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Abstract—An analytical investigation has been presented of Au nano-
coated dielectric optical fibers. The propagation constants of different
transverse TE and hybrid EH modes are obtained corresponding to
varying nano-coating thickness. It has been observed that the Au-layer
has its profound effect on the number of propagating modes in the fiber,
and the number of sustained modes is much reduced with the increase
in Au-layer thickness. For the sake of comparative investigation, the
modal behavior of three-layer dielectric fibers is also taken into account
together with the Au nano-coated four-layer fiber. It is reported that
the Au-layer has the effect of mode proliferation with simultaneous
reduction in their propagation constant values.
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1. INTRODUCTION

Optical waveguides have their importance in versatile applications,
viz. communication purposes, sensing technology as well as integrated
optical devices. In this context, guides with varieties of new forms of
geometrical cross-sections and/or composite materials have been put
into applications [1–10].

The investigation of electromagnetic (EM) behavior of conven-
tional optical fibers does not involve much difficulty. Studies related to
many types of optical fibers with different refractive index (RI) profiles
and different numbers of claddings have appeared in the literature [11–
14]. However, these investigations mostly implemented oversimplified
assumptions. A strict analytical approach becomes forbiddingly diffi-
cult to tackle with, which is essentially owing to the presence of mul-
tiple claddings in the fiber.

Application of optical waveguides in sensing technology has now
been well-established [15–19]. In this context, fibers with gold (Au)
nano-coating are of special mention as these are much advantageous
in chemical sensing; Au nano-particles can efficiently react with the
ambient environment [20, 21]. By using such Au-coated fibers, the
optical sensitivity of the system can also be enhanced on demand
by controlling the thickness of the nano-layer coating. Further, these
fibers are considered to be quite useful even for the detection of weak
chemical reactions without sacrificing the measurement sensitivity.

In Brillouin-based distributed fiber-optic sensors, fibers with
multiple layers have also been used as efficient sensing mediums to
sense both strain and temperature [22–24]. In order to perform a
thorough investigation of the sensing aspects of Au-coated fibers, the
knowledge of their modal characteristics is vital in respect of their
propagation constants [25]. The present communication aims to report
an analytical investigation of optical fibers with emphasis on their
modal behavior. The fiber structure is essentially a multilayered
dielectric fiber loaded with a metallic nano-layer. There is a
considerable amount of RI difference between the different regions of
the fiber. This makes the use of Maxwell’s field equations necessary.

The analysis essentially requires the estimation of fields in the
different fiber regions. Strictly speaking, the fields in the metallic
region must be vanishing. However, as the relevant fiber region is nano-
sized thick, there must be some amount of field present in that region,
and for this purpose, Hankel function is particularly implemented.
Finally, the field in the Au-coated region is taken to be the linear
combination of the modified Bessel function of the second kind and
Hankel function [26]. With these assumptions, a rigorous analytical
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treatment is performed for the Au-coated fiber emphasizing the modal
aspects. Also, in order to visualize the effect of additional nano-layer
of gold upon the dielectric fiber, a comparative modal analysis of the
Au-coated fiber and a three-layer dielectric fiber is also presented.

2. ANALYTICAL TREATMENT

We consider the meridional cross-section of a four-layer fiber of which
the third layer is assumed to be loaded with Au-coated nano-layer.
The outermost layer is considered as the infinitely extended free-space
having an RI of n4 = 1. RIs of the other different layers are represented
as n1, n2, and n3 with n1 > n2 > n3. The analysis of the fiber
structure essentially needs the use of the cylindrical polar coordinate
system (ρ, φ, z); z-axis being the optical axis of the fiber along which
the propagation takes place. There are three interfaces in the fiber
separating the different regions, and the parametric boundaries of the
different layers are considered to be ρ = ρ1, ρ = ρ2 and ρ = ρ3 with
ρ1 < ρ2 < ρ3. Thus, the region with ρ3 − ρ2(= δ) is assumed to have
the Au nano-layer coating.

Solutions of the wave equation with cylindrical symmetry for axial
components of the electric/magnetic fields Ez and Hz are sought for
the four regions, and then matched at the interfaces for continuity
conditions. The wave equation is

∂2ψ

∂ρ2
+

1
ρ

∂ψ

∂ρ
+

1
ρ2

∂2ψ

∂φ2
+ q2ψ = 0 (1)

where ψ stands for either Ez or Hz, as the case may be. Also, q2 =
ω2µε−β2 with ω as the angular frequency of the wave in the unbounded
medium, β as the axial component of the propagation constant, and
µ and ε, respectively, as the permeability and permittivity of the
medium.

In order to compare the analytical results for the fibers with and
without Au-coating, we consider the case of a three-layer fiber as well.
As such, we now deal with the two situations individually, viz. Case
I corresponding to the four-layer fiber with Au-coated nano-layer, and
Case II corresponding to the three-layer dielectric fiber.

2.1. Case I: Fiber with Au-coating (Four-layer Fiber)

In the case of such a fiber, in the central core section, the solution
can be taken in the form of Bessel function Jν(·) of the first kind; ν
representing the azimuthal periodicity, which can take only discrete
values. Essentially the symbol ν represents the mode index. In
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the outermost clad region, the field has a decaying character as one
moves away from the fiber axis, and therefore, the solution can be
best represented by the modified Bessel function Kν(·) of the second
kind. In the remaining two intermediate regions, the solutions must be
formed by linear combinations — in the region next to the fiber core,
by Bessel function of the first and the second kinds, i.e., Jν(·) and Yν(·),
and in the remaining region before the outermost clad, by the modified
Bessel function of the second kind and Hankel function, i.e., Kν(·)
and H

(1)
ν (·) [26]. Based on these considerations, the axial components

of electric/magnetic fields in the different regions, illustrated by the
suffices 1, 2, 3 and 4, of the fiber may be written as follows:

Region I: core (0 ≤ ρ ≤ ρ1)

Ez1 = C1Jν(γ1ρ)ejνφ (2a)

Hz1 = C2Jν(γ1ρ)ejνφ (2b)

Region II: inner cladding (ρ1 ≤ ρ ≤ ρ2)

Ez2 = {C3Jν(γ2ρ) + C4Yν(γ2ρ)} ejνφ (3a)

Hz2 = {C5Jν(γ2ρ) + C6Yν(γ2ρ)} ejνφ (3b)

Region III: Au coated-layer (ρ2 ≤ ρ ≤ ρ3)

Ez3 =
{

C7Kν(γ3ρ) + C8H
(1)
ν (γ3ρ)

}
ejνφ (4a)

Hz3 =
{

C9Kν(γ3ρ) + C10H
(1)
ν (γ3ρ)

}
ejνφ (4b)

Region IV: outer cladding (ρ ≥ ρ3)

Ez4 = C11Kν(γ4ρ)ejνφ (5a)

Hz4 = C12Kν(γ4ρ)ejνφ (5b)

In Eqs. (2a)–(5b), C1–C12 represent unknown constants to be
determined by the boundary conditions. Also, γ1, γ2, γ3 and γ4 are
the quantities corresponding to the different regions of the fiber; these
parameters are defined as follows:

γ2
1 = k2

1 − β2 = ω2µε1 − β2 (6a)
γ2
2 = β2 − k2

2 = β2 − ω2µε2 (6b)
γ2
3 = β2 − k2

3 = β2 − ω2µε3 (6c)
γ2
4 = β2 − k2

4 = β2 − ω2µε4 (6d)
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In Eq. (6), ε1, ε2, ε3 and ε4 are the dielectric constants, and µ is
the relative permeability of the medium. It should be remembered
that ni =

√
εi, εi refers to the relative dielectric permittivity of

medium i, and β is the longitudinal component of the propagation
constant. Using the axial (or the longitudinal) components of the
electric/magnetic fields, as described by Eqs. (2a)–(5b), the tangential
field components in the different regions can be developed [27] as

Eρ1 =
{
−C1

jβ

q2
γ1J

′
ν(γ1ρ) + C2

νωµ

q2ρ
Jν(γ1ρ)

}
ejνφ (7a)
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q2
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In Eqs. (7a)–(14b), prime represents the differentiation with respect to
the argument, and the parameter q is defined as

q2 = k2 − β2 = ω2µε− β2 (15)

The continuity conditions require that the tangential components of
the electric field E and the magnetic field H must be smooth at the
different layer interfaces. As there are three interfaces in the fiber,
there can be twelve equations altogether when the boundary conditions
are matched at the layer interfaces with the parametric coordinates
ρ = ρ1, ρ = ρ2 and ρ = ρ3. Those equations are not presented in the
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paper keeping in mind the length of the equations. In order to have
the equations to be consistent, the determinant (∆1) formed by the
coefficients of those equations must vanish, i.e.,

∆1 = 0 (16)

The explicit form of ∆1, which is a 12 × 12 determinant, is also
not incorporated into the paper. Eq. (16) illustrates the eigenvalue
equation for the four-layer fiber with Au nano-coating. The solutions
to Eq. (16) will provide the allowed values of the propagation constants
of modes sustained in the fiber. The left hand side of Eq. (16) is
complex in nature, and therefore, this equation may be rewritten as

∆11 + j∆12 = 0 (17)

where ∆11 and ∆12, respectively, represent the real and the imaginary
parts of ∆1. In order to get the solutions of Eq. (17), both the real
and the imaginary parts must be zero at the same time, and the
corresponding values of β will represent the propagation constants of
the sustained modes.

2.2. Case II: Fiber without Au-coating (Three-layer Fiber)

For three-layer dielectric fibers, the electric/magnetic fields in the
central core section can be taken in the form of Bessel function Jν(·) of
the first kind, whereas those in the inner clad can be represented by the
linear combination of Bessel functions of the first and the second kinds,
i.e., Jν(·) and Yν(·). In the outer clad section, field essentially has
decaying character with increasing radial parameter, and therefore, the
most suitable solution in this region can be represented by the modified
Bessel function Kν(·) of the second kind. The axial components of the
electric/magnetic fields (i.e., Ez and Hz) for the different regions of the
fiber can be written on the basis of these considerations. Those axial
components can be used to determine the transverse field components
(i.e., Eρ, Hρ and Eφ, Hφ) corresponding to the different regions of the
fiber. These field components are not explicitly stated in the text, but
used to develop the equations that can be obtained after implementing
the continuity conditions at the layer interfaces. As there are two
interfaces in the fiber, there can be eight equations generated altogether
after implementing the boundary conditions at the layer interfaces
with the parametric coordinates ρ = a and ρ = b (with a < b). In
order to simplify the situation, the outermost region is considered to
be infinitely extended. The form of this set of eight equations is as
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follows:

A1Jν(γ1a)−A3Jν(γ2a)−A4Yν(γ2a) = 0 (18)
A2Jν(γ1a)−A5Jν(γ2a)−A6Yν(γ2a) = 0 (19)
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2
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A3Jν(γ2b) + A4Yν(γ2b)−A7Kν(γ3b) = 0 (22)
A5Jν(γ2b) + A6Yν(γ2b)−A8Kν(γ3b) = 0 (23)
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In Eqs. (18)–(25), A1 − A8 are unknown constants to be determined
by the boundary conditions. Also, γ1, γ2 and γ3 are the quantities as
defined in Eq. (6). For Eqs. (18)–(25) to be consistent, the determinant
(∆2) formed by the coefficients A1 −A8 must vanish, i.e.,

∆2 = 0 (26)

∆2 is essentially a 8× 8 determinant, the explicit form of which is not
incorporated into the text. Eq. (26) determines the dispersion relation
for the three-layer dielectric fiber without Au-coating, the solutions of
which will provide the actual values of modal propagation constants
satisfied by the fiber. Once again the form of ∆2 is complex, and
therefore, one may rewrite Eq. (26) as

∆21 + j∆22 = 0 (27)

where ∆21 and ∆22 are, respectively, the real and the imaginary parts
of ∆2. Obviously, the valid propagation constants of the sustained
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modes in the fiber will be only those for which both ∆21 and ∆22

simultaneously vanish.

3. RESULTS AND DISCUSSION

On the basis of the eigenvalue Eq. (17), it will be rather interesting to
analytically study the modal properties which would give an insight
into the propagation characteristics of fibers having Au nano-layer
coating. For the sake of comparison, the eigenvalue Eq. (27) is also
considered, which corresponds to the case of three-layer dielectric
fibers. As we used Maxwell’s equations for the development of
dispersion relations, the analysis becomes much rigorous, and we
identify the obtained modes as transverse electric (TE) and hybrid
EH modes.

In our numerical computation, the operating wavelength λ is
taken to be 850 nm, which falls in the visible region of the EM
spectrum. We consider the RI values n1 and n2 as 1.4488 and 1.444,
respectively. Also, the Au-coated layer has the RI as n3 = 1.42.
Further, the parametric boundaries ρ1 and ρ2 are taken to be 4.1µm
and 62.5µm, respectively, and the outermost layer is assumed to be
infinitely extended. With these parameters, the results are obtained
for varying Au-layer thickness ρ3 under the consideration that all the
regions are non-magnetic in nature (µ1 = µ2 = µ3 = µ4 ≈ µ0, i.e., the
relative permeability of the free-space).

Figure 1 shows the logarithmic plots of the real (∆11) and
the imaginary (∆12) parts of the eigenvalue Eq. (17) against the
propagation constant β, the values of which are limited by the
condition of sustained guidance, i.e., n1k ≥ β ≥ n2k; k being the free-
space propagation constant. These plots are obtained corresponding
to the azimuthal mode index ν = 0, and the Au nano-layer thickness
δ(= ρ3 − ρ2) as 20 nm. We observe that the curves are oscillatory in
nature, and simultaneous intersection of the two curves (corresponding
to ∆11 and ∆12, as shown by solid and dashed lines, respectively,
in Fig. 1) with the horizontal axis will provide the solutions to the
Eq. (17), or in other words, the modes supported by the fiber. In this
way, approximate values of the propagation constants of the sustained
modes may also be estimated. We observe from Fig. 1 that there are
some thirteen TE modes sustained in the fiber structure with different
values of propagation constants.

In order to observe the effect of the Au-layer thickness on the
number of sustained modes, we repeated the computation for different
values of δ, namely 20 nm, 50 nm, 100 nm, 150 nm, and 200 nm.
However, in the paper, we incorporated the illustrative logarithmic
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Figure 1. Logarithmic plots of ∆11 and ∆12 against β for TE modes
with 20 nm Au coating thickness.

plots of the real and the imaginary parts corresponding to δ = 20nm
and 150 nm only. In the case of δ = 150 nm, we observe from Fig. 2 that
the number of sustained TE modes is much reduced; approximately
seven modes are supported by the fiber. This is essentially attributed
to the increased Au-layer thickness in this case, when the fiber attains
the mode-suppression property owing to having loaded with a metallic
layer. With further increased value of the Au-layer thickness, viz.
δ = 200 nm, the number of supported modes can be seen as further
reduced, and in this case, it can be observed that approximately
five modes are sustained within the fiber (the relevant plot is not
incorporated into the text). As stated before, the phenomenon of
reduction of the number of sustained modes is due to the enhanced
thickness of the Au nano-layer.

From the inspection of the joint intersection of the real and the
imaginary parts (of Eq. (17)) with the β-axis in Figs. 1 and 2, one
may estimate the propagation constants of the different TE modes
supported in the fiber. The Au coating layer essentially has its
profound effect on the number of propagation modes. In order to
have a look at the trend of the variation in the propagation constants
of the modes with the Au-layer thickness, a plot of Fig. 3 is performed
illustrating the cases of the first three TE modes, viz. TE01, TE02 and
TE03. We observe that, for all the three types of modes, the β-values
are relatively small corresponding to the situation when the Au-layer



Progress In Electromagnetics Research, PIER 90, 2009 279

10.67 10.68 10.69 10.70 10.71
-1500

-1000

-500

0

500

1000

1500

Lo
g(

D 11
);

Lo
g(

D 12
)

D11; D12

n = 0; d�= 150 nm

b (m m-1 )

Figure 2. Logarithmic plots of ∆11 and ∆12 against β for TE modes
with 150 nm Au coating thickness.
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Figure 3. Variation of the propagation constants of TE modes with
the nano-coating thickness.

thickness is small. These (β-values) show an initial rise in their values
with increasing layer thickness, and then become almost constant with
further increase in the thickness values. We also observe that the
lowest mode (TE01) has the least value of propagation constant, which
is very much obvious so far as the phenomenon of wave propagation
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in bounded medium is concerned. The trend of the variation of
the propagation constant with the nano-coating thickness may be
attributed to the size of Au nano-particles. It may be considered
that, with the increase in the nano-coating thickness, the Au nano-
particles would acquire larger size owing to their greater accumulation.
This, in turn, affects the modal confinement in the nano-layer, and
with the increase in the nano-layer thickness, their propagation gets
almost saturated. A thorough investigation in this regard is currently
underway, and is expected to be taken up in a future communication
after the Au nano-particle deposition chemistry is well-understood.

10.67 10.68 10.69 10.70 10.71
-1500

-1000

-500

0

500

1000

1500

Lo
g(

∆ 11
); 

Lo
g(

∆ 12
)

β (µm−1)

 ∆
11
;  ∆

12

ν = 1; δ = 20 nm

Figure 4. Logarithmic plots of ∆11 and ∆12 against β for EH modes
with 20 nm Au coating thickness.

We performed the computation for hybrid modes too for which
the azimuthal mode index ν = 1. In this case also we considered the
situations with different values of δ, namely 20 nm, 50 nm, 100 nm,
150 nm, and 200 nm. Figs. 4 and 5, respectively, show the plots of ∆11

and ∆12 against the propagation constant β for the values of δ as 20 nm
and 200 nm. The other parameters related to fiber are left unchanged.
We observe that the number of sustained modes in the fiber is relatively
higher corresponding to the situation when the Au-layer thickness δ is
small. With the increase in δ, the number of modes supported by the
fiber is much reduced, e.g., when δ = 200 nm, approximately six modes
are found to be sustained within the structure. As such, the effect of
metallic loading once again becomes prominent because of which the
fiber attains a mode-suppression property. However, in general, the
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Figure 5. Logarithmic plots of ∆11 and ∆12 against β for EH modes
with 200 nm Au coating thickness.

analyses indicate that the number of skew modes in the fiber is a little
more than the number of sustained meridional modes.

In order to visualize the effect of Au-layer thickness δ upon the
values of the modal propagation constants β, a δ-β plot corresponding
to hybrid EH modes is presented in Fig. 6. We observe that there
is hardly any effect of the Au-layer thickness on the propagation
constant for the EH11 mode. However, for the higher order EH12

and EH13 modes, the propagation constants increase with increasing δ
although the variation in their values is only marginal. Another aspect
to be observed is that the attainment of saturation in β-values with
increasing δ is not prominently noticed in this case, which is in contrast
to the case of meridional modes (Fig. 3) where the modal propagation
constants corresponding to TE01, TE02 and TE03 modes are found to
be getting saturated with the increase in Au-layer thickness.

At this stage of analysis, it would be of curiosity to observe the
overall effect of loading an Au nano-layer over the dielectric fiber. In
such attempt, a short discussion on the propagation behavior of three-
layer fiber would be vital. To touch upon this aspect, logarithmic
plots of the real (∆21) and the imaginary (∆22) parts of the eigenvalue
Eq. (27) may be considered. The explicit forms of ∆21 and ∆22 are not
incorporated into the text owing to their widely extended forms. In
our computation, the parametric values related to the fiber are taken
as n1 = 1.4488, n2 = 1.444, n3 = 1 (i.e., free-space), a = 4.1µm
and b = 62.5µm. The operating wavelength λ is considered to be the
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Figure 6. Variation of the propagation constants of EH modes with
the nano-coating thickness.

same, i.e., 850 nm. Assuming non-magnetic behavior of the different
fiber regions, such logarithmic plots of ∆21 and ∆22 are shown in Figs. 7
and 8 corresponding to TE and EH modes, respectively. These curves
are also found to be oscillatory, and we observe from the crossings of
∆21 and ∆22 in Fig. 7 that the fiber roughly supports only four TE
modes, which is less than those noticed in the case of Au-coated fiber.
Fig. 8 indicates that the fiber sustains only about five EH modes.
As such, the loading of an Au nano-layer over a dielectric fiber has
generally the tendency of increasing the number of propagation modes
in the fiber.

We now look at the values of propagation constants of TE and EH
modes corresponding to the three-layer dielectric fiber, and compare
those obtained with the Au-coated fiber. Comparing Figs. 3 and 8 we
observe that, corresponding to the TE01 mode (for three-layer fiber;
Fig. 7), it has the β-value vary close to that with the Au-coated
fiber having the nano-layer thickness around 100 nm. Further, the
hybrid EH11 mode travels in the three-layer fiber with the propagation
constant which is almost equal to that corresponding to the Au-coated
fiber with 50 nm thick coating (Fig. 6). Thus, the general observation
would be that the loading of an additional Au nano-layer (on a three-
layer dielectric fiber) has its effect to reduce the propagation constants
of the sustained modes. However, this effect generally disappears with
the increase in coating thickness.
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4. CONCLUSION

On the basis of forgoing analysis, the general inference may be drawn
that the Au-coated fiber attains a mode suppression property with
the increase in Au-layer thickness. Also, the propagation constants
of the sustained modes greatly depend on the thickness of the Au-
layer; the dependence is more profound corresponding to larger Au-
layer thickness. We observed the cases of TE and EH modes, and
it is noticed that the propagation constants of TE modes vary more
(with the Au-layer thickness) as compared to those of the EH modes,
although the higher order EH modes present a marginal increase in
their propagation constant values (with increasing Au-layer thickness).
Upon comparing the modal properties with that of the three-layer
dielectric fiber, it is observed that the additional loading of the Au
nano-layer enhances the number of propagation modes, though the
sustained modes become lesser with increasing thickness of the Au
coating. Further, the Au-layer has the effect to reduce the propagation
constants of the sustained modes, which is more pronounced when the
Au-layer thickness is relatively small; corresponding to intermediate
(15 µm–135µm) Au-layer thickness, this effect is generally not that
remarkable. As is well-known, the mode-suppression property of singly
clad fibers generally deteriorates with the addition of more cladding,
the similar feature is observed in the type of fibers considered in this
communication.
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