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Abstract—This paper uses a three-dimensional analytical approach
based on the Coulombian model for studying the magnetic field
produced by cylindrical Halbach structures. Such structures,
commonly used in magnetic couplings or in electrical machines, are
composed of tile permanent magnets with rotating magnetizations.
Such assemblies of tile permanent magnets allow one to easily optimize
the radial field shape in the air gap of electrical machines. In addition,
Halbach structures can be used in magnetic couplings for improving
the torque transmitted between the two rotors. Analytical studies
dealing with the optimization of such structures generally use a two-
dimensional analytical approach for calculating either the magnetic
field produced by tile permanent magnets or the forces exerted between
them. These two-dimensional expressions are useful because they
have a very low computational cost. However, their accuracy depends
greatly on the structure dimensions. We propose in this paper to use
a three-dimensional analytical model based on the Coulombian model
for determining the exact shape of the magnetic field produced by a
Halbach structure. Such an approach also allows one to determine the
demagnetizing magnetic field inside the tile permanent magnets. This
element of information is important for the design of tile permanent
magnets. In addition, we show that some effects cannot be predicted
with the linearized analytical model. This implies that a linearized
dimensional optimization is not accurate. This study has been carried
out without any simplifying assumptions. Therefore, the calculations
of the three magnetic field components are exact for all points in
space, whatever the magnet dimensions. We can say that such a
three-dimensional analytical approach is a good alternative to a finite
element one because it has a lower computational cost and is more
accurate.
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1. INTRODUCTION

Nowadays, permanent magnets are widely used in electrical machines,
motors or couplings because they offer very efficient solutions in
terms of mechanical properties. Their magnetic energy density can
commonly reach 560 kJ/m3. In addition, their coercive field and
magnetic polarization allow one to use them in Halbach structures
[1, 2]. As a consequence, some judicious assemblies of magnets
have been studied in order to create either intense magnetic fields
in the air gap or to optimize the radial field shape in electrical
machines [3–5]. More generally, we can say that such structures allow
us to obtain intense magnetic fields that are required for creating
great torques in magnetic couplings. Several approaches can be
used for studying the magnetic fields created by structures using
permanent magnets. Among them, probably the most known for its
versatility is the finite element method. Nevertheless, if the considered
structure is completely three-dimensional with open boundaries, the
accuracy of such numerical approaches can be questionable compared
to an exact three-dimensional approach. Indeed, a high number of
discretizing elements is required for precisely calculating the three
components of the magnetic field. Consequently, two- and three-
dimensional analytical approaches are good alternatives to this finite
element method if their analytical calculation is possible. This is
the case in ironless cylindrical structures. The interest of using
analytical approaches is mainly due to their very low computational
cost, easiness and accuracy. Indeed, such approaches allow us to
easily realize parametric studies. The Halbach structure is a well-
known configuration of magnets with alternate magnetizations. Many
studies dealing with the optimization of such structures are based
on two-dimensional analytical approaches. However, the accuracy of
a linearized analytical model is questionable for studying alternate
magnet structures when the permanent magnet dimensions are small,
that is, when the curvature effect of the structure is important [6]. This
is often the case when the radius of a cylindrical permanent magnet
structure is small (typically inferior to 0.0025 m).

In this paper, we use the Coulombian model for determining the
exact shape of the magnetic field produced by a Halbach structure. In
addition, our approach allows us to study the accuracy of the linearized
analytical approach generally used for optimizing Halbach structures.
Furthermore, the three magnetic field components are determined
without using any simplifying assumptions. This is also an important
point because even if 2D or 3D linearized analytical models can be
used for calculating the magnetic field created by such structures, some
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effects cannot be predicted with these simplifying approaches and the
accuracy of the results becomes questionable.

The expressions obtained are valid inside and outside the tile
permanent magnet, whatever its dimensions. Consequently, we also
discuss the effects of the demagnetizing field inside the tile permanent
magnets. Moreover, the effects of all the magnetic pole contributions
are discussed. The magnetic field created by tile permanent magnets
can be determined analytically by using three-dimensional [7–22]
and two-dimensional approaches [23–37]. In addition, the analytical
expressions used for calculating the magnetic field produced by the
tile permanent magnets have been published in previous papers [6, 39].
All the expressions determined in this paper are available online [40].

2. THE LINEARIZED ANALYTICAL MODEL OF A
HALBACH STRUCTURE AND ITS LIMITS

2.1. Halbach Structure

This section presents an example of Halbach structure in Fig. 1 in
which the tile permanent magnets are organized in order to have a
rotating polarization of 90 degrees between two consecutive magnets.
This was in fact the first structure proposed by Halbach. This choice
is judicious because such a structure allows one to easily optimize the
magnetic field shape in the air gap.
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Figure 1. Representation of a cylindrical Halbach structure: an
assembly of tile permanent magnets with different magnetizations.
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Figure 2. Representation of a linearized Halbach structure:
an assembly of parallelepiped permanent magnets with different
magnetizations.

2.2. Linearized Structure and Its Limits

Numerous analytical optimizations have been carried out by using
a linearized configuration of the Halbach structure. This linearized
configuration consists of an assembly of parallalelepiped permanent
magnets with rotating polarizations as shown in Fig. 2. Consequently,
the curvature effect of the alternate magnet structure is omitted.
Nevertheless, the calculation of the three magnetic field components is
fully analytical and the parametric optimization of such structures is
thus simple to make. However, such an approach cannot be used when
the curvature effect is important, that is, when the structure diameter
is small. In addition, the linearized model turns out to be approximate
when the angular width of the tile permanent magnets increases. Then,
this linearized model cannot be used when the distance between the
observation point and the magnet is high. Consequently, the far-field
cannot be determined precisely with the linearized analytical model.
As the tile permanent magnet polarizations are not perfectly radial or
tangential, the linearized model cannot also forecast some effects that
change the magnetic field shape. We propose in the next section to
compare the magnetic field produced by a Halbach structure with our
exact three-dimensional approach and the linearized approach.

3. THE MAGNETIC DIPPOLE REPRESENTATION FOR
CALCULATING THE MAGNETIC FIELD PRODUCED
BY THE LINEARIZED STRUCTURE

3.1. Basic Equation

The magnetic field produced by a linearized Halbach structure
can be determined by using several analytical approaches. The
most known analytical approach is certainly the magnetic dipole
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Figure 3. Permanent magnet with its dipole representation.

representation (Fig. 3). Such a representation is commonly used for
calculating the external field H produced by a dipole source. According
to this model, a permanent magnet is replaced by two magnetic poles
which appear at the ends of the magnet. The interest of such an
appraoch lies in the fact that its analytical expression is very simple.
According to this model, the magnetic field H(�r ) produced by this
permanent magnet is given by:

H(�r) =
JS

4πμ0

(
− �r1

r3
1

+
�r2

r3
2

)
(1)

where J is the magnetic charge of a magnetic pole and is expressed in
tesla (T ), S is the surface of each extremity of the permanent magnet
shown in Fig. 3 and μ0 is the permeability of the vacuum. All the
other parameters are defined in Fig. 3. The well-known simplification
consists in assuming that �L � �r. It leads us to write H(�r) as follows:

H(�r) =
JS

4πμ0r3

[(
−

�L

2
− �r

)(
1 − 3L

2r
cos(θ)

)]

+
JS

4πμ0r3
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−
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2
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3L
2r
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(2)

Eventually, we obtain the following expression:

H(�r) =
JV

4πμ0r3

(
−L̂ + 3(L̂ · r̂)r̂

)
(3)
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where L̂ = �L
L , r̂ = �r

r and V is the volume of the magnet. Eq. (3) is
valid if the cross-section of the permanent magnet is small and if the
observation point is determined far from the permanent magnet. We
show in the next section that the optimization of a Halbach structure
cannot be carried out by using this simplifying analytical method.

3.2. Accuracy of the Dipole Moment Representation in the
Near-Field

We discuss here the accuracy of the dipole moment representation
in the near-field, that is, near the permanent magnets. For this
purpose, we use the exact three-dimensional analytical expression of
the magnetic field produced by a permanent magnet. Let us consider
the component Hx of the magnetic field produced by a parallelepiped
permanent magnet, as shown in Fig. 3. We note Hexact

x , the exact
expression of this component and Hdipole

x its simplifying analytical
expression that is determined by (3). By using the notations shown
in Fig. 3, the expression of Hexact

x can be determined by using the
Coulombian model with the following expression:

Hexact
x =

J

4πμ0

∫ yb

ya

∫ zb

za

(x − xa)

((x − xa)2 + (y − ỹ)2 + (z − z̃)2)
3
2

dỹdz̃

− J

4πμ0

∫ yb

ya

∫ zb

za

(x − xb)

((x − xb)2 + (y − ỹ)2 + (z − z̃)2)
3
2

dỹdz̃

(4)

The integration of (4) leads to the analytical expression of Hexact
x that

is expressed as follows:

Hexact
x = f(xa) − f(xb) (5)

where

f(xi) = arctan
[
(y − ya)(z − za)

ξ(xi, ya, za)

]
− arctan

[
(y − yb)(z − za)

ξ(xi, yb, za)

]

− arctan
[
(y − ya)(z − zb)

ξ(xi, ya, zb)

]
+arctan

[
(y − yb)(z − zb)

ξ(xi, xb, zb)

]
(6)

where

ξ(xi, yi, zi) = (x − xi)
√

(x − xi)2 + (y − yi)2 + (z − zi)2 (7)

For performing our comparison, let us consider only the x-component
of the magnetic field poduced by the parallelepiped magnet along the
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x direction. In this case, Hdipole
x can be expressed as follows:

Hdipole
x =

V

x3
(8)

We define the difference ΔHx as follows:

ΔHx =
∣∣∣Hexact

x − Hdipole
x

∣∣∣ (9)

where V is the volume Therefore, we obtain:

ΔHx =
∣∣∣∣ J

4πμ0

(
f(xa) − f(xb) − V

x3

)∣∣∣∣ (10)

In addition, it is useful to define the relative difference Dif as follows:

Dif =

∣∣∣∣∣H
exact
x − Hdipole

x

Hexact
x

∣∣∣∣∣ (11)

We represent this relative difference Dif versus x in Fig. 4. Figure 4
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Figure 4. Representation of the relative difference Dif versus x, the
volume of the magnet is V = 1 cm3 and its magnetic polarization J
equals 1 T, the middle of the magnet is placed in x = 0, the permanent
magnet is cubic.

clearly shows that the well-known dipole model (3) cannot be used for
studying the magnetic field produced by a tile permanent magnet. This
difference is consistent with the assumptions taken for determining (3).
We also see that the accuracy of the magnetic field expression with
(3) remains questionable when the distance between the observation
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point and the inner face of the magnet equals three times the x-length
of the magnet (we incur an error of at least 4 per cent in this case).
Consequently, we deduct that the optimization of a structure using tile
permanent magnets must be carried out carefully if such a simplifying
analytical model is used. Indeed, such a model is valid only in the
far-field and cannot be used for optimizing the shape of the radial field
of electrical machines or couplings. We propose now to compare the
magnetic field produced by a Halbach structure and the one produced
by its linearized structure.

4. USING THE COULOMBIAN MODEL FOR
STUDYING THE HALBACH STRUCTURE

We present now the three dimensional analytical model that allows
us to verify the accuracy of the linearized analytical model. Our
three-dimensional model takes into account the curvature of the tile
permanent magnets and all the surface densities located on the faces of
each tile permanent magnet. As the considered magnets are uniformly
magnetized, no magnetic pole volume densities appear in the magnets.
As we use the Coulombian model for calculating the magnetic field
for all points in space, each tile permanent magnet can be represented
by some fictitious charge densities that are located on the faces of the
magnet. However, these charges do not appear in the same way with
the exact three dimensional model and with the linearized analytical
model.

Figure 5(b) represents a tile permanent magnet radially
magnetized and Fig. 5(a) its linearized structure. Thus, the curvature
effect is omitted in the linearized structure and the fictitious magnetic
poles appear only on two faces whereas they appear on the four
faces of the magnet with the exact three-dimensional model. It is
noted that the tile permanent magnets are supposed to be uniformly
magnetized, as it is generally the case in practice. This implies that the
magnetic field created by a tile permanent magnet radially magnetized
is different from the one created by a parallelepiped permanent magnet,
even in the near-field. For tile permanent magnets radially magnetized,
we use the following notations: the radial field H

(3D)
r,r , the azimuthal

field H
(3D)
θ,r and the axial field H

(3D)
z,r are transfomed into H

(LIN)
x,r ,

H
(LIN)
y,r and H

(LIN)
z,r respectively.

Figure 6(b) represents a tile permanent magnet tangentially
magnetized and Fig. 6(a) its linearized structure. Here again, the
curvature effect is omitted in the linearized structure and the fictitious
magnetic poles appear only on two faces for the linearized structure
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whereas they appear on the four faces of the magnet for the exact
three-dimensional model. For tile permanent magnets tangentially
magnetized, we use the following notations: the radial field H

(3D)
r, θ ,

the azimuthal field H
(3D)
θ, θ and the axial field H

(3D)
z, θ are transformed

into H
(LIN)
x, θ , H

(LIN)
y,θ and H

(LIN)
z, θ respectively. In short, the magnetic

field H(r, θ, z)(3D)
r produced by a tile permanent magnet radially

magnetized is given by:

H(r, θ, z)(3D)
r = H(3D)

r, r �ur + H
(3D)
θ, r �uθ + H(3D)

z, r �uz (12)

and the magnetic field H(x, y, z)(LIN)
r produced by its linearized

structure is given by:

H(x, y, z)(LIN)
r = H(LIN)

x, r �ux + H(LIN)
y, r �uy + H(LIN)

z, r �uz (13)

In addition, the magnetic field H(r, θ, z)(3D)
θ produced by a tile

permanent magnet tangentially magnetized is given by:

H(r, θ, z)(3D)
θ = H

(3D)
r, θ �ur + H

(3D)
θ, θ �uθ + H

(3D)
z, θ �uz (14)

u

0

u

uz

y
uz

H (r,   , z)

ux

H (x, y, z)

ux0

u

ur0

y

0 ur

u

(a) 

 (b)

Figure 5. Representation of parallelepiped magnets whose
polarization is directed along the x axis and a tile permanent magnet
radially magnetized.
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and the magnetic field H(x, y, z)(LIN)
θ produced by its linearized

structure is given by:

H(x, y, z)(LIN)
θ = H

(LIN)
x, θ �ux + H

(LIN)
y, θ �uy + H

(LIN)
z, θ �uz (15)

Therefore, the linearized problem consists in determining H(x, y, z)(LIN)
r

and H(x, y, z)(LIN)
θ for calculating the magnetic field produced by an

alternate magnet structure as shown in Fig. 1 by using the structure
shown in Fig. 2. However, this linearized model is not accurate when
the tile dimensions are small and do not forecast some phenomena that
occur for tile permanent magnets whose polarization is tangential. As
a consequence, a fully three-dimensional approach is required. The
computational cost of the exact three-dimensional expressions is still
very low compared to the finite element method one.
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Figure 6. Representation of parallelepiped magnets whose
polarization is directed along the y axis and a tile permanent magnet
tangentially magnetized.
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Figure 7. Magnetic pole distribution creating a magnetic field at a
given observation point M .

4.1. Calculating the Magnetic Field Created by a Magnetic
Pole Surface Density

For each configuration studied in this paper, the magnetic field
components are determined by using the Coulombian Model.
Consequently, the magnetic component Hi created by one permanent
magnet is always determined analytically by using the following
equation:

Hi = H · �ui = �∇
(

1
4πμ0

∫∫
S

G(�r, �r′)σ(�r′)dS

)
· �ui (16)

where μ0 is the permeability of the vacuum and G(�r, �r′) is the Green’s
function defined by

G(�r, �r′) =
1∣∣∣�r − �r′
∣∣∣ (17)

and the vectors �r and �r′ are shown in Fig. 7. In short, the magnetic
component Hi at a given observation point M is always determined
analytically by using the Coulombian Model. In our case, as our
structure is ironless, we can use either the three-dimensional Green’s
function or directly the Coulombian Model for calculating the three
magnetic components for all points in space. In addition, it is noted
that no magnetic pole volume densities appear because the permanent
magnets used are uniformly magnetized. All the analytical expressions
used in this paper are presented in the appendix.



286 Ravaud and Lemarquand

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
Length [m]

300000

200000

100000

0

100000

200000

300000

H
x

[A
/m

]

-

-

-

Figure 8. Normal field created by a linearized Halbach structure
versus the length y, the radial distance equals 0.5 mm from the
magnets, xa = 0.025 m, xb = 0.028 m, J = 1 T, h = 0.003 m,
z = 0.0015 m.
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Figure 9. Radial field created by a Halbach structure versus the angle
θ, the radial distance equals 0.5 mm from the magnets, rin = 0.025 m,
rout = 0.028 m, h = 0.003 m, J = 1T, z = 0.0015 m.

5. RADIAL FIELD CREATED BY A HALBACH
STRUCTURE

5.1. Comparison between the Linearized Approach and Our
Three-Dimensional Approach

Several analytical studies have been carried out for optimizing the tile
permanent magnet dimensions so as to obtain the intended radial field.
We represent in Figs. 8 and 9 the radial field produced by a Halbach
structure whose magnets have the same angular widths (θwidth = π

6 ).
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Figure 10. Perpendicular field created by a linearized Halbach
structure versus the length of the linearized structure, the radial
distance equals 0.5 mm from the magnets, xa = 0.025 m, xb = 0.028 m,
J = 1T, h = 0.003 m, z = 0.0015 m.

For the tile permanent magnet, the inner radius rin is 0.025 m; the
outer one rout equals 0.028 m; its height is h = 0.003 m. For the
parallelepiped magnet, the inner radius xa is 0.025 m; the outer one
xb equals 0.028 m; its height is h = 0.003 m. These dimensions are
the same for all the simulations. Each tile permanent magnet has a
radial width that equals 0.003 m. The angular width in the linearized
structure becomes merely a length that equals rinθwidth. Figures 8 and
9 show that both the shape and the value of radial field are different
when they are calculated close to the magnets. These differences can be
explained by investigating the way the fictitious magnetic pole surface
densities are located on the faces of the magnets. Fig. 6(a) shows
that the linearized structure has not the same repartition of fictitious
magnetic pole surface densities as the Halbach structure shown in Fig.
6(b). Some positive charges appear on only one side of a magnet
with the linearized structure whereas they appear on three sides of the
magnet in a tile magnet tangentially magnetized. This is in fact an
important point because it allows us to optimize the tile permanent
magnet dimensions in order to minimize the effect of the fictitious
magnetic charges located on the arc-shaped faces of the magnet. Such
an optimization cannot be carried out with a linearized structure.
The shape and the values of the radial field are consistent with the
interpretation of Figs. 6(a) and 6(b). The normal field determined
with the linearized structure is over-estimated because the magnetic
charges located on the arc-shaped faces of the magnet are omitted.
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5.2. Influence on the Electromotive Force in an Electrical
Machine

We discuss here qualitatively another phenomenon that cannot be
predicted with the linearized approach. Indeed, in electrical machines,
an important parameter is the electromotive force that is defined by:

em = −dΦ
dt

(18)

or, by using the notations of this paper,

em = −μ0
d

dt

∫∫
(Sj)

�∇
(

1
4πμ0

∫∫
Si

G(�r, �r′)σ(�r′)dSi

)
· d �Sj (19)

where Si is the surface of the tile permanent magnets in the first rotor
and Sj is the surface of the tile permanent magnets in the second
rotor. We consider here only two faces for simplifying (16). We deduct
that the radial field changes its sign with respect to the variation of θ
more often with the three-dimensional approach than the linearized
approach, as shown in Figs. 8 and 9. This generates harmonics
that lower the quality of the electrical machines. Consequently, if
electrical machines are optimized by using only the linearized model,
this behaviour cannot be predicted.

6. TANGENTIAL FIELD CREATED BY A HALBACH
STRUCTURE

Let us now consider the tangential field created by a Halbach structure.
Such a magnetic field is also interesting to study because it is used
for calculating magnetic couplings or the demagnetizing field inside
the tile permanent magnets. As stated previously, the shape of
the azimuthal field is different between the Halbach structure and
its linearized configuration. We represent in Figs. 11 and 12 the
azimuthal field created by the Halbach structure described in Fig. 2
and Fig. 1. The radial observation point is calculated at a distance
which equals 0.5 mm from the magnets. Here again, we see that several
differences appear between the azimuthal field calculated with the
exact three-dimensional approach and the linearized approach. The
most important difference is clearly the shape of the azimuthal field
that is not well described with the linearized approach. It can be
explained by the transition between two consecutive parallelepiped
magnets, which generates a change in the sign of the azimuthal
component, that is, H

(LIN)
y, r and H

(LIN)
y, θ . However, strictly speaking,
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the total sum of the charges generate merely a smooth variation of this
transition between H

(3D)
r, r and H

(3D)
r, θ . Consequently, the optimization

of this component cannot be carried out accurately with the linearized
approach in the near field.
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Figure 11. Azimuthal field created by a Halbach structure versus
the angle θ, the radial distance equals 0.5 mm from the magnets,
rin = 0.025 m, rout = 0.028 m, h = 0.003 m, J = 1 T, z = 0.0015 m.
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Figure 12. Axial field created by a linearized Halbach structure versus
the length of the linearized structure, the radial distance equals 0.5 mm
from the magnets, xa = 0.025 m, xb = 0.028 m, J = 1 T, h = 0.003 m,
z = 0.0015 m.
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Figure 13. Axial field created by a Halbach structure versus the angle
θ, the radial distance equals 0.5mm from the magnets, rin = 0.025 m,
rout = 0.028 m, h = 0.003 m, J = 1T, z = 0.0015 m.
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Figure 14. Representation of the azimuthal component of the
demagnetizing field Hθ inside the tile permanent magnets versus the
angle θ, the radial distance equals 0.2 mm from the inner faces of the
tile permanent magnets, rin = 0.025 m, rout = 0.028 m, h = 0.003 m,
J = 1T, z = 0.0015 m.

7. AXIAL FIELD CREATED BY A HALBACH
STRUCTURE

Let us now consider the axial field created by a Halbach structure. This
component is of great importance in ironless motors with ferrofluid
seals in which the accurate knowledge of these values allows us to
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optimize the ferrofluid seals. First, we study the axial magnetic
field in the near field, that is, for a radial observation point which
equals 0.5 mm from the magnets. We represent in Figs. 13 and 14 the
axial component with the exact three-dimensional approach and the
linearized approach. Figs. 13 and 14 show that the value of the axial
field is rather well determined with the linearized approach. However,
the shape of this axial component is different. This is typically the case
when the linearized approach cannot be used for studying the shape
of the axial field produced by an assembly of tile permanent magnets.
Indeed, the shape of the axial field is inverted at the maxima between
the exact three-dimensional approach and the linearized approach.
Indeed, the shape of the axial field is inverted at the maxima between
the exact three-dimensional approach and the linearized.

8. DETERMINATION OF THE DEMAGNETIZING
FIELD H INSIDE THE TILE PERMANENT MAGNETS

We discuss here the behaviour of the demagnetizing field H inside
the tile permanent magnets. Strictly speaking, there are three
components that define this demagnetizing field. However, the
azimuthal component is the most important one that plays a role in the
demagnetization of a tile permanent magnet in an Halbach structure.
This component is denoted Hθ. It must be emphasized that the total
demagnetizing field in a tile permanent magnet is the sum of its own

0 0.25 0.5 0.75 1 1.25 1.5
Angle [rad]

200000

100000

0

100000

200000

H
r

[A
/m

]

-

-

Figure 15. Representation of the radial component versus θ for three
radial observation points (r = 0.0245 m, r = 0.024 m, r = 0.023 m),
rin = 0.025 m, rout = 0.028 m, h = 0.003 m, J = 1 T, z = 0.0015 m, the
more the radial field is determined far from the magnets, the more the
line is thicker.
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demagnetizing field and the demagnetizing field produced by the other
tile permanent magnets. In a Halbach structure, a tile permanent
magnet can be demagnetized because of the value of Hθ near the
corners of the tile permanent magnets. This behaviour can be predicted
by using our three-dimensional analytical model. For this purpose, we
represent in Fig. 15 the total demagnetizing field Hθ versus the angle
θ. Fig. 15 clearly shows that Hθ reaches very high values when the
θ is near the transition between two consecutive magnets. At each
transition, we have Hθ = 420000 A/m while the observation point is
not strictly located on the faces of the tile permanent magnets. This
signifies that the magnet undergoes a very high magnetic field near its
corners and it can probably be slightly demagnetized. Consequently,
it can generate for example a decrease in the value of the torque in
magnetic couplings. As these effects must be carefully studied in a
parametric optimization of such structures, the approach taken must
be both accurate and fast. This is the case with our three-dimensional
analytical approach.

0 0.25 0.5 0.75 1 1.25 1.5

Angle [rad]

150000

100000

50000

0

50000

100000

H
th

et
a

[A
/m

]

-

-

-

Figure 16. Representation of the azimuthal component versus θ
for three radial observation points (r = 0.0245 m, r = 0.024 m,
r = 0.023 m), rin = 0.025 m, rout = 0.028 m, h = 0.003 m, J = 1T,
z = 0.0015 m, the more the radial field is determined far from the
magnets, the more the line is thicker.
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9. DEFORMATION OF THE MAGNETIC FIELD IN A
HALBACH STRUCTURE

9.1. Deformation of the Radial Field according to the Radial
Observation Point

We illustrate in this section the way the magnetic field shape changes
according to the radial observation point by using our exact three-
dimensional approach. This element of information is important for
the design of electrical machines because the shape of the radial
field greatly influences the voltage delivered by the electrical machine.
As the optimization of the shape of the radial field is often carried
out with the linearized structure, some effects cannot be predicted
accurately. Consequently, the dimensions of the inner rotor of an
electrical machine must be carefully optimized for avoiding these
distortions. We represent in Fig. 16 the radial field created by an
assembly of tile permanent magnets. We take the following dimensions:
rin = 0.025 m, rout = 0.028 m, h = 0.003 m, J = 1 T, z = 0.0015 m. In
addition, the farther the radial field is from the magnets, the thicker
is the line in Fig. 16. In this representation, we take respectively
r = 0.0245 m, r = 0.024 m and r = 0.023 m. The most important
phenomenon in Fig. 16 that can be predicted only with our three-
dimensional appraoch is the deformation of the radial field shape.
Indeed, when the radial field is far from the magnets (the thinner
line), the radial field shape is smoother than when it is calculated far
from the magnets (the thicker line). Thus, the air gap and the number
of tile permanent magnets used have a great influence on the quality
of an electrical machine. These parameters can be optimized by using
an exact three dimensional approach.

9.2. Deformation of the Azimuthal Field according to the
Radial Observation Point

Our exact analytical three-dimensional approach is useful for studying
the deformation of the azimuthal field produced by a Halbach structure
according to the radial observation point. Such a calculation is required
for optimizing the torque transmitted in magnetic couplings. Up to
now, such studies have been carried out by using only the linearized
models [31–33]. However, these linearized models are not sufficient
for accurately optimizing the air gap dimensions in order to obtain
the great torque in magnetic couplings. We represent in Fig. 17 the
azimuthal field produced by a Halbach structure with the following
dimensions: rin = 0.025 m, rout = 0.028 m, h = 0.003 m, J = 1T,
θwidth = π

6 and with the three following radial observation points
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r = 0.0245 m, r = 0.024 m and r = 0.023 m. Fig. 17 confirms that both
the value and the shape of the azimuthal field depend greatly on the
radial observation point. This implies that the analytical optimization
of a structure using tile permanent magnets must be carried out with
exact three-dimensional expressions.

10. THREE-DIMENSIONAL OPTIMIZATION OF A
CYLINDRICAL HALBACH STRUCTURE

We present now an optimization of a cylindrical Halbach structure
for permanent magnet machines. Basically, there are two kinds of
permanent magnet machines. The first one creates a radial field whose
shape is perfectly sinusoidal whereas the second type generates radial
field whose shape is a trapezoid. We propose two optimizations of
these devices with always the same radial observation point.

10.1. Permanent Magnet Machines Generating Sinusoidal
Radial Fields

We propose here an optimized Halbach structure obtained with our
three dimensional analytical approach. The aim of this Halbach
structure is to create a radial field whose shape is sinusoidal. Let us
consider a Halbach structure with 24 pairs of tile permanent magnets.
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Figure 17. Representation of the radial field versus θ produced
by an optimized Halbach structure. r = 0.024 m, rin = 0.025 m,
rout = 0.028 m, h = 0.003 m, J = 1 T, z = 0.0015 m, (thick line:
the angular width ratio between the tile permanent magnets radially
and tangentially magnetized is 1

3), (thin line: the ratio is 3
2), (dashed

line: the ratio is 1).
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out0 rin r

Figure 18. Representation of the optimized Halbach structure that
creates a radial field whose shape is sinusoidal with the following
dimensions: r = 0.024 m, rin = 0.025 m, rout = 0.028 m, h = 0.003 m,
J = 1T, z = 0.0015 m and 24 pairs of tile permanent magnets. The
ratio between the tile permanent magnets radially and tangentially
magnetized is 1

3 .

We represent in Fig. 19 the corresponding Halbach structure that
creates a radial field whose shape is sinusoidal. The inner radius
of the Halbach structure equals 0.025 m and the outer one equals
0.028 m. In addition, we take h = 0.003 m and z = 0.0015 m. The
radial field is optimized at a distance that equals 0.001 m from the tile
permanent magnets. Therefore, we take r = 0.024 m. By using our
three dimensional approach, we find a good compromise between the
angular widths of the tile permanent magnets radially and tangentially
magnetized. We represente in Fig. 17 three representations of the radial
field versus the angular distance with the following ratios between the
angular widths of the tile permanent magnets radially or tangentially
magnetized: 1, 3

2 and 3. We find that a best compromise can be found
when the ratio equals 3 between the tile permanent magnets radially
and tangentially magnetized.

10.2. Permanent Magnet Machines Generating Trapezoid
Radial Fields

We propose here an optimized Halbach structure that creates a radial
field whose shape is a trapezoid. Let us consider a Halbach structure
with 16 pairs of tile permanent magnets. The inner radius of the
Halbach structure equals 0.025 m and the outer one equals 0.028 m.
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Figure 19. Representation of the radial field versus θ produced
by an optimized Halbach structure. r = 0.024 m, rin = 0.025 m,
rout = 0.028 m, h = 0.003 m, J = 1 T, z = 0.0015 m. (Thick line:
the angular width ratio between the tile permanent magnets radially
and tangentially magnetized is 1

5), (thin line: the ratio is 1
2), (dashed

line: the ratio is 5
6).
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Figure 20. Representation of the optimized Halbach structure that
creates a radial field whose shape is a trapezoid with the following
dimensions: r = 0.024 m, rin = 0.025 m, rout = 0.028 m, h = 0.003 m,
J = 1T, z = 0.0015 m and 16 pairs of tile permanent magnets. The
ratio between the tile permanent magnets radially and tangentially
magnetized is 1

5 .
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In addition, we take h = 0.003 m and z = 0.0015 m. The radial
field is optimized at a distance that equals 0.001 m from the tile
permanent magnets. Therefore, we take r = 0.024 m. We have
represente in Fig. 19 three representations of the radial field versus the
angular distance with the following ratios between the angular widths
of the tile permanent magnets radially or tangentially magnetized:
1
5 , 1

2 and 5
6 . We find that a best compromise can be found when

the ratio equals 1
5 between the tile permanent magnets radially and

tangentially magnetized. We represent in Fig. 20 the corresponding
Halbach structure that creates a radial field whose shape is a trapezoid.

11. CONCLUSION

This paper has presented the exact shape of the magnetic field
produced by a Halbach structure by using the Coulombian model. This
approach allowed us to discuss the accuracy of the linearized model
for studying the three magnetic components in the air gap. Some
phenomena cannot be predicted with the linearized approach whereas
they can be determined accurately with a three dimensional approach
without using any simplifying assumptions. The time necessary to
optimize tile permanent magnets remains very low compared to the one
of the finite-element method. Moreover, such an approach can be used
to verify the accuracy of a classical finite-element method. We have
also presented the interest of using such an approach by studying the
demagnetizing field inside the tile permanent magnets. This element
of information is important for the design of Halbach structures.
Eventually, we have illustrated our three-dimensional approach with
two optimized Halbach structures that create radial fields with required
shapes. We have proposed two kinds of structures. The first one
corresponds to a Halbach structure that creates a radial field whose
shape is sinusoidal. The second one corresponds to a Halbach structure
whose shape is a trapezoid.

APPENDIX A. ANALYTICAL EXPRESSIONS OF THE
MAGNETIC FIELD CREATED BY TILE PERMANENT
MAGNETS

A.1. Tile Permanent Magnets Uniformy and Tangentially
Magnetized

We give here the analytical expressions of the magnetic field created
by tile permanent magnets whose polarization is both uniform and
tangential.
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For this purpose, the geometry and the related parameters are
shown in Fig. 21. The radial component of the magnetic field created
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Figure 21. Representation of the geometry considered. The tile inner
radius is r1, the tile outer radius is r2, its angular width is θ2 − θ1. Its
magnetic polarization is �J . In addition, the height is z2 − z1

by a tile permanent magnet whose polarization is both uniform and
tangential can be expressed as follows:

Hr(r, θ, z) =
2∑

i=1

2∑
j=1

(−1)(i+j)h(I)
r (ri, zj)

+
2∑

i=1

2∑
j=1

2∑
k=1

(−1)(i+j+k)h(II)
r (ri, zj , θk) (A1)

where h
(I)
r (ri, zj) represents the magnetic field created by the fictitious

magnetic poles located on the arc-shaped faces of the tile permanent
magnet and h

(II)
r (ri, zj , θk) represents the magnetic field created by

the fictitious magnetic poles located on the straight faces of the tile
permanent magnet.

h(I)
r (ri, zj) =

J

4πμ0
ri(z − zj)Ẽ∗ [θa, ri, zj ] (A2)

h(II)
r (ri, zj , θk) = −J cos(θ1−θ2

2 )
8πμ0Xk

(
(1 − x2

k + xkXk) log[Ai,j,k]
)

−J cos(θ1−θ2
2 )

8πμ0Xk

(
(−1 + x2

k + xkXk) log[Bi,j,k]
)
(A3)
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where Ẽ∗ [θa, ri, zj ] can be seen as a non-classical elliptic integral that
is defined as follows:

Ẽ∗ [θa, ri, zj ] =
∫ θ2

θ1

(r − ri cos(θ − θ̃)) sin(θa − θ̃)

ξ(i, j, θ̃)
(
ξ(i, j, θ̃)2 − (z − zj)2

)dθ̃ (A4)

and

Ai,j,k =
2(rriX

2
k + r2X2

k(−xk + Xk))
(−X2

k + xxXk)(ri + r(−xk + Xk))(z − zj)

−
2Xk(z − zj +

√
r2 + r2

i − 2rrixk + (z − zj)2)

(−X2
k + xxXk)(ri + r(−xk + Xk))

(A5)

Bi,j,k = − 2(rriX
2
k − r2X2

k(xk + Xk))
(X2

k + xkXk)(ri − r(xk + Xk))(z − zj)

+
2Xk(z − zj +

√
r2 + r2

i − 2rrixk + (z − zj)2)

(X2
k + xkXk)(ri − r(xk + Xk))

(A6)

with
Xk =

√
x2

k − 1 =
√

cos(θ − θk)2 − 1 (A7)

and
ξ(i, j, θk) =

√
r2 + r2

i + (z − zj)2 − 2rri cos(θ − θk) (A8)

It is emphasized here that h
(II)
r (ri, zj , θk) is fully analytical whereas

h
(I)
r (ri, zj) is based on a non-classical elliptic integral. The azimuthal

component of the magnetic field created by a tile permanent magnet
whose polarization is both uniform and tangential is expressed as
follows:

Hθ(r, θ, z) =
2∑

i=1

2∑
j=1

(−1)(i+j)h
(I)
θ (ri, zj)

+
2∑

i=1

2∑
j=1

2∑
k=1

(−1)(i+j+k)h
(II)
θ (ri, zj , θk) (A9)

with

h
(I)
θ (ri, zj) =

J

4πμ0
r2
i (z − zj)L̃∗

[
θ1 + θ2

2
, ri, zj

]
(A10)
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where L̃∗ [θa, ri, zj ] can be seen as a non classical definite elliptic
integral.

L̃∗ [θa, ri, zj ] =
∫ θ2

θ1

sin(θa − θ̃) sin(θ − θ̃)

ξ(i, j, θ̃)
(
ξ(i, j, θ̃)2 − (z − zj)2

)dθ̃ (A11)

and

h
(II)
θ (ri, zj , θk) =

J cos(θ1−θ2
2 )

8πμ0

2r + yk

(
−xk + X̃k

)
X̃k

log [Ci,j,k]

+
J cos(θ1−θ2

2 )
8πμ0

−2r + yk

(
xk + X̃k

)
X̃k

log [Di,j,k](A12)

Ci,j,k =
4X̃k

(
(zj − z) −

√
r2 + r2

i − rix̃k + (z − zj)2
)

(2ri − x̃k + X̃k)
(
2r + ( ˜Xk − x̃k)yk

)
+

X̃k(x̃k
2 − 4r2) + (2ri − x̃k)(x̃k

2 − 4r2)

(2ri − x̃k + X̃k)
(
2r + ( ˜Xk − x̃k)yk

)
(z − zj)

(A13)

Di,j,k =
4X̃k

(√
r2 + r2

i − rix̃k + (z − zj)2 + (z − zj)
)

(−2ri + x̃k + X̃k)
(
−2r + (x̃k + X̃k)yk

)
+

(
4r2 − x̃k

2
)(

−2r + (x̃k + X̃k)yk

)
(z − zj)

(A14)

with
X̃k =

√
x̃k

2 − 4r2 =
√

(2r cos(θ − θk))2 − 4r2 (A15)

yk = sin(θ − θk) (A16)

The axial component Hz(r, θ, z) can be expressed as follows:

Hz(r, θ, z) =
2∑

i=1

2∑
j=1

(−1)(i+j)h(I)
z (ri, zj)

+
2∑

i=1

2∑
j=1

2∑
k=1

(−1)(i+j+k)h(II)
z (ri, zj , θk) (A17)
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with

h(I)
z (ri, zj) =

J

4πμ0
(−ri)K̃∗

[
θ1 + θ2

2
, ri, zj

]
(A18)

where K̃∗ [θa, ri, zj ] represents a non-classical definite elliptic integral
that is defined as follows:

K̃∗ [θa, ri, zj ] =
∫ θ2

θ1

sin(θa − θ̃)
ξ(i, j, θ̃)

dθ̃ (A19)

and

h(II)
z (ri, zj , θk)=

J

4πμ0
cos
(

θ1−θ2

2

)
log [ri−r cos(θ−θk)+ξ(i, j, θk)]

(A20)

A.2. Tile Permanent Magnets Uniformy and Radially
Magnetized

Let us now consider the magnetic field created by tile permanent
magnets whose polarization is both uniform and radial. For this
purpose, let us consider the parameters defined in Fig. 22.

(a) (b)

Figure 22. Representation of the configuration considered. The ring
inner radius is rin, the ring outer one is rout, its height is zb − za, its
angular width is θ2 − θ1.

The radial component Hr(r, θ, z) of the magnetic field created by
one tile permanent magnet uniformly magnetized can be expressed as
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follows:

Hr(r, θ, z)

= +
J

4πμ0
rin(−z + zb)S

[
r2 + r2

in, 2rrin, r2 + r2
in + (z − zb)2, rin

]
− J

4πμ0
rin(−z + za)S

[
r2 + r2

in, 2rrin, r
2 + r2

in + (z − za)2, rin

]
+

J

4πμ0
rout(−z + za)S

[
r2 + r2

out, 2rrout, r
2 + r2

out + (z − za)2, rout

]
− J

4πμ0
rout(−z + zb)S

[
r2 + r2

out, 2rrout, r
2 + r2

out + (z − zb)2, rout

]
+

J

4πμ0
(o(rout) − o(rin))

+
J

4πμ0
(p(rout) − p(rin)) (A21)

where

o(r1) =−ξ((za − z)
(
sin
(

θ2−θ1

2

)
, r2+r2

1+(z−za)2, r, r1, cos(θ−θ2)
)

+ξ((zb − z)
(
sin
(

θ2−θ1

2

)
, r2+r2

1+(z−zb)2, r, r1, cos(θ−θ2)
)

(A22)

and

p(r1) =−ξ((za − z)
(
sin
(

θ2−θ1

2

)
, r2+r2

1+(z − za)2, r, r1, cos(θ−θ1)
)

+ξ((zb − z)
(
sin
(

θ2−θ1

2

)
, r2+r2

1+(z − zb)2, r, r1, cos(θ−θ1)
)

(A23)

We define ξ(y, u, r, r1, s), A and B as follows:

ξ(y, u, r, r1, s) =
iy

2
√

s2 − 1
√

r2 − u

(
(1 − s2 + s

√
s2 − 1) log [A]

)
+

iy

2
√

s2 − 1
√

r2 − u

(
s2 − 1+s

√
s2 − 1) log[B]

)
(A24)
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A =
2i
(
rr1(s2 − 1) + r2s(1 − s + s

√
s2 − 1)

)
(1 − s2 + s

√
s2 − 1)(r1 + r(

√
s2 − 1 − s))

√
r2 − u

+
√

s2 − 1(−u + i
√

r2 − u
√

r2
1 − 2rr1s + u)

(1 − s2 + s
√

s2 − 1)(r1 + r(
√

s2 − 1 − s))
√

r2 − u
(A25)

and

B =
2i
(
rr1(s2 − 1) − r2s(−1 + s2 + s

√
s2 − 1

)
(s2 − 1 + s

√
s2 − 1)(r(s +

√
s2 − 1) − r1)

√
r2 − u

+
2
√

s2 − 1(iu +
√

r2 + u
√

r2
1 − 2rr1s + u)

(s2 − 1 + s
√

s2 − 1)(r(s +
√

s2 − 1) − r1)
√

r2 − u
(A26)

The semi-analytical part S [i, j, k, l] is defined as follows:

S [i, j, k, l] =
∫ θ2

θ1

(
r − l cos(θ − θ̃)

)
cos
(
θ̃ − θ1+θ2

2

)
(
i − j cos(θ − θ̃)

)√
k − j cos(θ − θ̃)

dθ̃ (A27)

The azimuthal component Hθ(r, θ, z) of the magnetic field created
by one tile permanent magnet uniformly magnetized can be expressed
as follows:

Hθ(r, θ, z)

= +
J

4πμ0
rin2(−z + za)R

[
r2 + r2

in, 2rrin, r
2 + r2

in + (z − za)2
]

− J

4πμ0
rin2(−z + zb)R

[
r2 + r2

in, 2rrin, r
2 + r2

in + (z − zb)2
]

− J

4πμ0
rout2(−z + za)R

[
r2 + r2

out, 2rrout, r
2 + r2

out + (z − za)2
]

+
J

4πμ0
rout2(−z + zb)R

[
r2 + r2

out, 2rrout, r
2 + r2

out + (z − zb)2
]

+
J

4πμ0
(g(rout, h, θ2) − g(rin, h, θ2) − g(rout, 0, θ2) + g(rin, 0, θ2))

+
J

4πμ0
(w(rout, h, θ1) − w(rin, h, θ1) − g(rout, 0, θ1) + g(rin, 0, θ1))

(A28)

where

g(rout, h, θi) = sin
(

θ2 − θ1

2

)
f(r1, z, θi) (A29)
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and

w(rout, h, θi) = sin
(

θ2 − θ1

2

)
f(r1, z, θi) (A30)

We define f(r1, z, θi as follows:

f(r1, z, θi)

= −
(−2a + b + r2) arctan

[ √
−4a+b+2(r2+r2

1)−r2(z−z1)√
−4a+b+2(r2+r2

1)−r2
√−b+r2

]
√

−4a + b + 2(r2 + r2
1) − r2

√−b + r2
sin(θ − θi)

− log
[
z − z1 +

√
−2a + r2 + r2

1 + (z − z1)2
]

(A31)

a = rr1 cos(θ − θi) (A32)
b = r2 cos(2(θ − θi)) (A33)

Here, the semi-analytical part is given by:

R [i, j, k] =
∫ θ2

θ1

cos(θ̃ − θ1+θ2
2 ) sin(θ − θ̃)(

i − j cos(θ − θ̃)
√

k − j cos(θ − θ̃)
)dθ̃ (A34)

The axial component Hz(r, θ, z) of the magnetic field created by one tile
permanent magnet uniformly magnetized can be expressed as follows:

Hz(r, θ, z)

=
J

4πμ0
rinT

[
r2 + r2

in + (z − zb)2, 2rrin

]
)

− J

4πμ0
rinT

[
r2 + r2

in + (z − za)2, 2rrin

]
+

J

4πμ0
routT

[
r2 + r2

out + (z − za)2, 2rrout

]
− J

4πμ0
routT

[
r2 + r2

out + (z − zb)2, 2rrout

]
+

J

4πμ0
(η(rin, za) − η(rin, zb) − η(rout, za)+η(rout, zb))

+
J

4πμ0
(β(rin, za) − β(rin, zb) − β(rout, za)+β(rout, zb)) (A35)

where

η(x, y) = sin
(

θ2 − θ1

2

)
log [x − r cos(θ − θ2) + t(θ2)] (A36)
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and

β(x, y) = sin
(

θ2 − θ1

2

)
log [x − r cos(θ − θ1) + t(θ1)] (A37)

with
t(θi) =

√
r2 + x2 + (z − y)2 − 2rx cos(θ − θi) (A38)

The semi-analytical part is given by:

T [i, j] =
∫ θ2

θ1

cos
(
θ̃ − θ1+θ2

2

)
√

i − j cos(θ − θ̃)
dθ̃ (A39)
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