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RELATIVISTIC LAGUERRE POLYNOMIALS AND SPLASH
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Abstract—New solutions of the homogeneous wave equation of the
type usually referred to as relatively undistorted waves are presented.
Such solutions relate to the so-called “splash modes”, from which
indeed they can be generated by applying the Laguerre polynomial
operator. Accordingly, the solutions here presented resort to the
relativistic Laguerre polynomials — introduced about one decade ago
within a purely mathematical context — which in fact appear as
modulating factor of the basic “splash mode” waveform. Similar
solutions of the homogeneous spinor wave equation are also suggested.

1. INTRODUCTION

The interest in the homogeneous scalar wave equation,[
∇2 − c−2 ∂

2

∂t2

]
u(x, y, z, t) = 0, (1)

is always alive. Here, u(x, y, z, t) represents the scalar-valued wave field
and c is the (constant) speed of propagation.

As is well known, with the characteristic variables τ = z − ct and
σ = z + ct Eq. (1) turns in the following[

∇2
⊥ + 4

∂2

∂σ∂τ

]
u(x, y, σ, τ) = 0, (2)

with separable and non separable solutions (with respect to σ and τ)
being looked for.

In particular, assuming the separable-variable solution

u(x, y, z, t) = eikσw(x, y, τ), (3)
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one obtains for w(x, y, τ) the equation[
∇2

⊥ + 4ik
∂

∂τ

]
w(x, y, τ) = 0. (4)

The latter is formally similar to the 2D paraxial wave equation,
which is deduced for a monochromatic solution of (1) in the hypothesis
of a slowly varying amplitude relative to the propagation variable z.

Of course, no approximations are implied in (2), whose solutions
are then exact solutions of (1). In particular, one may obtain exact
solutions of (1) as Hermite-Gaussian or Laguerre-Gaussian complex
pulses just resorting to the well known Hermite-Gaussian or Laguerre-
Gaussian solutions of the paraxial wave equation, with the obvious
difference being in the presence of the variables τ and σ rather than
the spatial coordinate z alone [1–7].

In this connection, we recall that a recent re-analysis of the
paraxial wave equation in free space for both the rectangular and
cylindrical geometry yielded a certain class of general separable-
variable based solutions of it. Such solutions basically comprise a
complex quadratic exponential modulated respectively by the Weber-
Hermite function Dν and the Whittaker first function Mκ,μ of suitable
arguments [8–10]. Therefore, one may guess that the new results
concerning the paraxial wave equation may in principle be transferred
in the frame of Eq. (1), thus suggesting to introduce Weber-Hermite
and Whittaker pulses or, following the terminology adopted in [8, 9],
cartesian and cylindrical pulses. We may also note that, as is well
known, solutions of the 2D wave equation can be used to yield solutions
of the 3D wave equation. Therefore, Weber-Hermite solutions of the 1D
paraxial wave equation might be used to obtain further solutions of the
3D wave equation. A primary hint in this sense can be found in [11]
where, within the context of the bidirectional traveling plane wave
representation of exact solutions of the wave equation, a generalization
of the Gaussian pulse, involving the Weber-Hermite function of order
−1 as modulating factor, was deduced.

The Hermite-Gaussian and Laguerre-Gaussian pulses are con-
structed from the fundamental (axially symmetric) Gaussian pulses [1–
7]

G(x, y, z, t) =
1

τ − iz0
e
ik

(
σ+ x2+y2

τ−iz0

)
(5)

by repeated applications respectively of the Hermite and Laguerre
polynomial operators [3–7]. The above can be associated with a source
at the moving complex location (x = y = 0, z = ct+iz0). Both k and z0
are free parameters under the condition kz0 > 0; their interplay may
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confer (5) a transverse plane-wave or packetlike character. Indeed,
k yields the minimum frequency in the spectrum of (5), ωmin = kc,
whereas z0 determines the maximum frequency ωmax = c

z0
[5–7].

The Gaussian pulse (5) is a particular example of what are usually
reported as almost undistorted waves [12–16], which in general write
as

u(x, y, z, t) = hf(θ). (6)

The waveform f is an arbitrary function of a single variable with
continuous partial derivatives, whilst the phase function θ(x, y, z, t)
and the attenuation (or distortion) factor h(x, y, z, t) are fixed
functions, the former obeying the characteristic equation(

∂θ

∂x

)2

+
(
∂θ

∂y

)2

+
(
∂θ

∂z

)2

− c−2

(
∂θ

∂t

)2

= 0.

In particular, in (5) θ takes the form of the so-called Bateman-
Hillion axisymmetric phase [12, 14–16]

θ(x, y, z, t) = σ +
x2 + y2

τ − iz0
, (7)

whilst the attenuation factor is simply h(x, y, z, t) = 1
τ−iz0

. Evidently,
the choice for f(θ) = eikθ makes (5) a separable-variable solution of (2).

A variety of solutions of (1) for both axisymmetric and non-
axisymmetric phase θ has been recently suggested in [17–20]. See
also [21] for a review.

As an exact non separable-variable solution of (2), we recall the
“splash pulse” [5, 22–25], originally discussed in [5] as the first example
of the class of finite energy solutions of the wave equation constructed
from properly weighted superpositions over the free parameter k of the
Gaussian pulses (5), used as basis functions. In [5], the “splash mode”
was introduced as the real composite pulse

usp(x, y, z, t) ∝ u(x, y, z, t) − u(x, y, z,−t), (8)

obtained from the difference of progressive and regressive solutions of
the wave equation like

u(x, y, z, t) =
1

z0 + iτ

1
−iθ + a

, (9)

with in particular z0 = a ≡ γ. In [5] the case γ = 1 was considered in
detail.
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Generalizations of (9) to arbitrary exponents, i.e.,

uq(x, y, z, t) =
1

z0 + iτ

1
(−iθ + a)q

, (10)

have been considered — and then, referred to as splash pulses as well —
in [11], where, as mentioned earlier, exact solutions of the scalar wave
equation were reconsidered from the viewpoint of the bidirectional
representation. A review in the same vein is offered in [23]. Also,
a generalization of the splash modes as solutions of the scalar wave
equation to solutions of the spinor wave equation was suggested in [24].
The uq’s for q > −1 have been recently reconsidered in [25], where the
authors investigated the behavior of the so-called double-exponential
(DEX) pulses, obtained through the same superposition as in (8)
of progressive and regressive uq solutions, corresponding to different
values of the parameter a. A detailed analysis of the behavior of the
splash and DEX pulses for values of q within the range −0.9 ≤ q ≤ 0.9
is presented in the quoted reference.

Finally we recall that the waveform (10) enters as a modulating
factor of the Gaussian pulse in the modified-power-spectrum (MPS)
pulse [6, 7],

u
MPS

(x, y, z, t) =
1

z0 + iτ

1(
−i θ
β

+ a

)q e
i b

β
θ, (11)

from which it can be derived in fact for b = 0. Again z0, a, b, q and β
are free parameters, for suitable values of which the MPS pulses have
the desired physical properties of localized propagation and amplitude
maintenance over very large distances [6, 7].

Here, we reconsider the uq’s for q > 0, that we rename as
“fundamental” Laguerre-Lorentzian solutions of the wave equation (1)
for reasons that will become clear later. We may note indeed in the
uq’s, apart from the usual attenuation factor 1

τ−iz0
, the presence of

Lorentzian-like complex functions†.
We show that “higher-order” Laguerre-Lorentzian solutions of the

wave equation can be constructed by applying the same operators,
through which higher-order Laguerre-Gaussian pulses are generated
from (5). Such a procedure will result in producing the relativistic
† Although it is quite an improper terminology, by Lorentz-like (in general, complex)

functions we mean here functions of the type (A + ξ2

B
)−C , where ξ denotes the coordinate

of concern, A and B are complex constants (i.e., independent on ξ) and C > 0. It is evident
that, when referred to a waveform, as in the present context, it will not in general yield a
similar Lorentzian-like behavior (with respect to ξ) for the wave amplitude.
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Laguerre polynomials (RLP), which so come to modulate the
Lorentzian-like factor in the same way as the ordinary Laguerre
polynomials modulate the Gaussian factor.

The RLPs have been introduced in [26] as the “radial” counterpart
of the relativistic Hermite polynomials (RHP), which in turn were
proposed in [27] as the polynomial component of the wave function
of the quantum relativistic 1D harmonic oscillator. The latter have
also been recently re-discussed within the context of the paraxial wave
propagation in [28], where their relation with the Lorentz beams has
been evidenced.

It is worth noting that both the RHPs and the RLPs are
not independent polynomials, being indeed related to the Jacobi
polynomials of appropriate parameters and arguments [29]. However,
since they allow for a straight formal analogy with the Hermite-
Gaussian and Laguerre-Gaussian pulses, we prefer to refer to them
in accord with the original terminology.

Also, as is well known, further solutions of the wave equation
can be generated from a given solution through well definite
“recipes” [12, 30–32].

In Sect. 2, the basic properties of the RLPs are listed. In Sect. 3,
we relate the RLPs to the solutions of the wave equation (1), which are
then used to construct the solutions to Maxwell’s equations in Sect. 4.
Generalizations to solutions of the spinor wave equation are suggested
in Sect. 5. Concluding notes are finally given in Sect. 6.

2. THE RELATIVISTIC LAGUERRE POLYNOMIALS:
BASIC PROPERTIES

The RLPs L(α,N)
n (x) have been originally worked out in the form [26]

L(α,N)
n (x) = Γ

(
N + n+

1
2

) n∑
j=0

(−)j
(
n+α
n−j

) 1

j!Γ
(
N+n−j+ 1

2

) ( x
N

)j
,

(12)
for non negative integer values of n and real positive values of
the parameter N , which indeed is at the basis of the terminology
“relativistic” used to identify the above polynomials as well as the
RHPs. In fact, N was defined in [27] as the ratio of the oscillator
energy mc2 to its quantum of energy �ω0: N = mc2

�ω0
, thus signaling the

“relativistic” character of the RHPs there introduced.
We see that in the limit N → ∞ the polynomials (12) turn

into the ordinary Laguerre polynomials L
(α)
n (x) [33]. Furthermore,
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L
(α,N)
n (0) = 1 and L(α,N)

0 (x) = 1.
As mentioned earlier, the RLPs relate to the Jacobi polynomials,

being indeed [26, 29]

L(α,N)
n (x) = (−)n

(
1 +

x

N

)n
P

(N− 1
2
,α)

n

(
x−N

x+N

)
. (13)

As a basic characterization of the RLPs, we write down
i) the orthogonality relation (with respect to the order n), holding,

as for the non relativistic polynomials, through the non-negative real
axis, namely∫ ∞

0
xα
(
1 +

x

N

)−N−n−m−α− 3
2
L(α,N)

n (x)L(α,N)
m (x)dx

=
N222N

n!

Γ
(
N + n+

1
2

)
(
N + 2n+ α+

1
2

)
Γ
(
N + n+ α+

1
2

)δn,m, (14)

ii) the differentiation formula

d

dx
L(α,N)

n (x) = −
N + n− 1

2
N

(
1 +

x

N

)2
L

(α+1,N)
n−1 (x) (15)

iii) the contiguous relations

nL(α,N)
n (x) = (α+ n)

(
1 +

x

N

)
L

(α,N)
n−1 (x)

−
(
N + α+ 2n − 1

2

)
x

N

(
1 +

x

N

)2
L

(α+1,N)
n−1 (x) ,

(
N+α+2n+

1
2

)
L(α,N)

n =
(
N + α+ n+

1
2

)
L(α+1,N)

n

−
(
N + n− 1

2

)(
1+

x

N

)
L

(α+1,N)
n−1 ,(16)

iv) the differential equation they obey{
x
(
1 +

x

N

) d2

dx2
−
[
2N + 4n− 3

2N
x− (1 + α)

]
d

dx

+n
2N + 2n− 1

2N

}
L(α,N)

n (x) = 0, (17)
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v) the Rodrigues representation

L(α,N)
n (x) =

1
n!
x−α

(
1 +

x

N

)N+2n+α+ 1
2

dn

dxn

[
xα+n

(
1 +

x

N

)−N−n−α− 1
2

]
. (18)

Then, we introduce the Laguerre-Lorentzian functions (LLFs) as

Φn,N(r) = L(0,N)
n

(
r2
)(

1 +
r2

N

)−N−2n− 1
2

. (19)

By use of the Rodrigues formula (18) and the obvious identity: r2 =
(x+ iy)(x− iy), it is easily proved that the Φn,N ’s are generated from
the Lorentz-like function‡

Φ0,N (r) =
(

1 +
r2

N

)−N− 1
2

(20)

by repeated application of the transverse Laplacian operator

∇2
⊥ =

∂2

∂x2
+

∂2

∂y2
= 4

∂

∂(x+ iy)
∂

∂(x− iy)
, (21)

which when acting on an axisymmetric function, as in the case we are
considering here, is equivalent to its radial part

∇2
r =

∂2

∂r2
+

1
r

∂

∂r
, (22)

We explicitly have in fact

Φn,N(r) = (−)n
1

22nn!
Nn(

N +
1
2

)
n

[∇2
r

]n Φ0,N(r); (23)

the action of [∇2
r]n on (20) produces the RLP of order n and

correspondingly increases by 2n the exponent of the Lorentz-like factor.
In the limit N → ∞ the above reproduces the well known analogous
‡ Of course, addressing Φ0,N as Lorentz function would be correct only for N = 1

2
.

However, as previously noted, here we address as Lorentz–like function any function of
the type of Φ0,N for any real negative exponent.
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relation for the Laguerre-Gaussian functions (LGF) of azimuthal order
0, namely

Φn,N→∞(r) ≡ Φn(r) = (−)n
1

22nn!
[∇2

r

]n
e−r2

= Ln

(
r2
)
e−r2

. (24)

Evidently the above follows also from (19) for N → ∞.
The general generation scheme involving as well the azimuthal

parameter α will be considered in Sect. 5.
In order to see the difference between the LLFs and the

 
)(,0 rNφ

r
(a)

)(,1 rNφ

r 
(b)

)(,6 rNφ

r
(c)

)(,9 rNφ

r
(d)

Figure 1. r-profiles of the LLFs ϕn,N ’s for n = 0, 1, 6, 9 and N = 0.5
(solid line), N = 1 (dashed line), N = 5 (dash-dotted line). The
profiles of the corresponding LGFs ϕn for each value of n are also
plotted, marked by the o’s.
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corresponding LGFs, the correspondence being intended in the sense
of the limit (24), we have plotted in Fig. 1 both functions for some
values of the inherent parameters. More precisely, the plots reproduce
the normalized functions, which write

φn,N (r) = 2n+ 1
2n!

√√√√√√√
Γ (N + 2n+ 1) Γ

(
N + n+

1
2

)
πN (2n)!Γ

(
N+2n+

1
2

)
Γ (N + n)

Φn,N (r) ,

φn (r) =
2n+ 1

2n!√
π (2n)!

Ln

(
r2
)
e−r2

.

(25)

As to the former, we note that the relevant normalization factor
can be evaluated resorting to the Parseval theorem and to the
relation (23), which then allow us to write∫ ∞

0
r |Φn,N(r)|2 dr = A2

n,N

∫ ∞

0
κ2n+1

∣∣∣Φ̃0,N(κ)
∣∣∣2 dκ, (26)

with An,N = 1
22nn!

Nn

(N+ 1
2
)n

. Here, Φ̃0,N (κ) denotes the Hankel transform

of zero order of Φ0,N (r), which on account of the integral (6.565.4)
of [34] evaluates to

Φ̃0,N (κ) =
∫ ∞

0
rJo(κr)Φ0,N (r)dr

=
NN+ 1

2

Γ
(
N +

1
2

) ( κ

2
√
N

)N−
1
2 K 1

2
−N

(√
Nκ
)
, (27)

Kν(·) denoting the modified Bessel function of the second kind [33].
Finally, the Φn,N ’s obey the differential equation{(

1+
r2

N

)
d2

dr2
+
[
1 +

2r2

N
(N+2n+2)

]
1
r

d

dr

+
4(n+ 1)

(
N + n+

1
2

)
N

⎫⎪⎪⎬⎪⎪⎭Φn,N(r) = 0, (28)
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and on account of (23) and (27) can be given the integral representation

Φn,N(r) =
4

n!Γ
(
N + n+

1
2

) (√
N

2

)N+2n+ 3
2

∞∫
0

κN+2n+ 1
2K 1

2
−N

(√
Nκ
)
Jo(κr)dκ. (29)

3. LAGUERRE-LORENTZIAN SOLUTIONS OF THE
WAVE EQUATION

As mentioned earlier, it was proved in [5, 11] that Eq. (2) is solved by
the axially symmetric functions uq, that we recast as

u0,N (r, z, t) =
1

τ − iz0

(
σ + ia+

r2

τ − iz0

)−N− 1
2

(30)

with r denoting the radial coordinate r =
√
x2 + y2. The various

parameters are chosen so that N > 0, z0 > 0, and a > 0, the latter
being aimed at avoiding singularities at r = 0 and similarly at (z = 0,
t = 0). We refer to it as the “fundamental” Laguerre-Lorentzian
solution of the wave equation. Needless to say, due to the symmetric
appearance of σ and τ in the wave equation, the alternative solution
formally similar to (30) with a simple interchange of σ and τ is also
possible.

Although (30) has already been considered in the literature (some
of the investigations presented in [6, 7] and [25], in fact, can be made to
correspond to 0 < N ≤ 1

2 ), for completeness’ sake we briefly comment
on some features of its. Thus, as an example, we show in Fig. 2 the
surface plots and the corresponding contour plots of the amplitude of
the Lorentzian-like solution (30) for N = 1

10 , 1
2 , 5

2 , 5 and z0 = 10−2 cm
and a = 2 · 104 cm. The graphs refer to the pulse center zc = ct = 0,
so that z = τ is just the distance along the direction of propagation
away from the pulse center; in addition, the maximum in each plot is
normalized to unity.

It is evident that the localization of u0,N along the longitudinal
and radial directions is controlled by the length parameters z0 and a,
with the influence of the latter being increased by the possible greater
than 1 power N + 1

2 for N > 1
2 .

In particular, let us illustrate the behavior of u0,N at the pulse
center z = zc = ct. We see that the squared amplitude |u0,N |2 at
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z = zc behaves with r and z as

|u0,N (r, z = ct)|2 =
1

4N+ 1
2 z2

0

1[
z2 +

a2

4

(
1 +

r2

az0

)2
]N+ 1

2

, (31)

which conveys a
2 and

√
az0 as a sort of characteristic lengths for

the variations of u0,N (at z = zc) along the longitudinal and radial
directions, respectively. Until z � a

2
√

N+ 1
2

the pulse shape does

not vary much with z, being |u0,N (r, z = ct � a

2
√

N+ 1
2

)|2 ∼

z (cm) 

r (cm) 

|)0,,(| 1.0,0 zru

z (cm) 

r (cm)

|)0,,(|
2
1,0

zru

z (cm)
r (cm) 

|)0,,(|
2
5,0

zru

z (cm)
 r (cm) 

|)0,,(| 5,0 zru

(a) (b)

(c) (d)

Figure 2. Amplitude |u0,N | vs. r and τ at the pulse center zc = ct = 0
for z0 = 10−2 cm, a = 2·104 cm, and (a) N = 1

10 , (b)N = 1
2 , (c) N = 5

2 ,
(d) N = 5.
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1
z2
0a2N+1

1

(1+ r2

az0
)2N+1

. And correspondingly until r �
√

az0
2N+1 the

relevant amplitude decreases with r roughly within a factor 2. Then,
for z > a

2
√

N+ 1
2

the amplitude (at z = zc) decays like z−(N+ 1
2
). In

Fig. 3, we show the amplitudes |u0, 1
2
(r, z = ct)| and |u0,5(r, z = ct)| vs.

r and z for the values z0 = 10−2 cm and a = 2 · 104 cm.

|),(| 5,0 ctzru =

r (cm)

z (cm) 

(b)
r (cm)

z (cm)

(a)

|),(|
2
1,0

ctzru =

Figure 3. Amplitudes (a) |u0, 1
2
(r, z = ct)| and (b) |u0,5(r, z = ct)| vs.

r and z for the values z0 = 10−2 cm and a = 2 · 104 cm.
As illustrated in [11], the bidirectional traveling plane wave

representation grounds on definite direct and inverse formulas, which
in the case of (30) specifically write

u0,N (r, σ, τ) =
1

2π2

∫ ∞

0
χdχ

∫ ∞

0
dv

1
v
G0,N(

χ2

4v
, v, χ

)
J0(χr)e−i χ2τ

4v eivσ

G0,N

(
χ2

4v
, v, χ

)
=

√
π

2

∫ ∞

−∞
dτ

∫ ∞

−∞
dσ

∫ ∞

0
rdru0,N

(r, σ, τ) J0 (χr) e−
τ2

16v2 ei
χ2τ
4v e−ivσ,

thus yielding

G0,N

(
χ2

4v
, v, χ

)
=

2π2

i
N− 1

2
Γ

(
N+

1
2

) vN− 1
2 e−av−χ2

4v
zo. (32)

It is well known that “higher-order” solutions of the wave equation
can be generated from a given solution (the “fundamental” one) by
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applying to the latter the derivative operator — as well as any function
of it —

D(m) =
∂p

∂xp

∂h

∂yh

∂j

∂σj

∂l

∂τ l
, m = p+ h+ j + l

for any nonnegative integers (actually also nonnegative real), just
because the differential operator in Eq. (2) commutes with D(m).

In particular, the differential operator in Eq. (2) commutes with
the transverse Laplacian ∇2

⊥ = ∂2

∂x2 + ∂2

∂y2 . Therefore, if v(r, σ, τ)
solves (2), so does also vν(r, σ, τ) = [∇2]νv(r, σ, τ) = [∇2

r]
νv(r, σ, τ)

for any non-negative real value of ν, the latter identity holding in the
case that v is axisymmetric.

Accordingly, from (30) we may generate further axisymmetric
solutions of (2) as

un,N (r, z, t) =
1

(τ − iz0)n+1(σ + ia)N+n+ 1
2

Φn,N

(√
RN (r, z, t)

)
(33)

where Φn,N(·) denotes the LLFs discussed in the previous section,
whose argument is

RN (r, z, t) =
Nr2

(σ + ia)(τ − iz0)
. (34)

One may refer to the above as Laguerre-Lorentzian solutions of order
n (and parameter N) of the homogeneous-wave equation (1).

It is worth noting that we consider here only non-negative integer
values of n. However, any non-negative real value is allowed, resorting
in that case to the expression for the relativistic Laguerre polynomials
in terms of the proper Gauss hypergeometric function, deducible
from (13). We might talk of fractional order Laguerre-Lorentzian
solutions of the wave equation. Such a case is beyond the purposes
of the present discussion.

On passing let us say that the 2D cartesian counterparts of (33)
would involve the RHPs and so would solve the 2D wave equation
φqq + φzz − c−2φtt = 0. Then, recalling that one can obtain solutions
u(x, y, z, t) of the 3D wave equation from those φ(q, z, t) of the 2D
equation, for instance, as u(x, y, z, t) = (x± iy)−

1
2φ(q, z, t) [12, 30–32],

the relevance of the RHPs for the 3D scalar wave equation as well
becomes evident.

The behavior of un,N (r, z, t) results from the synergistic
contribution of the multi-Lorentzian-like factor 1

τ−iz0
(σ + ia +

r2

τ−iz0
)−N−2n− 1

2 = (σ + ia+ r2

τ−iz0
)−2nu0,N (r, z, t) and the r-depending
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polynomial component comprising also the σ- and τ -depending factor,
i.e., (σ+ia)n

(τ−iz0)nL
(0,N)
n (RN (r)). Clearly the former behaves as previously

discussed, with the relative characteristic lengths being properly scaled
to account for the further presence of the integer 2n in the exponent.

We may see again that a
2 and

√
az0 play the role of characteristic

lenghts for the variations of un,N as well along the longitudinal and
radial directions, respectively.

In fact, it is evident that the argument RN (r, z, t) of the RLP
in (33) is in general complex, and hence the behavior of the polynomial
component in (33) may significantly differ from that of the same
polynomial with real argument. In particular, RN becomes real at
z = ct = 0, being RN (r, z = ct = 0) = Nr2

az0
. Also, at the pulse center

z = ct it turns out to be

RN (r, z = ct) =
iNr2

2z0
(
z + i

a

2

) . (35)

Then, if z � a

2
√

N+2n+ 1
2

the above comes to be rather well

approximated by the real z-independent expression

RN

⎛⎜⎜⎝r, z = ct � a

2
√
N + 2n+

1
2

⎞⎟⎟⎠ 
 Nr2

z0a
. (36)

Likewise, the multiplying factor remains almost constant to
in(2z+ia)n

z0
n ∼ (− a

z0
)n. Further, until r �

√
az0

N+2n+ 1
2

, RN < 1, so that

one may approximate the polynomial factor by the relevant zero-order
power, thus yielding for the squared amplitude the expression∣∣∣∣∣∣∣∣un,N

⎛⎜⎜⎝r �
√√√√ az0

N + 2n+
1
2

, z = ct � a

2

√
N + 2n+

1
2

⎞⎟⎟⎠
∣∣∣∣∣∣∣∣
2

∼ 1

a2N+2n+1z
2(n+1)
0

1(
1 +

r2

az0

)2N+4n+1
. (37)

In contrast, for r >
√
Naz0 the polynomials might be

approximated by the relevant highest powers thus yielding the
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expression∣∣∣∣∣∣∣∣un,N

⎛⎜⎜⎝r >√Naz0, z = ct � a

2

√
N + 2n +

1
2

⎞⎟⎟⎠
∣∣∣∣∣∣∣∣
2

∼

⎡⎢⎢⎣
(
N +

1
2

)
n

n!

⎤⎥⎥⎦
2

1

a2N+4n+1z
2(n+1)
0

r4n(
1 +

r2

az0

)2N+4n+1
, (38)

where the power r4n mitigates the descending trend of the multi-
Lorentzian factor (1 + r2

az0
)−2N−4n−1.

The 3D plots in Fig. 4 visually convey the above considerations,
showing the amplitudes |un,N | vs. r and τ at the pulse center zc = 0
and vs. r and z = zc for n = 2, N = 5 and n = 5, N = 2.5. In both
cases, z0 = 10−2 cm and a = 2 · 104 cm. Again, the maximum in each
plot is normalized to unity.

Also, a certain insight into the decay rate of the peak amplitudes of
the un,N ’s vs. z as a result of the interplay of N , n and the parameters
z0 and a can be gained from Fig. 5. For comparison’s purposes, the
values in the graphs to the right have been properly scaled in order to
have the same vertical ranges as those in the corresponding graphs to
the left. We see that the peak amplitude starts to decay roughly at
z � a

2
√

N+2n+ 1
2

.

Finally, since ∇2
rJ0(χr) = −χ2J0(χr), the bidirectional

representation of un,N simply writes

Gn,N

(
χ2

4v
, v, χ

)
= (−)nχ2nG0,N

(
χ2

4v
, v, χ

)
. (39)

We conclude noting that one could also refer to the un,N ’s as
higher-order splash pulses, taking into account however that for the
relevant generation scheme (33) to be applicable the exponent q in the
pertinent expression (10) must be q > 0.5.

4. LAGUERRE-LORENTZIAN SOLUTIONS OF
MAXWELL’S EQUATIONS

As is well known, solutions to the scalar wave equation convey solutions
to Maxwell’s equations. A well-established procedure resorts to the
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Figure 4. Amplitudes |un,N | vs. r and τ at the pulse center zc = 0
and vs. r and z = zc respectively in (a) and (b) for n = 2, N = 5 and
in (c) and (d) for n = 5, N = 2.5. In both cases, z0 = 10−2 cm and
a = 2 · 104 cm.

Hertz electric and magnetic vector potentials
−→
Π e and

−→
Πm [6, 7, 35, 36],

which over source-free regions obey the scalar wave equation (1), and
so [

∇2 − c−2 ∂
2

∂t2

]−→
Π e,m(x, y, z, t) = 0. (40)

Definite relations hold between such potentials and the electro-
magnetic fields

−→
E (x, y, z, t) and

−→
H (x, y, z, t) [6, 7, 35, 36]. In particular,

TE and TM modes are identified by the z-component respectively of−→
Πm and

−→
Π e, being indeed

−→
Π e = 0 and

−→
Πm = ẑ Πm for the former

and correspondingly
−→
Πm = 0 and

−→
Π e = ẑΠe for the latter. As already
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Figure 5. Peak amplitudes |un,N (0, z = ct)| vs. z for N = 0.1 (solid
line), 0.2 (dotted line), 0.5 (dashed line), 1 (dash-dotted line) and (a)
n = 0, (b) n = 5 with z0 = 10−2 cm, a = 2 · 104 cm and (c) n = 0, (d)
n = 3 with z0 = 10−2 cm, a = 2 · 105 cm.

noted, the z-axis is assumed as direction of propagation.
In the specific case of axial symmetry we are dealing with,

according to which
−→
Π e,m(x, y, z, t) =

−→
Π e,m(r, z, t), it turns out that

the TE modes have only the field components Eϕ, Hr and Hz (and,
hence are azimuthally polarized, the polarization being defined in terms
of the

−→
E field), whereas the TM modes have only the components Er,

Ez and Hϕ (and, hence are radially polarized).
In symbols, denoting by r̂ = (cosϕ, sinϕ) and ϕ̂ = (− sinϕ, cosϕ)

the unit vectors for polar coordinates, one finds that

−→
E TE(x, y, z, t)= ϕ̂

√
μ0

ε0

(
∂

∂σ
− ∂

∂τ

)
∂

∂r
Πm(r, z, t)

−→
HTE(x, y, z, t)= r̂

(
∂

∂σ
+
∂

∂τ

)
∂

∂r
Πm(r, z, t)+ẑ 4

∂2

∂σ∂τ
Πm(r, z, t),

(41)

where ε0 and μ0 respectively denote the free-space permittivity and
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permeability, and in conformity with the use here of the characteristic
variables σ and τ the derivatives with respect to z and t have
been expressed in terms of the derivatives with respect to σ and τ .
Furthermore, on account of (40), it is evident that in the second of
(41) 4 ∂2

∂σ∂τ Πm(r, z, t) = ∇2
rΠm(r, z, t).

Dual expressions hold for the field components of the TM modes,
for which in fact we have

−→
E TM (x, y, z, t)= r̂

(
∂

∂σ
+

∂

∂τ

)
∂

∂r
Πe(r, z, t) + ẑ 4

∂2

∂σ∂τ
Πe(r, z, t)

−→
HTM (x, y, z, t)= −ϕ̂

√
ε0
μ0

(
∂

∂σ
− ∂

∂τ

)
∂

∂r
Πe(r, z, t).

(42)

According to the above considerations, the Laguerre-Lorentzian
solutions of the scalar wave equation deduced in the previous section,
just convey the Hertz potential functions Πe,m(r, z, t), from which then
the electromagnetic field components straightforwardly follow.

Thus, with Π(r, z, t) = un,N(r, z, t), after some algebra we obtain
for the TE mode field components the explicit expressions

Eϕ(r, z, t) = −2
√
μ0

ε0

(σ + ia)n+1

(τ − iz0)n+2

(
σ + ia+

r2

τ − iz0

)−N−2n− 5
2

r{(
N + n+

1
2

)(
1 +

RN

N

)3

[Σ+ − Υ+]L(1,N)
n−1 (RN )

+
[
2S− + nΣ+ −

(
N + n− 1

2

)
Υ+

]
L(0,N)

n (RN )
}
,

Hr(r, z, t) = 2r
(σ + ia)n+1

(τ − iz0)n+2

(
σ + ia+

r2

τ − iz0

)−N−2n− 5
2

{(
N + n+

1
2

)(
1 +

RN

N

)3

[Σ− + Υ−]L(1,N)
n−1 (RN )

+
[
2S+ + nΣ− +

(
N + n− 1

2

)
Υ−
]
L(0,N)

n (RN )
}
,

Hz(r, z, t) = −4(n+ 1)
(
N + n+

1
2

)
un+1,N (r, z, t),
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where RN is defined in (34) and

S±(σ, τ) = (n+ 1)
(
N + n+

1
2

)(
1

τ − iz0
± 1
σ + ia

)
,

Σ±(r, σ, τ) =
(n+ 1)
τ − iz0

(
1 ± r2

(σ + ia)2

)
,

Υ±(r, σ, τ) =

(
N + n+

1
2

)
σ + ia

(
1 ± r2

(τ − iz0)2

)
.

Similar expressions are obtainable for the TM mode field
components.

We see that, as expected on account of (40), (41) and (42) , the
un,N ’s directly convey one of the field components for both TE and
TM modes, Hz and Ez respectively.

5. LAGUERRE-LORENTZIAN SOLUTIONS OF THE
SPINOR WAVE EQUATION

Frequently, solutions of the wave equation are generalized to yield
solutions of the spinor wave equation [24, 37, 38]. In [24, 37], for
instance, spinor focus wave modes are presented in full analogy with
the focus wave mode solutions of the wave equation, in the latter
being also presented an extension of the Ziolkowski method of weighted
superposition of Gaussian pulses to the realm of spinors.

Likewise, we may generalize the Laguerre-Lorentzian solutions
of the wave equation, deduced in the previous section, to Laguerre-
Lorentzian solutions of the spinor wave equation.

Let us write down the spinor wave equation in the coordinates r,
ϕ, σ and τ :

2
∂

∂σ
ψ1 + L̂−(r, ϕ)ψ2 = 0, L̂+(r, ϕ)ψ1 − 2

∂

∂τ
ψ2 = 0. (43)

Here, r, ϕ denote polar coordinates in the x-y plane: r =
√
x2 + y2,

ϕ = arctan( y
x), and ψ1, ψ2 are the two components of the spinor field.

Furthermore, the operators L̂±(r, ϕ) explicitly write

L̂± (r, ϕ) =
(
∂

∂x
± i

∂

∂y

)
= e±iϕ

(
∂

∂r
± i

r

∂

∂ϕ

)
= 2

∂

∂ (x∓ iy)
. (44)
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Equation (43) admit the solutions

ψ
(N)
1 = −e−iϕ r

τ − iz0
ψ

(N)
2

ψ
(N)
2 =

1
τ − iz0

(
σ + ia+

r2

τ − iz0

)−N− 1
2

(45)

where, as before, the various parameters are chosen so that N > 0, z0 >
0, and a > 0. It is evident that ψ(N)

2 just equals the “fundamental”
Laguerre-Lorentzian solution (30) of the wave equation.

Then, from (45) we can generate higher-order solutions by
applying to (45) the operators L̂± in an arbitrary fashion, since[
L̂+, L̂−

]
= 0 and

[
∂

∂σ,τ , L̂±
]

= 0.
Accordingly, besides

Ψ0,N =
(
ψ

(N)
1

ψ
(N)
2

)
,

also

Ψn,l,N ∝ L̂n
+L̂n+l

− Ψ0,N =
(L̂n

+L̂n+l
− ψ

(N)
1

L̂n
+L̂n+l

− ψ
(N)
2

)
≡
(
ψ

(n,l,N)
1

ψ
(n,l,N)
2

)
turns out to be a solution of the spinor wave equation, with ψ(N)

1 and
ψ

(N)
2 given in (45) and n, l nonnegative integers such that n ≥ 0 and
l ≥ −n.

In this connection, we note that the relation (23) can be
generalized to include the angular index α of the RLPs there involved.
In fact, let us introduce the Laguerre-Lorentzian functions of radial
index n and angular index l,

Φ(l)
n,N(r, ϕ) = e−ilϕrlL(l,N)

n

(
r2
)(

1 +
r2

N

)−N−2n−l− 1
2

, (46)

which just parallels the definition of the Laguerre-Gaussian modes of
order (n, l). Then, by use again of the Rodrigues representation (18),
we may easily verify that

Φ(l)
n,N (r, ϕ) = (−)n+l 1

22n+ln!
Nn+l(

N +
1
2

)
n+l

L̂n
+L̂n+l

− Φ0,N (r). (47)
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In particular, when l = 0 we recover relation (23) since L̂n
+L̂n−Φ0,N (r) =

[∇2
⊥]nΦ0,N(r) = [∇2

r]
nΦ0,N (r).

Therefore, on account of

L̂j
−re

−iϕf(r, ϕ) = re−iϕL̂j
−f(r, ϕ),

L̂j
+re

−iϕf(r, ϕ) = 2jL̂j−1
+ f(r, ϕ) + re−iϕL̂j

+f(r, ϕ),
(48)

after some algebra we end up with

ψ
(n,l,N)
1 = − (σ + ia)n

(τ − iz0)n+l+2
e−i(l+1)ϕrl+1

(
σ + ia+

r2

τ − iz0

)−N−2n−l− 1
2

×
{[

1 +
RN

N

]
L

(l+1,N)
n−1 (RN ) + L(l,N)

n (RN )
}
,

ψ
(n,l,N)
2 =

(σ + ia)n

(τ − iz0)n+l+1
e−ilϕrlL(l,N)

n (RN )(
σ + ia+

r2

τ − iz0

)−N−2n−l− 1
2

,

(49)

the argument RN of the RLPs being given in (34).
The 1D counterpart of (49) would involve the 1D Lorentzian-like

factor and the RHPs. In virtue of the aforementioned rule according
to which solutions of the 3D scalar or spinor wave equation can be
constructed from those of the corresponding 2D equations [12, 30–
32, 36] such 1D forms of (49) come to be of relevance for the 3D spinor
wave equation as the 1D forms of (33) are of relevance for the 3D scalar
wave equation.

6. CONCLUSIONS

We have suggested solutions of the free-space 3D scalar wave equation,
which resort to the splash pulses and have suitable polynomials as
modulating factors. To the author’s knowledge, such solutions are still
undiscussed in the literature. Interestingly, a formal generation scheme
of the higher-order solutions from the fundamental one has been
highlighted, which basically parallels that holding for the Laguerre-
Gaussian pulses. It resorts indeed to the same rising operators, and
involves the relativistic Laguerre polynomials [26], introduced about
one decade ago within a purely mathematical context as the “radial”
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counterpart of the relativistic Hermite polynomials [27]. Although
such polynomials have later recognized to be related to the Jacobi
polynomials, the original terminology has been retained here since it
favours the direct correspondence with the Laguerre-Gaussian pulses-
related formalism.

In fact, the results here presented further enlarge the correspon-
dence between the Gaussian and the splash pulses to comprise also the
respective higher-order pulses. As is well known, the Gaussian and the
splash pulses represent two specific types of localized wave solutions of
the homogeneous wave equation, and hence, as such, they may have po-
tential applications in various research areas, like, for instance, impulse
radar, high-resolution imaging, medical radiology, plasma physics, di-
rected energy transfer and secure communications.

In addition, as mentioned earlier, the splash pulses have the
evident advantage of being finite energy solutions of the wave
equation [5], with the further interesting feature of exhibiting a
missilelike behavior (namely, a decay at a slow rate before undergoing
the usual z−1 decay along the z direction) [39, 40] for specific values
of the exponent (i.e., N < 1

2 ; see, indeed, Fig. 5(a)). Interestingly,
as proved in [25], such a missilelike behavior is observed also in an
aperture-generated spalsh pulse over an extended intermediate range
between the near- and far-field regions.

Evidently, the higher-order pulses do not exhibit a quasi-missile
decay since the exponent in the pertinent Lorentz-like factor increases
by 2n. However, the practical interest in such pulses may be dictated
by their space-time structure, which can yield interestingly shaped
pulses, when, for instance, progressive and regressive pulses are
superimposed (see Fig. 6).

The solutions here obtained for the wave equation have been
straightforwardly generalized to yield solutions of the spinor wave
equation, which solutions have then the same basic algebraic
dependencies.

Finally, we have also given the explicit expressions for the
electromagnetic fields

−→
E and

−→
H in particular for the TE modes,

on the basis of the Hertz potentials formalism, according to which
such potentials over source-free regions just obey the scalar wave
equation (1).

Of course, many issues are still to be addressed. It would be
interesting, in fact, to establish whether the solutions of the scalar
wave equation here presented are only a mathematical curiosity or
may be amenable for a practical launching procedure.

In this regard, we recall the original hint, illustrated in detail
in [6, 7] and further refined in several later publications (see, for
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Figure 6. Amplitude |ud| vs. r and z for (a), (b), (c) n = n′ = 3 and
N = N ′ = 0.5 and (d), (e), (f) n = n′ = 3, N = 0.5 and N ′ = 2.5 at
t1 = 10−11 s, t2 = 8 · 10−11 s and t3 = 5 · 10−10 s.
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instance, [41]), demonstrating the possibility of launching a MPS pulse
from finite sources consisting of discrete circular array elements, driven
by the exact field itself. The launching process, as described in [6, 7], is
based on the Huygens construction yielding the scalar field generated
into z > 0 half-plane by the source aperture from the relevant initial
excitation. A comparative study of three basic reconstruction schemes
is presented in [42].

The Huygens representation-based reconstruction scheme has
been considered also in [25], where in fact an accurate analysis of
the correspondence between source-free and aperture-generated MPS,
splash and DEX pulses has been carried out. From such an analysis it
emerges that (at least for the values of the exponent q considered in
the quoted paper) the reconstruction of splash pulses is possible with
a maintenance of the features of the source-free field over a rather
extended z-range between the near- and the far-field regions, as, for
instance, the aforementioned quasi-missile decay.

As to the Laguerre-Lorentzian solutions of the wave equation,
discussed in the previous sections, that as noted earlier can be regarded
as a sort of higher-order splash pulses with basic exponent q > 0.5, one
might investigate their launchability through the same reconstruction
process. On the other hand, according to the generation scheme (33)
such higher-order pulses result formally from the repeated application
of the Laplacian operator to the basic splash pulse, and so due to the
axial symmetry of the latter, of the radial Laplacian. Therefore, on
account of the basic properties of the Hankel transform, we may say
that in principle the Laguerre-Lorentzian pulses could be produced by
a sequence of direct and inverse Hankel transform of zero order with an
intermediate propagation through a radial transmittance T ∝ (−)nr2n.
In formal terms, we have in fact[∇2

r

]n
f(r) =

[
Ĥ0(−)nr2nĤ0f

]
(r) (50)

Ĥ0 denoting the Hankel transform of zero order. We recall that the
Hankel transform is self-reciprocal: Ĥ−1

0 = Ĥ0.
We know that the Hankel transform results from a 2D Fourier

transform of an axially symmetric function operated by axially
symmetric tools. The optical Hankel transform, for instance, may be
realized by the so-called ‘2f ’ system — a spherical lens of focal length
f sandwiched between two free-space section of length f — or the
Fourier tube — a free-space section of length f sandwiched between
two spherical lenses of focal length f .

One should therefore face the issues concerning the launchability
of the uq’s for q > 0.9, which comprises the case of our interest
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(and should reasonably follow from the above considerations) and the
practicability of the scheme (50) for the production of the higher order
modes as well as the possible applications of such higher-order modes.
Further investigations are evidently needed to master such issues.

As a conclusion, we show in Fig. 6 the surface plots and the
relevant contour plots of the amplitude vs. r and z at different times
of the wave solution obtained as difference of two Laguerre-Lorentzian
solutions of the wave equation of given n’s and N ’s:

ud(r, z, t) ∝ un,N (r, z, t) − un′,N ′(r, z, t)

with in general the two component wave fields being allowed to
correspond to different values of the parameters z0 and a. In particular,
in the figure the values z0 = a = 1 have been considered to favour the
comparison with the plots of the original splash pulse reported in [5].
The maxima in the plots corresponding to the time t1 = 10−11 s have
been normalized to unity.
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