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Abstract—A novel set of boundary conditions requiring vanishing of
the normal components of the D and B vectors at the boundary surface
was introduced recently and labeled as the DB-boundary conditions.
Basic properties of a resonator structure defined by the spherical DB
boundary are studied in this paper. It is shown that the resonance
modes polarized TE and TM with respect to the radial direction
coincide with those of the respective PEC and PMC resonators. Modes
in the DB resonator show higher degree of degeneracy than those of
the PEC resonator which may find application in materials research.

1. INTRODUCTION

Electromagnetic field problems are generally defined by differential
equations and boundary conditions. Considering a surface with
unit normal vector n, typical boundary conditions impose two scalar
restrictions for the electromagnetic field vectors tangential to the
surface. For example, assuming the planar boundary z = 0, the
PEC conditions require vanishing of the tangential components of
the electric field, Ex = Ey = 0 while the PMC condition requires
Hx = Hy = 0. The impedance condition [1, 2]

n ×
(

E − Zs · (n × H)
)

= 0, n · Zs = Zs · n = 0, (1)

with the surface impedance dyadic Zs is a generalization of both PEC
and PMC.
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Another set of boundary conditions involving field components
normal to the boundary surface was recently introduced [3–5] in terms
of the vectors D and B as

n · D = 0, n · B = 0, (2)

and labeled as the DB boundary conditions for brevity. The
corresponding conditions for the E and H vectors depend on the
medium in front of the boundary. Assuming a simple isotropic medium
with permittivity ǫ and permeability µ, (2) is equivalent with the
conditions

n · E = 0, n · H = 0. (3)

The DB-boundary conditions (2) were originally arrived at as following
from the conditions at the planar interface of a certain exotic material
labeled as uniaxial IB (or skewon-axion) medium [5]. Another
realization for the planar DB boundary can be obtained in terms of the
interface of a uniaxially anisotropic medium defined by the permittivity
and permeability dyadics [3–5]

ǫ = ǫzuzuz + ǫtIt, µ = µzuzuz + µtIt, (4)

with the transverse unit dyadic defined by

It = uxux + uyuy. (5)

In fact, because of continuity of the normal components of B and D,
the conditions (2) are obtained at the interface for vanishing axial
parameters, ǫz → 0, µz → 0 while the transverse parameters ǫt, µt

have no practical significance when the limits are attained. Such a
medium has been subsequently labeled as ZAP (zero axial parameter)
medium [6]. Media showing zero or almost zero parameter values have
been recently under interest and their realization in terms of mixtures
of metamaterials with positive and negative parameter values have
been proposed [7, 8].

Plane-wave reflection from a planar DB boundary was analyzed
in [5]. It was shown that the DB plane could be replaced by a
PEC plane for fields polarized TEz with respect to the normal (z)
direction and, correspondingly, by PMC plane for TMz fields. Thus,
the analysis of planar DB boundaries can be reduced to that of PEC
and PMC boundaries. For example, a parallel-plane waveguide with
DB-boundary conditions on each plane supports modes consisting of
plane waves reflecting from both planes. Splitting the modes in two
groups, TEz and TMz with respect to the normal of both planes, the
TEz modes turn out to be the same as those corresponding to two
PEC planes while the TMz modes correspond to two PMC planes.
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In this paper, we consider the resonator defined by DB conditions
at a spherical boundary r = a to find out whether a similar property
is valid for the resonance modes polarized TE and TM with respect to
the radial direction.

2. POTENTIAL REPRESENTATION OF FIELDS

It is known that any fields outside the sources in a homogeneous and
isotropic medium can be decomposed in TEr and TMr parts with
respect to the radial direction (r) as [9]

E(r) = −1

ǫ
∇× (urF (r)) − 1

jωµǫ
∇× (∇× (urA(r))), (6)

H(r) =
1

µ
∇× (urA(r)) +

1

jωµǫ
∇× (∇× (urF (r))). (7)

For A(r) = 0 we obtain TEr fields in terms of vector potential urF (r)
while for F (r) = 0 we obtain TMr fields in terms of the vector potential
urA(r).

Componentwise, dropping (r) for brevity, the TEr fields depend
on the potentials as

Er = 0, (8)

Eθ = − 1

ǫr sin θ
∂ϕF, (9)

Eϕ =
1

ǫr
∂θF, (10)

Hr =
1

jωµǫ
(∂2

r + k2)F, (11)

Hθ =
1

jωµǫr
∂r∂θF, (12)

Hϕ =
1

jωµǫr sin θ
∂r∂ϕF, (13)

while the TMr fields are obtained in the form

Hr = 0, (14)

Hθ =
1

µr sin θ
∂ϕA, (15)

Hϕ = − 1

µr
∂θA, (16)
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Er =
1

jωµǫ
(∂2

r + k2)A, (17)

Eθ =
1

jωµǫr
∂r∂θA, (18)

Eϕ =
1

jωµǫr sin θ
∂r∂ϕA. (19)

Here k = ω
√

µǫ. The radial vector potentials are known to satisfy the
Helmholtz equations in the form [9]

(∇2 + k2)
F

r
= 0, (∇2 + k2)

A

r
= 0. (20)

3. SPHERICAL RESONATOR

3.1. TE and TM Modes

The resonator modes satisfying (20) are obtained from potentials of
the functional form

Fmnp(r, θ, ϕ) = rjn(kr)Pm
n (cos θ)

(

cos mϕ
sinmϕ

)

, (21)

Amnp(r, θ, ϕ) = rjn(kr)Pm
n (cos θ)

(

cos mϕ
sin mϕ

)

, (22)

with 0 ≤ m ≤ n. Here, Pm
n (x) denotes the associated Legendre

function [?]. The amplitude factors are normalized to unity. The
index p = 1, 2, 3 . . . refers to the corresponding resonance wavenumber
k = kmnp. For n = 0, the potentials F and A become multiples of
rj0(kr). From (8)–(19) we see that, in this case, all fields vanish and
we can ignore that possibility.

The spherical Bessel function satisfies the differential equation

∂r

(

r2∂rjn(kr)
)

+
[

(kr)2 − n(n + 1)
]

jn(kr) = 0, (23)

which can also be written as
(

r2∂2
r + 2r∂r + k2r2 − n(n + 1)

)

jn(kr) = 0. (24)

Expanding
(

∂2
r + k2

)

(rjn(kr)) =
(

r∂2
r + 2∂r + k2r

)

jn(kr), (25)

yields the relation
(

∂2
r + k2

)

(rjn(kr)) =
n(n + 1)

r
jn(kr). (26)

Thus, the expressions (11) and (17) for the TEr and TMr radial field
components can be rewritten as
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Hr =
n(n + 1)

jωµǫr
F, (27)

Er =
n(n + 1)

jωµǫr
A, (28)

for the mnp mode in question.
The DB boundary conditions (3) now require that the potentials

satisfy
Hr(a, θ, ϕ) = 0 ⇒ F (a, θ, ϕ) = 0, (29)

Er(a, θ, ϕ) = 0 ⇒ A(a, θ, ϕ) = 0. (30)

For the TEr modes (30) is automatically satisfied. From (29), (9), (10)
and

F (a, θ, ϕ) = 0, ⇒ ∂θF (a, θ, ϕ) = 0, ∂ϕF (a, θ, ϕ) = 0 (31)

we obtain
Eθ(a, θ, ϕ) = 0, Eϕ(a, θ, ϕ) = 0. (32)

Because of the operator ∂r in (12) and (13), the fields Hθ and Hϕ

do not vanish at the boundary. The condition (32) equals the PEC
condition n×E = 0. This leads to the conclusion that the TEr modes
in a spherical DB resonator equal those of the corresponding PEC
resonator.

From the symmetry of equations we can conclude the dual case:
TMr modes in a spherical resonator equal those of the corresponding
PMC resonator. Thus, the spherical DB resonator can be conceived as
a kind of combination of PEC and PMC resonators.

Because the PEC or PMC boundary does not couple TEr and
TMr modes, from the previous it follows that the DB boundary does
not couple TE and TM modes. This is not obvious since the general
impedance condition is known to couple TE and TM fields at the
boundary surface and they cannot exist as independent modes.

3.2. Dominant Modes

The dominant mode of the spherical PEC resonator corresponding to
the lowest resonance wavenumber (ka = 2.744) is labeled as TMr

011 [10],
but it does not exist in the DB resonator. The lowest TEr mode in
the PEC resonator is the one whose resonance wavenumber is obtained
from

j1(ka) = 0, ka = 4.493. (33)

This serves also as the resonance wavenumber of the lowest TEr mode
in the DB resonator. From (21) we find three linearly independent
potential functions (omitting amplitude factors)
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F011(r, θ, ϕ) = rj1(4.493r/a)P 0
1 (cos θ), (34)

F111(r, θ, ϕ) = rj1(4.493r/a)P 1
1 (cos θ)

(

cos ϕ
sin ϕ

)

, (35)

with
P 0

1 (cos θ) = cos θ, P 1
1 (cos θ) = sin θ. (36)

The TMr modes in PMC resonators have the same wavenumbers and
the potential functions (22) are

A011(r, θ, ϕ) = rj1(4.493r/a)P 0
1 (cos θ), (37)

A111(r, θ, ϕ) = rj1(4.493r/a)P 1
1 (cos θ)

(

cos ϕ
sinϕ

)

, (38)

which means that there is a six-fold degeneracy at the dominant
resonance frequency.

The general resonance field is any sum of partial fields arising from
these potential functions. Choosing the amplitude factors for the six
potentials allows a lot of freedom to set conditions to the resonance field
which may have application in the study of electromagnetic properties
of materials. For example, with suitable excitations two resonance
fields can be formed to satisfy

E+ = j
√

µ/ǫ H+, E
−

= −j
√

µ/ǫ H
−
. (39)

Because such fields have the form of wavefields [11], the eigenfields of
a chiral medium, they can be applied in the measurement of chirality
parameters of a material sample. In fact, it is known that a material
sample is polarized differently in these two fields when the chirality
parameter is not zero, whence the shift of the resonance frequency is
different for the two eigenfields. The fields satisfying (39) are known
to be self-dual, i.e., invariant in certain duality transformations [11].
It is easy to show that the DB boundary is self-dual, whence, unlike
the PEC resonator, the DB resonator can be used to produce self-dual
resonance fields.

4. CONCLUSION

Boundary conditions requiring vanishing of the components of D and
B vectors normal to the boundary were recently introduced in [5]
as arising at an interface of an exotic bi-anisotropic medium and
labeled as DB-boundary conditions. As a continuation for studies
concerning plane-wave reflections from the planar boundary, the
spherical resonator defined by DB boundaries was analyzed in this
paper. It was shown that for modes TE and TM with respect to
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the radial directions, the DB boundary can be replaced by respective
PEC and PMC boundaries. Because all modes in a spherical resonator
can be decomposed in TEr and TMr modes, the analysis of the DB
resonator is thus reduced to that of PEC and PMC resonators. Since
the DB boundary is invariant in certain duality transformations, this
property can be used in defining resonance fields which cannot exist in
PEC resonators and may have advantage, e.g., in materials research.
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