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FIELDS IN THE FOCAL SPACE OF SYMMETRICAL
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Abstract—In this paper, Maslov’s method has been used to obtain the
high frequency field refracted by a hyperboloidal focusing lens. High
frequency problem which contains caustic region is transformed into
caustic free problem by transforming the situation into mixed domain.
The high-frequency solution that includes the caustic region is obtained
from geometrical optics. The defect in high frequency solution due
to geometrical optics is overcomed by Maslov’s method. Numerical
computations are made for the field pattern around the caustic. The
results are found in good agreement with obtained using Debye-Wolf
focusing integral.

1. INTRODUCTION

Ray-based techniques for waveform modeling are attractive in
electromagnetics because they provide insight into how a wave front
responds to a given structure [1,2]. In these techniques, user has the
luxury of being able to monitor a given phase as it steps through the
medium. Geometrical optics (GO) is concerned with only the relatively
high frequency component of the waveform, provided the ray tube does
not vanish. However, there exists situations where ray tube shrinks to
zero at places called caustics.

Mathematically in physical space, there exists singularity in the
caustic, but the singularity is not a real one. In fact, the solutions
of electromagnetic wave equation is not singular therefore the GO
approximation is not suitable for the caustic region where they predict
singularity. A systematic procedure which remedies these defects has
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been proposed by Maslov [3]. This method puts the GO field into the
phase space M which has the double dimensions of the physical space,
M = X x K, where X is the physical space, K is the wave vector
space which has the same dimensions with the physical space. The
rays in the phase space do not have singularity. At the singular point
in the physical space, we can project the rays from the phase space to
the hybrid space. We can use the high-frequency approximation in the
hybrid space, and then transforming the solution to the physical space
through Fourier transform. It is well known that we always can find
such a hybrid space which has no singularity at the singular point of
the physical space. According to Maslov’s method, the field expression
near the caustic can be constructed by using the GO information,
though we must perform the integration in the spectrum domain in
order to predict the field in the space domain.

For a review and application of the Maslov’s method on different
problems, the reader is referred to Kravtsov [4-7], Gorman [8,9],
Ziolkowski and Dechamps [10]. Hongo and Ji [11-16], Naqvi and co-
workers [17-33]. Many investigations on the fields in focal space of
focusing system have been carried out using different methods [33—42].

In present work, field refracted by a focusing geometry which
contains a hyperboloidal focusing lens has been studied by using the
Maslov’s method. For a special case of axis symmetrical hyperboloidal
focusing lens the integral with respect to one of the two angular
coordinate variables can be performed analytically, so field behavior
may be computed through an integral with single variable. The field
distribution along the axis is nearly symmetrically with respect to a
focal point and this is one of the characteristics of point focus system.

In 1909, Debye reformulated the scalar focusing problem using
plane waves rather than spherical waves. Debye formulation
was further treated by Wolf as vector generalization of Debye’s
representation and known as Debye-Wolf vector integral [36, 37]. Sherif
and Torok [38-42] reported an eigenfunction representation of the
integrals of Richards and Wolf. It is found that Debye-Wolf focusing
integral and Maslov’s method are of comparable accuracy. Solutions
fit very well.

2. DERIVATION OF GEOMETRICAL OPTICS FIELD
EXPRESSION

Consider the geometry which contains a hyperboloidal focusing lens
as shown in Figure 1. Electromagnetic plane wave polarized in z-
direction and propagating in z-direction, is incident on a hyperboloidal
focusing lens. After passing through the hyperboloidal focusing lens,
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Figure 1. Hyperboloidal lens antenna.

ray is focused. We assume that the profile of the hyperboloidal lens is
denoted by g(p) and the rectangular coordinates of the point on curved
surface of the lens are denoted as (£, 7, (). Profile of the hyperboloidal
lens is defined as

2,2 3 1
s =c=a| ST 1| =5[] (1)

and
=24t E=a
An incident plane wave is given by
E, = exp(—jkz) (2)

Our interest is to determine the field transmitted through the lens.
Unit normal N of the curved surface is given by

N = sin accos i, + sin asin iy, + cos ai, (3)

where (a, 3) are angular polar coordinates of the point on the surface
of lens and are related to the coordinates (£,7,() by the following
expressions

b2 sin o cos

Va2 cos?a — b2sin? a

§
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b2 sin asin 8

’r] =
Va2 cos? o — b2 sin? a
¢ = a® cos o
Va2 cos?a — b2sin? a
/
V1+(g'(p)
1
s = ——
L+ (g'(p))
tan 8 = g (4)

The ray vector of the refracted ray by hyperboloidal lens may be
obtained using the relation q = np' + /1 — n? + n2(p' - N)2N —n(p!-
N)N, which is derived from Snell’s law. This can be rewritten in
rectangular coordinates by using Equation (3) and is given below

q = Qi(a)cos fiy + Qi) sin fiy + (n + Q. ()i,

= Qeiz + qyiy + ¢:i: ()
where
Qi(a) = K(a)sina
Q.(a) = K(a)cosa
K(a) = V1 - n2sin?a — ncosa

where n is the refractive index of the dielectric medium. Once the
ray vector of refracted field is obtained, the rectangular coordinates
(z,y,2) of observation point on the refracted ray are given by

r=6+qt, y=n+gqt, z=C+qt (6)

where ¢ is the parameter along the ray. Equation (6) is obtained from
the solutions of Hamilton’s equations and shows the relation between
spatial coordinates (z,y,z) and ray vector components (qz,qy,q-)
of the ray. (§,n,() are rectangular coordinates of initial point on
the refracted ray or point on the curved surface of the lens. From
Equations (5) and (6) and the using procedure employed in [11-13],
the geometrical optics field is derived as

E'(2,,2) = Er(&,m) [J(0)] 2 exp|—jk(So€m +1)| (1)
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where J(t) is the Jacobian of coordinate transformation from ray
coordinates (£,n,t) to rectangular coordinates (x,y,z) and has been
derived in the appendix

=20 _ 1 @y.z) (—P@t-i- 1) <@t+ 1)

D(0)  D(0) 9§, 1) E
where
2
p__ ab cos 043
(p? +0)>
0Q: () 2
Uy =n——=+K
0=n"n Dol + K*(a)
B — ncosa + K(a)
Ccos o
b2 sin o
p =

Va2 cos? a — b2 sin? a

902 2
D - Q¢ () _ (1 — 2n”sin” ) cos « 1 eos 2

da V1 —n2sin?a

E7 is the amplitude of the refracted ray at the refraction point. Initial
phase Sp on the surface of the lens and t are defined as

So=n(—c+¢), t=y@->+E—-n2+=-¢0* (8

It is readily seen that the geometrical optics solution (7) of the refracted
ray becomes infinity at the point F', where J = 0, in Figure 1.

3. DERIVATION OF THE EXPRESSION VALID
AROUND CAUSTIC

According to Maslov’s method, the three-dimensional expression for
the field that is valid near the caustic is given by [11]

r _ ko[> D(t) 0(qu,qy) |~
E@‘%ﬂf“mb@mwﬂ

exp {—jk [50 +t—2(q, 9y, %)

(S

_y(Q:L’a Qy, Z)Qy + qzx + ny} } dq.dq, (9)

Equation (9) is derived by applying the stationary phase method to the
conventional Fourier-transform representation for E"(r) and comparing
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it with the geometrical optics field given in Equation (7). Thus the
integrand of the inverse Fourier transform of the wave function is
derived through the information of the GO solution. It may be noted
that z(qy,qy, 2) and y(qs, gy, 2) means that the coordinate z and y
should be expressed in terms of mixed coordinates (¢, gy, z) by using
solutions of Hamilton equations given in (6). The same is true for ¢

and it is given by t = Zq;zc. The result is given by

a(%ca‘]y) . 1 8(Qza‘]yvz)
T 3y = DO) ol.v.0
(et oy o
D(0) \ 9 on  0¢ On
 PQ.(a)DQy(c)
- = (10)

The phase function is given by

S =58 +t— x(Qwa Qy, Z)Qz - y(qq:v Qy Z)Qy + @z + quYy
= So+qx($—§)+Qy(y—77)+q,z(2—§) (11)
We introduce polar coordinates as
x = rsinfy cos ¢y
y = 7sinfgsin ¢g
z = rcosb (12)
The phase function becomes as
S = K(a)rsinasinfycos(¢g — 5) + (n + K(a) cosa)z
—K(a)(psina + ( cosa) — nc (13)
Transforming the integration variables (¢, q,) into (e, §) that is,

2a)cosa

1 —n2sin?a

1 —2n2sin

dg,dg, = [( — n.COoS 2a] Q(a)dadf (14)

Substituting (13) and (14) into (9), following is obtained

S [ [ o]
exp [_ jk( (@) sin asin B cos(do — B)

+(n + K(a)cosa)z
—K(a)(psina+ (cosa) — nc))} dodf (15)
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The subtention angle T of lens is given by

T = arctan <i>
2c

where d is height of hyperboloidal lens. The initial value Ep(&,n) in
(15) may be obtained by using GO theory. The transmitted field by
lens is given by

Er = (TL sin? 3+ [TL + <n sin? a+cos V1 — n? sin? a) T cos? ﬁ) iz
—|—(— sin (G cos 8 + (nsin2 a+ cosay/1 — n2sin? a))T”] iy

+(T|| (n cosa — V1 —n2sin? a)) sin o cos )i,

where
2n cos
T = —
cosa+nyv1—n*sin® «
2n cos «
T, =

ncosa+ V1 —n2sin?a

Finally the expression which is valid around the caustic is

B =g [ [ B [MF

PQ.(a)
exp [—jkz(K(a)r sin asin Oy cos(¢pg — )
+(n+ K(a)cosa)z

—K(a)(psina + ( cosa) — nc))} dad (16)

The integration with respect to 3 can be performed by using the
integral representation of Bessel function. The results are expressed
as

B = g[P(r, 00) — R(r,0o) cos 2¢0} (17)
2y = 21, 00) sin26,) (18)

EL = jE[R(r, o) sin ¢o] (19)

z
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where
T
P(r,6y) = / [TL + (nsin2 a4+ cosaV/1 — n? sin? a) TII}
0

Jo(kK (a)r sin 6y sin «v) [%@é)@} 3

exp [—jk((n + K(a)cosa) z

—K(a) (psina + (cosa) — nc)]da
Q(r,6p) = /OT [(TH (ncosa — V1 — n?sin? a)) sina}

J1 (kK (a)r sin O sin o) [%@(té‘;)] 2

exp [—jk((n + K(a)cosa) z

—K(a) (psina + (cosa) — nc)] do
R(r,60p) = /T |:(—TJ_ + (n sin? a + cos aV/1 — n2 sin? a) TH)
0

Jo (kK (a)r sin g sin a) [%@{(ﬁ(;)} 3

exp [—jk((n + K(a)cosa) z

—K(a) (psina + (cosa) — nc)]doz

4. COMPARISON TO THE DEBYE-WOLF FOCUSING
INTEGRAL

The electric field distribution around focal point F' of hyperboloidal
lens, which has been excited by an electromagnetic plane wave
polarized in z-direction and propagating in z-direction as shown in
Figure 2, may be obtained using the Debye-Wolf focusing integral [36—
42] and is given below

Boy.2) = —30 [[ MW exp(ji e+ + caagan (20

where k = 2 is wave number, a(£,7) is the strength vector of a ray

at rear face of lens, £, n and ( are the cartesian components of the
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Figure 2. Geometry for Deby-Wolf integral.

position vector OP and T is the solid angle associated with all the
ray which reaches the image space through exit pupil of the lens. The
coordinates of the point P(£,7,() on lens are defined in (4) and the
co-ordinates (x,y, z) of a point F' in the image region may be expressed
in the form

F(x,y,z) = r(sinf cos ¢, sin 0 sin ¢, cos ) (21)
so the term in the exponent of integral (20) becomes
Ex+ny+ (z=rpsinfsinacos(¢p — ) + r{ cosb (22)

The strength factor may be determined by [38] as

a(§,n) = fy/cosa [(cosa +sin? B(1 — cos @) )i,
+(cos av — 1) cos asin fBiy, — cos Fsin ad, (23)
Expression for quantity décﬂ in terms of « and [ is required for our
basic diffraction integral (20). This quantity represents the element dS
of the solid angle and is given by
d€dn

~ =dS = psinadadf (24)
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Substituting (21) to (24) into (20), we obtain following field expression

—Jjk

E'(z,z) = 5
s

/OT/O27T f[(cosa +sin? B(1 — cos @) )iy + (cosa — 1)
cos asin Bi, — cos 3 sin oziz} \/cos asin o
exp [—jk (rp sin acsin 0 cos(¢p — 3) + r¢ cos 0)} dadf  (25)
The integration with respect to 3 can be performed by using the

integral representation of Bessel function. Finally, we obtain following
expressions for the components of the vector field

B = %kf[[o Ty cos2¢] (26)
o %’“f[fg in 26 (27)
B = M (1 cosg) (28)

where

T
Iy :/ Vcos asin a(1+cos a)) Jo(krpsin 6 sin o) exp[—jk:(rCcosH)}da
0
T
I :/ V/cos asin? aJ; (krpsin 6 sin o) exp [—jk(rcosa(ﬂda
0

T
I —/ V/cos asin a1 —cos a)Jo(krpsin 0 sin «) exp[—jk(rc cos 0)} do
0

5. NUMERICAL RESULTS AND DISCUSSION

Field pattern around the caustic of a hyperboloidal focusing lens are
determined by performing the integration, in Equations (17) and (26),
numerically by using Mathcad software. It is observed that normalized
results of (18) and (19) are similar to (17). It is assumed that ka = 20,
kb =5, kd = 15 and n = 1.8 for results in Figure 3 to Figure 8 and
ka = 16, kb = 4, kd = 20 and n = 1.8 for results in Figure 9 to
Figure 10. Figure 3 and Figure 4 show comparison between Maslov’s
method and Debye-Wolf focusing integral along z-axis and z-axis
respectively. The solid line shows the results obtained using Maslov’s
method while dashed line is for result obtained using Debye-Wolf
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focusing integral which are in good agreement. This comparison proves
validity of Maslov’s method. Figure 5 and Figure 6 show the field
distribution around focal point along z-axis and z-axis respectively.
Figure 7 provides contour plots of normalized field distribution around
focus of a hyperboloidal focusing lens by Maslov’s method and Figure 8
provides contour plots by Debye-Wolf focusing integral at ka = 20,
kb =5, kd = 15 and n = 1.8. The location of the caustic may be
observed and verified easily. Figure 9 and Figure 10 also provides the

Field intensity
T

Figure 3. Comparison of normalized field intensity distribution anlog
x-axis by Maslov’s method (solid line) and Deby-Wolf integral (dashed
line) at ka = 20, kb =5, and kd = 15 and n = 1.8.

Field intengity
T

~200 - 150 - 100 -350 o ﬁ;ﬂz 100 150 200

Figure 4. Comparison of normalized field intensity distribution anlog
z-axis by Maslov’s method (solid line) and Deby-Wolf integral (dashed
line) at ka = 20, kb =5, and kd = 15 and n = 1.8.
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Figure 5. Field intensity distribution along z-axis at ka = 20, kb = 5,
kd = 15 and n = 1.8 by Maslov’s method.
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Figure 6. Field intensity distribution along z-axis at ka = 20, kb = 5,
kd = 15 and n = 1.8 by Maslov’s method.

contour plots by Maslov’s method and Debye-Wolf focusing integral
respectively at ka = 16, kb =4, kd = 20 and n = 1.8.

All contour plots show equi-amplitude contours of the field
distribution on the meridional plane line plots show the field behavior
around caustic of lens. It is observed that the peak point of the field
distribution are located at the caustic. It is also observed from Figure 7
to Figure 10 that the peak points of the field move towards lens if we
decrease length of major axis and increase the height of hyperboloidal
lens.
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Figure 7. Equi-amplitude normalized contour plots of field intensity
distribution at ka = 20, kb = 5, kd = 15 and n = 1.8 using Maslov’s
method.
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Figure 8. Equi-amplitude normalized contour plots of field intensity
distribution at ka = 20, kb = 5, kd = 15 and n = 1.8 using Deby-Wolf
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APPENDIX A. EVALUATION OF THE J(t)

gz 4 Da 9 | dgzy
(z,y, 2) Lt ot
D(t) = 22227 | Oqa 9q BC 3qz
(t) DE D) St 1+ 32 G+ 5
qx Qy q,z

= UL +Vt+W (A1)
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distribution at ka = 16, kb = 4, kd = 20 and n = 1.8 using Maslov’s
method.
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where U, V, W are

_ (94 94: _ 04:0gy
V= (as o o€ on )Tt
N (é’qx dqy  Oqy 8%) ”

9§ on 0§ On

94z 04:
on ¢

aq,z 0 dx
on 0

%)

V_<%%_%%_%) +<%%_%%_%)
“N\ocag oacag oc )T \onoe onoc  ag)W
aQy 0qy
+<—+a—§>
_ (9 %
W_(a5 - >+qz (A2)



Progress In Electromagnetics Research, PIER 89, 2009 269

We may rewrite the values of U, V' and W by using the following
relations

86(1; 3@50([ @) do 5 0s B — Qi )—?smﬁ——PDcos ﬁ+ci sin? 8
68—(]5 — 8%’5(i a) da 85 inf—Q¢(« )8_§ cos f=— <PD—|—Qt£ )> cos Bsin 3
% _ 9ila ) 0s B—Qu(a )—ﬁSd B=— <PD+—Qt(a)> cos Fsin 3
n foJel P
%—%/_a%tci )377 nf3—Q« )a—gcosﬁ— —PD cos? ﬂ+Qt( ) in? 8
dq. o 0Q:(a) dav _ 0Q. ()
9~ oa a_g__P da ®P
9q: _ 9Q:(a) da _ 9Q:() .
o~ oa o ' oa
where
. o ‘ o da _p da P
ana = —g (p), anﬁ—g, % cos 3, %~ sin 3
0 i 0 0 0
8—? = —Su;ﬂ, a—g = Cozﬂ, 8—? = g'(p)cos 3, 8—5 = g'(p)sin 8
The new expressions for U, V and W are given by
v = P2 (G001 - Qu()D)
v - @) (et L) L p (@) - QD)
p cos
W= ncosa + K(a)
cos v
_0Qx(a) (1 4 n? cos 2a) sin a
D, = —5g  — nsin 200 — 0 n2an’a) (A3)

where Hence we have

D(t)=UL+Vt+W = ( %tJrl) <Qt;a)t+1)

where
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_ 0Q() 2
Uy=n % + K* ()
B ncosa + K(a)

cos «
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