
the case of transverse windings essentially controls the radial field
distributions to reduce their intensities in the different fiber sections.
The propagation constants also have the effect to control the field
amplitudes — corresponding to lower propagation constants, the field
amplitudes also become lesser. A little higher amount of field in the
helical clad section essentially indicates the possible applications of
these fibers in evanescent wave optical sensing — the area still needs
to be explored. Finally, the analysis presented in this communication
is essentially a rigorous boundary-value problem, and the fields are
observed to match smoothly at the layer interface in the structure,
which rather confirms the validity of our analytical approach.
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