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Abstract—A circuit theory-based approach for systematically
deriving all possible lossless balanced composite right/left-handed
transmission lines is described. To illustrate the usefulness of the
proposed approach, novel artificial transmission line unit-cells with
tri- and quad-band behaviour are proposed. It is shown that the
number of right-handed or left-handed frequency bands exhibited by
such transmission lines is determined by the order of its unit-cell. It is
explained why artificial lossless balanced transmission lines exhibit a
stop-band around each pole of their associated continuous transmission
line that can not be closed up. Since this approach allows for the
systematic derivation of such transmission line unit-cells of arbitrary
order, multi-band components based on metamaterial transmission
lines are envisaged.
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1. INTRODUCTION

Artificial transmission lines are lumped-element based circuits that
can mimic the propagation characteristics of actual transmission
lines. These circuits can emulate the propagation characteristics of
TEM-based transmission systems filled with homogeneous, linear, and
isotropic negative refraction index bulk media, despite the fact that
such media have not yet been found or artificially realized. This is the
physical foundation of the so-called ‘metamaterial transmission line
approach’ used to study propagation phenomena in this kind of media
and, more importantly, to develop and implement metamaterial-based
engineering applications [1, 2].

The most basic lossless metamaterial transmission line is the
so-called ‘backward-wave’ transmission line. Although it has been
included in classical textbooks (see [3], for instance) for many years,
it has not been approached as a ‘left-handed’ (LH) or metamaterial
transmission line until very recently. This artificial transmission
line exhibits backward-wave or LH behaviour, i.e., group and phase
velocities are antiparallel [4], over an infinite range of frequencies.
Since group velocity in lossless media (Foster’s reactance theorem) is
always positive, backward-wave or LH and conventional ‘forward-wave’
or ‘right-handed’ (RH) behaviours are associated, respectively, with
negative and positive values of the imaginary part (β, phase constant)
of the propagation constant.

From a practical point of view, the most interesting and useful
lossless metamaterial transmission line proposed so far is the so-
called ‘composite right/left-handed’ (CRLH) artificial transmission
line [1, 2, 5]. It exhibits richer frequency behaviour and can be
easily implemented in different microwave technologies. Many novel
engineering applications involving metamaterials are based on this
particular artificial transmission line.

More recently, new forms of metamaterial transmission lines have
been proposed: the ‘dual’ [6], the ‘extended’ [7, 8], and the double-
Lorentz [9] CRLH transmission lines. The ‘dual’ CRLH exhibits
properties complementary to those presented by the ‘conventional’
CRLH transmission line, while keeping the dual-band frequency
behaviour. On the contrary, the main feature of the ‘extended’ and
the double-Lorentz CRLH-TLs is their potential as quad- and tri-
band, respectively, components due to their more complex frequency
behaviour.

In a general sense, CRLH transmission lines can be defined as
artificial transmission lines which exhibit RH (β > 0) behaviour for
certain frequency bands, and LH (β < 0) behaviour for other frequency



Progress In Electromagnetics Research B, Vol. 13, 2009 153

bands. The CRLH transmission line is said to be ‘balanced’ [1] when
the distributed series impedance and the distributed shunt admittance
have exactly the same critical frequencies (poles and zeros). The need
for an exact match can be the main reason for the difficulties to achieve
a perfect ‘balance’ in actual implementations. The aim of this work is
to derive all possible lossless balanced CRLH transmission lines in a
systematic way and using a circuit theory-based approach. As a result,
already proposed artificial CRLH transmission lines are ‘rediscovered’
and classified in a natural manner, according to the order of their unit-
cell, and many (infinite) new ones are obtained, although for simplicity,
only some of them are described. An interesting conclusion is that
artificial lossless balanced transmission lines exhibit stop-bands around
each pole of their associated continuous transmission line that can not
be closed up, which clearly limits the usable frequency range. Another
interesting conclusion is that the number of RH and LH frequency
bands in an artificial lossless balanced CRLH transmission line is
governed by the order of its incremental unit-cell, which provides a
design tool for metamaterial-based multi-band components.

2. THE IDEAL CONTINUOUS TRANSMISSION LINE

A continuous transmission line is fully characterized by its distributed
(per-unit-length) series impedance Z(s) and its distributed (per-unit-
length) shunt admittance Y (s) [3], where s is the complex frequency.
The propagation constant γ(s) and the characteristic impedance Z0(s)
of this transmission line are given by

γ(s) =
√

Z(s)Y (s) (1)

and

Z0(s) =

√
Z(s)
Y (s)

(2)

respectively.
In the lossless case, Z(ω) = Z(s)|s=jω and Y (ω) = Y (s)|s=jω

are purely imaginary, therefore Z0(ω) = Z0(s)|s=jω is real and can
be, under certain conditions, frequency independent. Under such
circumstances, the continuous transmission line can easily be matched
and propagates energy at all frequencies. This is the so-called ‘balanced
condition’ or ‘impedance matched condition’ as defined in [1] and [2],
respectively.

To achieve such a condition, namely Z0(s)|s=jω = Z0∀ω, Z(ω) and
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Y (ω) must verify
Z(ω)
Y (ω)

= Z2
0 (3)

that is,

Z(ω) =
Z(ω)
Z0

=
Y (ω)
Y0

= Y (ω) (4)

and
Z(ω) = Y (ω) = γ(ω) (5)

with Y0 = Z−1
0 , and γ(ω) = jβ(ω) = γ(s)|s=jω. This result

means that, for obtaining a ‘balanced’ continuous transmission
line, the normalized per-unit-length series impedance Z(ω) and
shunt admittance Y (ω) must be identical, and therefore (and most
importantly) the propagation constant is also identical to them. In
practical terms, this means that the propagation characteristics of
lossless balanced transmission lines are just those exhibited by the
immittance function of a lossless one-port network. Therefore the
propagation constant should be a real positive function with all poles
and zeros on the jω axis. This function can be, in general, expressed
as [10]

γ(s) = Z(s) = Y (s) =
K0

s
+

2K1s

s2 + ω2
1

+
2K3s

s2 + ω2
3

+ . . . + K∞s (6)

Poles and zeros of real positive functions must alternate on the
jω axis, and there must be either a pole or a zero at ω = 0 and at
ω = ∞ [10]. Any lossless balanced transmission line that satisfies (5)
will exhibit an alternate left-handed/right-handed response, whether
beginning with a left-handed band or with a right-handed one. As
an example, a possible frequency response for a function like (6),
and therefore, a particular dispersion diagram for a lossless balanced
continuous transmission line, is shown in Fig. 1.

It is evident from Fig. 1 that the generic frequency dependence
of the phase constant of any lossless balanced continuous transmission
line exhibits frequency bands where β > 0 (RH behaviour) and others
where β < 0 (LH behaviour). It is also clear that these bands,
RH and LH regions, must alternate, and that the higher the order
of the immittance function, the higher the total number of RH and
LH regions in the propagation constant (increasing the complexity
of the dispersion diagram). It can also be concluded that the first
(lowest) frequency band may correspond to either RH or LH behaviour,
depending on whether the distributed immittance function has a zero
or a pole, respectively, at the origin. In particular, lossless balanced
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Figure 1. A possible dispersion diagram (real positive function) of a
lossless balanced continuous transmission line (shadowed regions: LH
bands). In this case the values of Ki constants have been adjusted to
obtain zeros at ω = 0, ω = ω2 and ω = ∞.

continuous transmission lines can be classified by the order of their
distributed immittance functions. From the preceding discussion it
follows that the total number of RH and LH regions for a given unit-
cell is just the order of its distributed immittance functions.

Equation (6) also provides the circuit model for the distributed
series impedance Z(s) and shunt admittance Y (s) of lossless balanced
continuous transmission lines of arbitrary order. The partial fraction
expansion of the distributed immittance functions defined by (6)
(Foster synthesis) yields the generic circuit topology shown in Fig. 2.
Other equivalent topologies (Cauer-type networks, for instance) are
also valid and could provide alternative design options which could be
more appropriate for specific implementations.

3. FIRST LOWER-ORDER LOSSLESS BALANCED
TRANSMISSION LINES

The theoretical background presented and discussed in the previous
section provides a systematic approach for deriving all possible lossless
balanced transmission lines of arbitrary order. The per-unit-length
circuit models, and the corresponding frequency responses (dispersion
diagrams), of the first eight lower-order transmission lines are depicted
in Table 1. In this Table the terms conventional and dual (although
not generally accepted) are used to denote those structures with,
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Figure 2. Generic circuit model for the distributed series impedance
Z(s) and shunt admittance Y (s) of a lossless balanced continuous
transmission line of arbitrary order.

respectively, a zero (RH first frequency band) or a pole (LH first
frequency band) at the origin.

It is immediately apparent that the two first-order unit-cells (#1
and #2 in Table 1) correspond to the so-called RH and LH transmission
lines, respectively. It is also apparent that the two second-order unit-
cells (#3 and #4) are the so-called ‘dual’ and ‘conventional’ CRLH
transmission lines, respectively, that the double-Lorentz is the first
third-order unit-cell (#5), and that the second fourth-order unit-cell
(#8) is the so-called ‘extended’ CRLH transmission line. However, the
remaining unit-cells in Table 1 are new. One of them (#6) is a third-
order unit-cell (three RH/LH regions) and provides new metamaterial
components with potential tri-band performance. The other (#7) is
a different fourth-order unit-cell with, obviously, four RH/LH regions
and, therefore, potential quad-band applications as its accompanying
‘extended’ CRLH transmission line.

Obviously, Table 1 can be easily and systematically completed
with as many increasing order unit-cells as desired. Nevertheless, it
is worth mentioning that no unit-cell with an order greater than four
has been proposed so far, thus all of them should also be considered as
novel lossless balanced CRLH transmission line unit-cells. The detailed
properties and specific applications of these new unit-cells are to be
explored.
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Table 1. First eight lower-order lossless balanced transmission line
per-unit-length circuit models and dispersion diagrams.

Conventional realization 
Schematic dispersion diagram 

(LH behavior frequency-bands shadowed)

1  

#1 

2  

#3
3  

#5
4  

#7
Dual realization 

1  

#2 
2  

#4
3  

#6
4  

#8
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4. ARTIFICIAL LOSSLESS BALANCED TRANSMISSION
LINES: STOP-BANDS AND CUTOFF FREQUENCIES

Artificial transmission lines are formed by the cascade interconnection
of a sequence of identical (uniform transmission line) symmetrical
and reciprocal unit-cells. The resulting periodic network mimics to
some extent the propagation characteristics of the ideal continuous
transmission line. The aim of this section is to explore the limitations of
this periodic network-based implementation. The spatial discretization
thusly introduced mainly results in a dispersion diagram with pass-
bands and stop-bands (propagation is not possible over an infinite
range of frequencies any longer), and therefore in a frequency
dependent characteristic impedance which complicates the matching
of the structure.

The most appropriate tool for analysing these periodic structures
is the image-parameter filter theory. According to this, the properties
of a periodic structure can be obtained from the properties of its
unit-cell [9]. Therefore only the analysis of the behaviour of the
unit-cell is required to infer the behaviour of the whole periodic
structure. Since only two parameters, propagation constant and
characteristic impedance, are required to fully describe the behaviour
of transmission lines (artificial or not), only the image impedance
(just one image impedance in the case of symmetric unit-cells) and
the propagation factor of the unit-cell have to be calculated. The
characteristic impedance of the periodic artificial transmission line is
the image impedance of its unit-cell, while the propagation constant is
the propagation factor of its unit-cell divided by ∆z.

As previously discussed, any lossless balanced continuous CRLH
transmission line is fully defined by its normalized distributed (per-
unit-length) series impedance Z(ω) or by its normalized distributed
(per-unit-length) shunt admittance Y (ω), since Z(ω) = Y (ω) = jβ(ω)
in the balanced case. The corresponding unit-cell to be cascaded to
form the artificial transmission line can be modeled, for instance, by
either its T or its Π circuit models (Fig. 3), so there are at least two
possible periodic networks, with different performances, for a given
continuous transmission line.

The image impedance Zc and the propagation factor g = a + jb
(a and b are the attenuation and phase factors, respectively) of
a symmetrical two-port network defined by its transmission ABCD
parameters are given by [12]

Zc =

√
B

C
, (7)
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and
g = cosh−1(A), (8)

respectively. The elements of the ABCD matrices of the lossless
symmetrical unit-cells of Fig. 3 are

AT = DT = 1 +
ZaYb

2

BT = Za

(
1 +

ZaYb

4

)

CT = Yb

(9)

for the T unit-cell, and

AΠ = DΠ = 1 +
ZaYb

2
BΠ = Za

CΠ = Yb

(
1 +

ZaYb

4

) (10)

for the Π unit-cell, with Za = Z0Z(ω)∆z, Yb = Y0Y (ω)∆z, and ∆z the
‘physical length’ of the associated continuous transmission line section.
Therefore the image impedances of the unit-cells are

ZcT(ω) = Z0

[
1− (β(ω)∆z)2

4

] 1
2

(11)

for the T unit-cell, and

ZcΠ(ω) = Z0

[
1− (β(ω)∆z)2

4

]− 1
2

(12)

for the Π unit-cell. These expressions clearly demonstrate that the
frequency behaviour of these two image impedances (two possible
artificial transmission line implementations) are quite different.
However the propagation factor for both implementations is exactly
the same and is given by

gT(ω) = gΠ(ω) = a(ω) + jb(ω) = cosh−1

[
1− (β(ω)∆z)2

2

]
(13)

Pass-bands occur at frequencies where the image impedance is
purely real, while stop-bands occur at frequencies where the image



160 Camacho-Peñalosa et al.

Figure 3. T and Π circuit models of the artificial transmission line
unit-cell.

impedance is purely imaginary [10]. Thus transitions between stop-
bands and pass-bands occur at frequencies (cutoff frequencies, ωc)
where the expression within the square roots in (11) and (12) vanishes,
namely, when

|β (ωc)|∆z = 2 (14)

Propagation takes place at frequencies where

|β(ω)|∆z ≤ 2 (15)

therefore the main consequence of the spatial discretization of the
continuous transmission line is the truncation of the dispersion
diagram: no values of |β(ω)| greater than 2/∆z can be mimicked by
the periodic networks defined in Fig. 3. This means that the frequency
bands close to the poles of the phase constant of the continuous
transmission line can not be emulated by them (Fig. 4 third-order
unit-cell #6). That is, in any practical artificial transmission lines
based on T or Π circuit models there is always a stop-band around
each pole that by no means can be closed up. It is also clear that
the bandwidth of these regions are governed by the ‘size’ (∆z) of the
associated continuous transmission line section, that is, by the element
values of the cascaded unit-cell: the smaller the value of ∆z, the smaller
the bandwidth of these stop-bands.
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Figure 4. Dispersion diagram (β: blue) of a continuous lossless
balanced CRLH transmission line: ωCi, ω′Ci are the normalized cutoff
frequencies introduced by its implementation as a T or Π circuit
model-based artificial transmission line for two different values of ∆z
(artificial-transmission-line section ‘size’).

Inequality (15) defines the pass-bands of the resulting artificial
transmission lines. In such pass-bands the propagation factor is purely
imaginary (gT(ω) = gΠ(ω) = jb(ω)) and is given by (13)

cos b(ω) = 1− (β(ω)∆z)2

2
(16)

It should be noted that phase factor value range from −π to +π
within the pass-bands. For small values of |β(ω)|∆z Equation (16)
yields

b(ω) ≈ β(ω)∆z (17)

This result indicates that any realizable phase constant β(ω) can be
mimicked with the desired accuracy by cascading a sufficiently high
number of discrete unit-cells with electrical lengths that are much
smaller (in magnitude) than π (subwavelength region). However,
this condition could be very difficult to fulfill in a particular physical
implementation, mainly due to the required values for the elements of
the unit-cell, and in fact constitutes the main limitation of artificial
CRLH transmission lines.
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Figure 5. Electrical length of a lossless balanced continuous
transmission line and propagation factor of its discrete implementation
by a T or Π periodic network for a given value of ∆z (third-order unit-
cell #6) (ideal continuous electrical length (β∆z): blue; propagation
factor (g = a + jb), b: red; a: green).

Within the stop-bands the propagation factor is complex. The
phase factor can only take one of the two possible values (π or −π),
while the attenuation factor a(ω) is frequency dependent and is given
by

a(ω) = cosh−1

[
(β(ω)∆z)2

2
− 1

]
(18)

It is clear that the attenuation factor vanishes at the cutoff
frequencies (a(ωc) = 0) and increases indefinitely as the operation
frequency approaches pole frequencies. The relevant differences
between the propagation characteristics of the lossless balanced
continuous transmission line and its periodic T or Π network-based
implementation can be observed in Fig. 5, where a particular case
(third-order unit-cell #6) has been depicted for illustrative purposes.

The image impedance for both implementations are given by
Equations (11) and (12), and are, as previously commented, purely
real within the pass-bands and purely imaginary outside them. It
is worth mentioning that the phase constant and the characteristic
impedance of both continuous and discrete transmission lines only
coincide at the frequency where the phase constant is zero. At any
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other frequency both responses are different, and diverge from each
other as the operation frequency approaches pole frequencies.

Without going into further detail, the image impedance for the T
unit-cell can be expressed, in the stop-bands (defined by |β(ω)|∆z > 2),
as

ZcT(ω) = ±jZ0

[
(β(ω)∆z)2

4
− 1

] 1
2

(19)

In this expression, the ‘plus’ and ‘minus’ solutions correspond to
β(ω) > 0 and β(ω) < 0, respectively, i.e., the image impedance for
the T unit-cell is inductive for the frequency range below the pole
(β(ω) > 0), and capacitive above the pole (β(ω) < 0).

Similarly, the image impedance for the Π unit-cell is given, in the
stop-bands, by

ZcΠ(ω) = ∓jZ0

[
(β(ω)∆z)2

4
− 1

]− 1
2

(20)

In this expression, the ‘minus’ and ‘plus’ solutions correspond to
β(ω) > 0 and β(ω) < 0, respectively, i.e., the image impedance for
the Π unit-cell is capacitive below the pole (β(ω) > 0) and inductive
above the pole (β(ω) < 0). An illustrative example (third-order unit-
cell #6) of the frequency behaviour of both image impedances has been
depicted in Fig. 6.

Cutoff frequencies are defined by Equation (14). Since the phase
constant β(ω) is given by the polynomial defined by Equation (1), the
determination of the cutoff frequencies of a given artificial transmission
line requires to find the roots of a polynomial with a degree equal to
the order of the transmission line. Therefore cutoff frequencies can
only be analytically computed for low-order transmission lines (linear,
quadratic, cubic or quadratic equations, respectively, for artificial
transmission lines up to the fourth-order).

5. A THIRD-ORDER ARTIFICIAL LOSSLESS
BALANCED CRLH TRANSMISSION LINE

To illustrate the approach described so far, one of the two third-order
artificial lossless balanced CRLH transmission lines is analysed in this
section (#6 in Table 1). Let us consider the artificial lossless balanced
transmission line defined by the third-order unit-cell shown in Fig. 7.

The dispersion diagram of its associated ideal continuous
transmission line is shown in Table 1 (#6). The phase constant has
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Figure 6. Normalized image impedance as a function of frequency
for the discrete implementation of a lossless balanced transmission line
(T and Π third-order unit-cell #6) by a periodic network for a given
∆z value (z̄cΠ: green, z̄cT: red, solid line —– real part; dashed line
- - - imaginary part). For the sake of clarity the electrical length of the
ideal continuous transmission line has been also included (β∆z: blue.

two poles, at ω = 0 and ω = ω1, and two zeros, at ω = ω0 and
ω = ∞. Therefore, it exhibits two LH frequency bands and just one
RH frequency band. The location of these frequency bands can be
fixed by the designer by just specifying the values for ω0 and ω1. The
designer can also set the impedance level (Z0) of the transmission line.
It is quite straightforward to show that all the element values defining
the unit-cell can be obtained from these parameters (ω0, ω1 and Z0)
and C0a or, alternatively, L0b. The required equations are

C1a = C0a
ω2

0

ω2
1 − ω2

0

, (21)

L1a =
1

C0a

ω2
1 − ω2

0

ω2
0ω

2
1

, (22)

L1b = L0b
ω2

0

ω2
1 − ω2

0

, (23)

C1b =
1

L0b

ω2
1 − ω2

0

ω2
0ω

2
1

, and (24)

Z2
0 =

L0b

C0a
(25)
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L0b

L1b 

C1b 

L1a

C1a

C0a 

Za

Yb

Figure 7. Series impedance (Za) and shunt admittance (Yb) of the
third-order artificial lossless balanced CLRH transmission line unit-
cell.

The phase constant of the associated ideal continuous transmission
line can be expressed as

β(ω)∆z =
1

ω0

√
L0bC0a

ω̄2
1

(
ω̄2 − 1

)

ω̄2
(
ω̄2

1 − 1
) (26)

with ω̄ = ω/ω0
, and ω̄1 = ω1/ω0

. Fig. 5 depicts the dispersion diagram
of this continuous transmission line (Equation (26)) and that of its
discrete implementation by the periodic network defined by the unit-
cell shown in Fig. 7, Equations (16) and (18), for a particular case:
ω0 = 2π109rad/s, ω1 = 4π109rad/s, Z0 = 50Ω, and C0a = 1pF .
Fig. 5 confirms the expected behaviour of the T or Π periodic network-
based implementation: a good emulation of the ideal (continuous)
dispersion diagram near the zeros, which degrades as the operation
frequency approaches the cutoff frequencies, and the existence of stop-
and pass-bands as a result of the discretization. Cutoff frequencies are
computed from Equation (14) in conjunction with Equation (26). In
this case they can be analytically computed by solving the resulting
cubic polynomial.

The different frequency behaviour of the image impedance of T-
and Π-based artificial transmission lines is shown in Fig. 6. This
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Figure 8. Normalized cutoff frequencies as a function of C0a.

 

 

Figure 9. Phase factor (‘b’ as a function of ω/ω0) of the artificial
transmission line as a function of C0a (in pF; see inset).

figure clearly illustrates the different dispersive behaviours of these
two possible implementations.

It is evident that, after fixing the values for ω0, ω1, and Z0,
there is only one degree of freedom left: C0a or, alternatively, L0b.
This degree of freedom can be used to modify, within certain limits,
the location of cutoff frequencies or the slope of the phase factor at
ω = ω0, for instance. Figs. 8 and 9 depict the influence of C0a,
for the particular case under consideration, on these two parameters,
and provides, together with the other figures in this section, a rather
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complete description of what can be achieved by using this artificial
transmission line.

6. CONCLUSIONS AND FURTHER REMARKS

A circuit theory-based investigation of the frequency behaviour of
artificial lossless balanced CRLH transmission lines has been presented.
The associated ideal continuous transmission line, from which the
artificial transmission line is derived, has been used as a simple and
efficient model to analyze the limitations of a periodic network-based
implementation. It has been shown that artificial lossless balanced
transmission lines based on T or Π unit-cells will always exhibit a stop-
band around each pole of their associated continuous transmission line
that can not be closed up.

This investigation has also yielded the systematic derivation of all
possible lossless balanced CRLH transmission lines and the conclusion
that the number of RH or LH frequency bands is controlled by the
order of its incremental unit-cell. The novel unit-cells obtained in
this work as well as those which have already been proposed are just
a few examples of lossless balanced artificial transmission lines that
can be implemented. As mentioned before, the approach proposed in
this work allows the systematic derivation of such transmission line
unit-cells of arbitrary order, and thus paves the way for multi-band
components based on metamaterial transmission lines.

The physical implementation of artificial lossless balanced
CRLH transmission lines deserves some comments. As described,
these artificial transmission lines can be formed by the cascade
interconnection of a certain number of identical symmetrical and
reciprocal lumped-element networks (unit-cells). The required lumped
elements can be implemented by using really lumped components such
as, for instance, chips in ‘surface mount technology’ (SMT), or by using
‘distributed-lumped’ components, where ‘distributed-lumped’ stands
for distributed structures (such as, for instance, transmission line
sections) mimicking, up to a certain frequency, the constitutive relation
of lumped components [1]. Consequently, the described analysis is only
valid up to this frequency, and this happens well before other modes
associated to the distributed components can appear. Beyond that
frequency the analysis cannot be extrapolated, since the distributed
structures no longer mimic the desired lumped element behaviour.

Many novel applications of such low-order artificial transmission
lines have been already proposed and designed by using this lumped-
element approach (see [1] for an excellent review of this topic).
Obviously, the usable frequency range of the resulting artificial
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transmission line is limited by the highest frequency at which
the components (truly lumped or distributed) can be reasonably
considered as lumped. The general properties exhibited by artificial
transmission lines, within the frequency band where the lumped
description of ‘lumped’ or ‘distributed’ components holds, have been
dealt with in this paper. In these artificial transmission lines the
appearance of stop-bands around the poles is a consequence of the
unavoidable discretization required to physically implement them, and
they appear at frequencies for which the wavelength in the surrounding
environment is large enough (compared to the size of the component) to
justify the lumped element description of the constitutive components
of the artificial transmission line. In particular, this wavelength
has nothing to do with the ‘mimicked’ wavelength in the artificial
transmission line.

Whereas the implementation of higher-order artificial transmission
lines may pose some challenges, the present availability of physical
realizations for all the required lumped element branches, i.e., series
or shunt capacitor and inductor, series or shunt resonant and anti-
resonant branches, allows the authors to believe their design and
fabrication will not be hampered by any major issue.

Although the discussion is limited to ‘balanced’ transmission lines,
it is evident that ‘unbalanced’ versions of all the proposed unit-cells
can be easily derived by just making the critical frequencies of the
distributed series impedance and the distributed shunt admittance
different. The main difference between the unbalanced transmission
line derived in this manner and any other that could be envisaged is
that the former can be ‘balanced’ whenever required by just ‘retuning’
its critical frequencies.
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