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Abstract—The diffraction by a terminated, semi-infinite parallel-
plate waveguide with four-layer material loading is rigorously analyzed
for the H-polarized plane wave incidence by means of the Wiener-
Hopf technique. Introducing the Fourier transform for the unknown
scattered field and applying boundary conditions in the transform
domain, the problem is formulated in terms of the simultaneous
Wiener-Hopf equations. The Wiener-Hopf equations are solved via
the factorization and decomposition procedure together with the use
of the edge condition leading to exact and approximate solutions. The
scattered field inside and outside the waveguide is evaluated by taking
the inverse Fourier transform and applying the saddle point method.
Numerical examples on the radar cross section (RCS) are presented for
various physical parameters, and the backscattering characteristics of
the waveguide are discussed.

1. INTRODUCTION

The analysis of the scattering by open-ended waveguide cavities is
an important subject in the prediction and reduction of the radar
cross section (RCS) of a target [1–4]. There are a number of
papers treating two-dimensional (2-D) and three-dimensional (3-D)
cavity diffraction problems based on high-frequency ray techniques
and numerical methods [5–11], but the solutions obtained by these
approaches may not be uniformly valid for arbitrary cavity dimensions.
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The Wiener-Hopf technique [12–14] is known as a powerful tool for
analyzing wave scattering and diffraction problems related to canonical
structures rigorously. There are some important contributions to
studies on the cavity RCS by Büyükaksoy et al. [15, 16] based on
the Wiener-Hopf technique. In the previous papers [17–24], we have
also considered several 2-D cavities formed by a finite parallel-plate
waveguide, and analyzed the problem of the plane wave diffraction
rigorously using the Wiener-Hopf technique. It has been clarified
that our final results presented in [17–24] are valid for the cavity
depth greater than the incident wavelength. As a related 2-D cavity
geometry, we have subsequently considered a semi-infinite parallel-
plate waveguide with an interior planar termination, and carried out
the Wiener-Hopf analysis of the plane wave diffraction [25, 26]. It is
important to note that the cavity in [25, 26] is formed by a semi-infinite
parallel-plate waveguide and hence, our solutions are uniformly valid
for arbitrary cavity dimensions.

In [25, 26], we have treated the case where the planar termination
inside the waveguide is loaded with a three-layer material. As an
important generalization of our previous analysis [25, 26], we have
considered in [27] a terminated, semi-infinite parallel-plate waveguide
with four-layer material loading, and analyzed the E-polarized plane
wave diffraction rigorously by using the Wiener-Hopf technique. It
should be noted that the solution obtained in [27] is uniformly valid
for arbitrary cavity dimensions. We have also verified by numerical
computation that the four-layer material loading inside the cavity leads
to better RCS reduction in comparison to the three-layer case. In
this paper, we shall consider the same waveguide geometry as in [27],
and analyze the diffraction problem for the H-polarized plane wave
incidence by means of the Wiener-Hopf technique.

Introducing the Fourier transform for the unknown scattered
field and applying boundary conditions in the transform domain,
the problem is formulated in terms of the simultaneous Wiener-
Hopf equations. The Wiener-Hopf equations are then solved via
the factorization and decomposition procedure leading to the exact
solution. It should be noted, however, that this solution is formal
since an infinite number of unknowns are contained. By using the edge
condition, an approximate solution efficient for numerical computation
is explicitly derived, which involves numerical inversion of finite-
size matrix equations. Taking the inverse Fourier transform and
using the saddle point method, a scattered field expression inside
and outside the waveguide is evaluated analytically. Representative
numerical examples on the RCS are presented, and the far field
backscattering characteristics of the waveguide are discussed in detail.
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Some comparisons with the E-polarized case [27] will also be given.
Since the method of solution employed here is similar to that in [27],
only the main results will be summarized.

The time factor is assumed to be e−iωt, and suppressed throughout
this paper.

2. FORMULATION OF THE PROBLEM

The geometry of the problem is shown in Fig. 1, where the waveguide
plates are infinitely thin, perfectly conducting, and uniform in the y-
direction. The material layers I (−d1 < z < −d2), II (−d2 < z <
−d3), III(−d3 < z < −d4), and IV (−d4 < z < −d5) are characterized
by the relative permittivity/permeability (εm, µm) for m = 1, 2, 3, and
4, respectively.

Figure 1. Geometry of the problem.

Let the total magnetic field φt(x, z)
[
≡ Ht

y(x, z)
]

be

φt(x, z) = φi(x, z) + φ(x, z), (1)

where φi(x, z) is the incident field of H polarization defined by

φi(x, z) = e−ik(x sin θ0+z cos θ0), 0 < θ0 < π/2, (2)

where k [≡ ω(µ0ε0)1/2] is the free-space wavenumber. We shall assume
that the vacuum is slightly lossy as in k = k1 + ik2 with 0 < k2 � k1.
The total field φt(x, z) satisfies the 2-D Helmholtz equation[

∂2/∂x2 + ∂2/∂z2 + µ(x, z)ε(x, z)k2
]
φt(x, z) = 0, (3)
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where

µ(x, z) =




µ1(layer I)
µ2(layer II)
µ3(layer III)
µ4(layer IV)
1 (otherwise)

, ε(x, z) =




ε1(layer I)
ε2(layer II)
ε3(layer III)
ε4(layer IV)
1 (otherwise)

. (4)

Once the solution of (3) has been found, nonzero components of the
total electromagnetic fields are derived from

(
Ht

y, E
t
x, E

t
z

)
=

[
φt,

1
iωε0ε(x, z)

∂φt

∂z
,

i

ωε0ε(x, z)
∂φt

∂x

]
. (5)

It follows from the radiation condition that

φ (x, z) = O
(
ek2z cos θ0

)
as z → −∞,

= O
(
e−k2z

)
as z → ∞. (6)

Let us define the Fourier transform of the scattered field as

Φ(x, α) = (2π)−1/2

∫ ∞

−∞
φ(x, z)eiαzdz,

α = Reα + iImα(≡ σ + iτ). (7)

Introducing the Fourier integrals as

Φ+(x, α) = (2π)−1/2

∫ ∞

0
φ(x, z)eiαzdz, (8)

Φ−(x, α) = (2π)−1/2

∫ d1

−∞
φ(x, z)eiαzdz, (9)

Φ(m)
1 (x, α) = (2π)−1/2

∫ −dm+1

−dm

φt(x, z)eiαzdz

for m = 1, 2, 3, 4, (10)

Φ(5)
1 (x, α) = (2π)−1/2

∫ 0

−d5

φt(x, z)eiαzdz, (11)

we can express Φ(x, α) as

Φ(x, α) = Ψ(+)(x, α) + Φ−(x, α) for |x| > b,

= Ψ(+)(x, α) + Φ1(x, α) for |x| < b (12)
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by using (8)–(11), where

Ψ(+)(x, α) = Φ+(x, α) − e−ikx sin θ0

(2π)1/2i(α− k cos θ0)
, (13)

Φ1(x, α) =
5∑

m=1

Φ(m)
1 (x, α). (14)

In view of the radiation condition, it follows that Φ(x, α), Φ+(x, α),
and Φ−(x, α) are regular in −k2 < τ < k2 cos θ0, τ > −k2, and
τ < k2 cos θ0, respectively, whereas Φ(m)

1 (x, α) for m = 1, 2, 3, 4, 5 are
entire functions. We also note that Ψ(+)(x, α) is regular in τ > −k2

except for a simple pole at α = k cos θ0. We shall henceforth use these
conventions for indicating the regions of regularity of functions in the
complex α-plane.

Taking the Fourier transform and the Fourier integrations of (3)
and solving the resultant equations by following a procedure similar to
that developed in [27], we derive a scattered field representation in the
Fourier transform domain with the result that

Φ(x, α) = −Ψ′
(+)(±b, α)γ−1e∓γ(x∓b) for x ≷ ±b,

= Ψ′
(+)(b, α)

cosh γ(x + b)
γ sinh 2γb

−Ψ′
(+)(−b, α)

cosh γ(x− b)
γ sinh 2γb

−1
b

∞∑
n=0

νn
c5n(α)
α2 + γ2

n

cos
nπ

2b
(x + b)

−1
b

4∑
m=1

∞∑
n=0

νn
cmn(α)

α2 + Γ2
mn

cos
nπ

2b
(x + b)

for |x| < b, (15)

where γ = (α2 − k2)1/2 with Re γ > 0, and

νn = 1/2 for n = 0,
= 1 for n ≥ 1, (16)

γn = −ik for n = 0,

=
[
(nπ/2b)2 − k2

]1/2 for n ≥ 1, (17)
Γmn = −ikm for n = 0,

=
[
(nπ/2b)2 − k2

m

]1/2 for n ≥ 1, (18)
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km = (µmεm)1/2k for m = 1, 2, 3, 4, (19)

cmn(α) = e−iαdmc+mn(α) − e−iαdm+1c−(m+1)n(α)

for m = 1, 2, 3, 4, (20)

c5n(α) = e−iαd5c−5n(α), (21)

c+1n(α) = f+
n , c−2n(α) = f1n − iαg1n, (22)

c+2n(α) = (ε2/ε1) f1n − iαg1n, c−3n(α) = f2n − iαg2n, (23)
c+3n(α) = (ε3/ε2) f2n − iαg2n, c−4n(α) = f3n − iαg3n, (24)
c+4n(α) = (ε4/ε3) f3n − iαg3n, c−5n(α) = f4n − iαg4n. (25)

In (15), the prime denotes differentiation with respect to x.
Equation (15) is the scattered field expression in the transform
domain. The coefficients f+

n , fmn, and gmn in (22)–(25) are defined in
Appendix A.

We now differentiate (15) with respect to x and set x = b±0, −b±0
in the results. Making use of the boundary conditions, we obtain that

Jd
−(α)=−

U(+)(α)
M(α)

− 2
b

∞∑
n=1,odd

[
c5n(α)
α2 + γ2

n

+
4∑

m=1

cmn(α)
α2 + Γ2

mn

]
, (26)

Js
−(α)=−

V(+)(α)
N(α)

+
2
b

∞∑
n=0,even

νn

[
c5n(α)
α2 + γ2

n

+
4∑

m=1

cmn(α)
α2 + Γ2

mn

]
, (27)

where

U(+)(α) = Ψ′
(+)(b, α) + Ψ′

(+)(−b, α), (28)

V(+)(α) = Ψ′
(+)(b, α) − Ψ′

(+)(−b, α), (29)

Jd,s
− (α) = J−(b, α) ∓ J−(−b, α), (30)

J−(±b, α) = Φ−(±b± 0, α) − Φ1(±b∓ 0, α), (31)

M(α) = γe−γb cosh γb, N(α) = γe−γb sinh γb. (32)

Equations (26) and (27) are the desired, simultaneous Wiener-Hopf
equations, where M(α) and N(α) are kernel functions.

3. SOLUTION OF THE WIENER-HOPF EQUATIONS

The kernel functions are factorized as [12, 13]

M(α) = M+(α)M−(α), N(α) = N+(α)N−(α), (33)
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where

M+(α)[= M−(−α)] = (cos kb)1/2ei3π/4

·(k + α)1/2 exp {(iγb/π) ln [(α− γ) /k]}
· exp {(iαb/π) [1 − C + ln(π/2kb) + iπ/2]}

·
∞∏

n=1,odd

(1 + α/iγn)e2iαb/nπ, (34)

N+(α)[= N−(−α)] = (k sin kb)1/2 exp(iπ/2)
· exp {(iγb/k) ln[(α− γ)/k]}
· exp {(iαb/π) [1 − C + ln(2π/kb) + iπ/2]}

·(1 + α/iγ0)
∞∏

n=2,even

(1 + α/iγn)e2iαb/nπ (35)

with C(= 0.57721566 · · · ) being Euler’s constant.
We multiply both sides of (26) and (27) by M−(α) and N−(α),

respectively, and decompose the results with the aid of the edge
condition. After some manipulations, we arrive at

U(+)(α)=b1/2M+(α)
[
− A

b (α−k cos θ0)
−

∞∑
n=1

δ2n−1anpnun

b (α+iγ2n−1)

]
, (36)

V(+)(α)=b1/2N+(α)
[

B

b (α−k cos θ0)
−

∞∑
n=1

ν2n−2δ2n−2bnqnvn

b (α+iγ2n−2)

]
, (37)

where δn is defined by (A20) in Appendix A, and

an = (biγ2n−1)−1, bn = (biγ2n−2)−1, (38)

pn = b1/2M+ (iγ2n−1) , qn = b1/2N+ (iγ2n−2) , (39)
u+

n = U(+) (iγ2n−1) , v+
n = V(+) (iγ2n−2) , (40)

A = −
(

2b
π

)1/2 k sin θ0 cos(kb sin θ0)
M+(k cos θ0)

, (41)

B = −
(

2b
π

)1/2 ik sin θ0 sin(kb sin θ0)
N+(k cos θ0)

. (42)

Equations (36) and (37) are the exact solutions to the Wiener-Hopf
equations (26) and (27), respectively.

Taking into account the edge condition, we find that

u+
n ∼ −21/2iKu(bγ2n−1)−1/2, v+

n ∼ −21/2iKv(bγ2n)−1/2 (43)
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as n → ∞, where Ku and Ku are unknown constants. Approximate
expressions of (36) and (37) are derived by using (43) as

U(+)(α) ≈ b1/2M+(α)

[
− A

b (α− k cos θ0)

−
N−1∑
n=1

δ2n−1anpnu
+
n

b (α + iγ2n−1)
−KuSu(α)

]
, (44)

V(+)(α) ≈ b1/2N+(α)

[
B

b (α− k cos θ0)

−
N−1∑
n=1

ν2n−2δ2n−2bnqnv
+
n

b (α + iγ2n−2)
−KvSv(α)

]
(45)

with N being a large positive integer, where

Su(α) =
∞∑

n=N

δ2n−1(bγ2n−1)−1

b(α + iγ2n−1)
, (46)

Sv(α) =
∞∑

n=N

δ2n−2(bγ2n−2)−1

b(α + iγ2n−2)
. (47)

The unknowns u+
n and v+

n for n = 1, 2, 3, . . . , N − 1 as well as Ku and
Kv are involved in (44) and (45), which can be determined by solving
two sets of N×N matrix equations numerically (see discussion in [27]).

4. SCATTERED FIELD

The scattered field in the real space can be derived by taking the inverse
Fourier transform of (15) according to the formula

φ(x, z) = (2π)−1/2

∫ ∞+ic

−∞+ic
Φ(x, α)e−iαzdα,

−k2 < c < k2 cos θ0. (48)

Substituting (15) into (48) and evaluating the resultant integral for
|x| < b with the aid of (36) and (37), the scattered field inside the
waveguide is derived as

φ(x, z) = −φi(x, z) +
∞∑

n=0

T1n cosh Γ1n(z + d1) cos
nπ

2b
(x + b)

for − d1 < z < −d2,
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= −φi(x, z) +
∞∑

n=0

[
T−

mne
Γmn(z+dm+1) − T+

mne
−Γmn(z+dm+1)

]

· cos
nπ

2b
(x + b) for − dm < z < −dm+1 (m = 2, 3, 4),

= −φi(x, z) +
∞∑

n=0

[
T−

n eγn(z+d5) − T+
n e−γn(z+d5)

]

· cos
nπ

2b
(x + b) for − d5 < z < 0, (49)

where

T1n =
(π

2

)1/2 νne
−γnd5e−Γ1n(d1−d2)P1nU(+) (iγn)

bΓ1n

for odd n,

= −
(π

2

)1/2 νne
−γnd5e−Γ1n(d1−d2)P1nV(+) (iγn)

bΓ1n

for even n, (50)

T−
mn = −

(π

2

)1/2 νne
−γnd5PmnU(+) (iγn)

bΓmn

for odd n (m = 2, 3, 4),

=
(π

2

)1/2 νne
−γnd5PmnV(+) (iγn)

bΓmn

for even n (m = 2, 3, 4), (51)

T+
mn = −

(π

2

)1/2 νne
−γnd5QmnU(+) (iγn)

bΓmn

for odd n (m = 2, 3, 4),

=
(π

2

)1/2 νne
−γnd5QmnV(+) (iγn)

bΓmn

for even n (m = 2, 3, 4), (52)

T−
n = −

(π

2

)1/2 νne
−γnd5U(+) (iγn)

bγn
for odd n,

=
(π

2

)1/2 νne
−γnd5V(+) (iγn)

bγn
for even n, (53)

T+
n = −

(π

2

)1/2 νne
−γnd5Q4nU(+) (iγn)

bγn
for odd n,
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=
(π

2

)1/2 νne
−γnd5Q4nV(+) (iγn)

bγn
for even n, (54)

In (50)–(54), Pmn and Qmn for m = 1, 2, 3, and 4 are defined in
Appendix A.

Next we shall consider the field outside the waveguide and derive
a scattered far field for |x| > b. In view of (15), (28), (29), and (48),
an integral representation of the scattered field for x ≷ ±b is given by

φ(x, z) = ∓(2π)−1/2

∫ ∞+ic

−∞+ic
γ−1Ψ′

(+)(±b, α)e−iαzdα,

−k2 < c < k2 cos θ0, (55)

where

Ψ′
(+)(±b, α) =

U(+)(α) ± V(+)(α)
2

. (56)

In order to evaluate (55), we express φ(x, z) as in

φ(x, z) = φ1(x, z) + φ2(x, z), (57)

where

φ1(x, z) = ±(2π)−1/2

∫ ∞+ic

−∞+ic
γ−1[Ψ′

(+)(±b, α)

−Φ̃(±b, α)]e∓γ(x∓b)−iαzdα, (58)

φ2(x, z) = ∓(2π)−1/2

∫ ∞+ic

−∞+ic
γ−1Φ̃(±b, α)e∓γ(x∓b)−iαzdα (59)

for x ≷ ±b with

Φ̃(±b, α) =
k sin θ0e

∓ikb sin θ0(α + k)1/2

(2π)1/2(k + k cos θ0)1/2(α− k cos θ0)
. (60)

For convenience, we now introduce the cylindrical coordinates
(ρ1,2, θ1,2) centered at the waveguide edges (x, z) = (±b, 0) as follows:

x− b = ρ1 sin θ1, z = ρ1 cos θ1 for 0 < θ1 < π, (61)
x + b = ρ2 sin θ2, z = ρ2 cos θ2 for − π < θ2 < 0. (62)

In (57), φ1(x, z) is evaluated asymptotically for large |k| ρ1,2 with the
aid of the saddle point method, whereas φ2(x, z) is evaluated exactly
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leading to the Fresnel integral representation. Omitting the details, we
arrive at the asymptotic expression of (57) with the result that

φ(ρ1,2, θ1,2)

∼ ±
[
Ψ′

(+)(±b,−k cos θ1,2) − Φ̃(±b,−k cos θ1,2)
] ei(kρ1,2−3π/4)

(kρ1,2)1/2

−e∓ikb sin θ0

{
e−ikρ1,2 cos(θ1,2−θ0)F

[
(2kρ1,2)1/2 cos

θ1,2 − θ0

2

]

− e−ikρ1,2 cos(θ1,2+θ0)F

[
(2kρ1,2)1/2 cos

θ1,2 + θ0

2

]}
(63)

as kρ1,2 → ∞ for x ≷ ±b, where F (·) is the Fresnel integral defined by

F (w) =
e−iπ/4

π1/2

∫ ∞

w
eit2dt. (64)

Equation (63) gives a scattered far field expression uniformly valid in
observation angles θ1,2.

An alternative asymptotic expression of (55) can be derived by
using the cylindrical coordinate at the origin

x = ρ sin θ, z = ρ cos θ for − π < θ < π (65)

and applying the saddle point method. This yields,

φ(ρ, θ) ∼ φg(ρ, θ) + φd(ρ, θ) (66)

as |k| ρ → ∞ for θ not too close to ±π∓θ0, where φg(ρ, θ) and φd(ρ, θ)
are the geometrical optics field and the diffracted field, respectively,
which are defined by

φg(ρ, θ) = −e−ikρ cos(θ−θ0) for − π < θ2 < −π + θ0,

= 0 for − π + θ0 < θ2 < 0, 0 < θ1 < π − θ0,

= e−2ikb sin θ0e−ikρ cos(θ+θ0) for π − θ0 < θ1 < π, (67)

φd(ρ, θ) = ±Ψ′
(+)(±b,−k cos θ)e∓ikb sin θ e

i(kρ−3π/4)

(kρ)1/2
, θ ≷ 0. (68)

Equation (66) is a non-uniform asymptotic expression of the scattered
far field.

5. NUMERICAL RESULTS AND DISCUSSION

In this section, we shall present numerical examples of the RCS to
discuss the far field backscattering characteristics of the waveguide
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in detail. Since the cross section of the waveguide geometry under
consideration is of infinite extent, the RCS per unit length is defined
by

σ = lim
ρ→∞

(
2πρ

|φd|2
|φi|2

)
, (69)

where φi and φd are the incident field and the diffracted field given by
(2)and (68), respectively. For real k, (69) is simplified by using (28)
and (29) as

σ =
λ

2

∣∣U(+)(−k cos θ) ± V(+)(−k cos θ)
∣∣2 (70)

for θ ≷ 0 with λ being the free-space wavelength.
Figures 2–5 show the normalized monostatic RCS σ/λ as a

function of incidence angle θ0, where the values of σ/λ are plotted
in decibels [dB] by computing 10 log10 σ/λ. In order to enable
comparison between two different polarizations, we have chosen the
same parameters as in the E-polarized case analyzed in [27]. The
normalized waveguide aperture width kb and the waveguide dimension
ratio d1/2b are taken as kb = 3.14, 15.7, 31.4 and d1/2b = 1.0, 3.0,
respectively. In numerical computation, we have chosen ferrite (single-
layer material) [1] for region IV and Emerson & Cuming AN-73 (three-
layer material) [1] for regions I-III to form the existing four-layer
material loaded on the planar termination inside the waveguide (see
Fig. 1). The material constants for ferrite and Emerson & Cuming
AN-73 are ε4 = 2.4+ i1.25, µ4 = 1.6+ i0.9 and ε1 = 3.14+ i10.0, µ1 =
1.0, ε2 = 1.6 + i0.9, µ2 = 1.0, ε3 = 1.4 + i0.35, µ3 = 1.0, respectively,
where the thickness of the three layers of Emerson & Cuming AN-73
and ferrite is such that d1−d2 = d2−d3 = d3−d4 = d4−d5 (= ∆). The
normalized layer thickness is chosen as k∆ = 0.628, 1.255. In order
to investigate the effect of four-layer loading in detail, we have also
computed the RCS for the single-layer case (region I: ferrite, regions II-
IV: vacuum) and the three-layer case (regions I-III: Emerson & Cuming
AN-73, region IV: vacuum). The results for no material loading
(regions I-IV: vacuum) have also been added to enable comparison.

We shall first investigate the RCS reduction characteristics by
comparing the results for empty and loaded cavities. It is seen from
Figs. 2–5 that, as in the case of E polarization [27], the monostatic
RCS exhibits fairly large values for cavities with no material loading
due to the interior irradiation, whereas the RCS is reduced for the
case of material loading inside the cavities. We also observe that this
RCS reduction is noticeable for larger cavities. By comparing the RCS
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Figure 2(a). Monostatic RCS σ/λ [dB] for d1/2b = 1.0, kb =
3.14, k∆ = 0.628. : cavity with no loading (regions I-IV:
vacuum). : cavity with single-layer loading (region I: ferrite,
regions II-IV: vacuum). : cavity with three-layer loading
(regions I-III: Emerson & Cuming AN-73, region IV: vacuum). :
cavity with four-layer loading (regions I-III: Emerson & Cuming AN-
73, region IV: ferrite).

Figure 2(b). Monostatic RCS σ/λ [dB] for d1/2b = 1.0, kb =
15.7, k∆ = 0.628. Other particulars are the same as in Fig. 2(a).
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Figure 2(c). Monostatic RCS σ/λ [dB] for d1/2b = 1.0, kb =
31.4, k∆ = 0.628. Other particulars are the same as in Fig. 2(a).

Figure 3(a). Monostatic RCS σ/λ [dB] for d1/2b = 3.0, kb =
3.14, k∆ = 0.628. Other particulars are the same as in Fig. 2(a).
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Figure 3(b). Monostatic RCS σ/λ [dB] for d1/2b = 3.0, kb =
15.7, k∆ = 0.628. Other particulars are the same as in Fig. 2(a).

Figure 3(c). Monostatic RCS σ/λ [dB] for d1/2b = 3.0, kb =
31.4, k∆ = 0.628. Other particulars are the same as in Fig. 2(a).
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Figure 4(a). Monostatic RCS σ/λ [dB] for d1/2b = 1.0, kb =
3.14, k∆ = 1.255. : cavity with no loading (regions I-IV:
vacuum). : cavity with single-layer loading (region I: ferrite,
regions II-IV: vacuum). : cavity with three-layer loading
(regions I-III: Emerson & Cuming AN-73, region IV: vacuum). :
cavity with four-layer loading (regions I-III: Emerson & Cuming AN-
73, region IV: ferrite).

Figure 4(b). Monostatic RCS σ/λ [dB] for d1/2b = 1.0, kb =
15.7, k∆ = 1.255. Other particulars are the same as in Fig. 4(a).
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Figure 4(c). Monostatic RCS σ/λ [dB] for d1/2b = 1.0, kb =
31.4, k∆ = 1.255. Other particulars are the same as in Fig. 4(a).

Figure 5(a). Monostatic RCS σ/λ [dB] for d1/2b = 3.0, kb =
3.14, k∆ = 1.255. Other particulars are the same as in Fig. 4(a).
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Figure 5(b). Monostatic RCS σ/λ [dB] for d1/2b = 3.0, kb =
15.7, k∆ = 1.255. Other particulars are the same as in Fig. 4(a).

Figure 5(c). Monostatic RCS σ/λ [dB] for d1/2b = 3.0, kb =
31.4, k∆ = 1.255. Other particulars are the same as in Fig. 4(a).
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results for material-loaded cavities between the single- and four-layer
cases, it is found that the RCS reduction is more significant in the
four-layer case. Similarly by comparing the results for the four-layer
case with those for the three-layer case, more RCS reduction is seen
in the four-layer case. From these characteristics, it is expected that
the multi-layer loading gives rise to better RCS reduction over a broad
frequency range.

Let us now make comparisons of the monostatic RCS results
between two different polarizations. As mentioned earlier, we have
analyzed the E-polarized plane wave diffraction by the same waveguide
in our previous paper [27]. Comparing the RCS curves in Figs. 2–5 for
the H polarization with those in Figs. 2–5 in [27] for the E polarization,
we see differences in all numerical examples. In particular, the
monostatic RCS for the H polarization oscillates rapidly in comparison
to the E-polarized case. This difference is due to the fact that the
effect of edge diffraction depends on the incident polarization. We also
see that, if the waveguide aperture opening is small as in kb = 3.14,
there are great differences in the RCS characteristics between the H
polarization (Figs. 2–5 in this paper) and the E polarization (Figs. 2–5
in [27]). This is because the diffraction phenomena at low frequencies
strongly depend on the incident polarization. It is also found that,
with an increase of the waveguide aperture opening, the RCS for E and
H polarizations exhibits close features to each other. Comparing the
results between k∆ = 0.628 and 1.255, the RCS reduction is noticeable
with an increase of the material thickness for both polarizations.

6. CONCLUSIONS

In this paper, we have rigorously analyzed the H-polarized plane wave
diffraction by a terminated, semi-infinite parallel-plate waveguide with
four-layer material loading using the Wiener-Hopf technique. Exact
and approximate solutions of the Wiener-Hopf equations have been
obtained. Explicit expressions of the scattered field inside and outside
the waveguide have been derived analytically. In particular, the field
outside the waveguide has been evaluated with the aid of the saddle
point method leading to the far field asymptotic expressions in two
different forms. It is to be noted that our final solution obtained in
this paper is valid for arbitrary cavity dimensions. We have presented
illustrative numerical examples on the monostatic RCS to discuss the
far field backscattering characteristics of the waveguide in detail. In
particular, it has been clarified that, as in the E-polarized case [27],
the four-layer loading inside the cavity results in better RCS reduction
compared with the three-layer case. Some comparisons between two
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different polarizations have also been made.

APPENDIX A. ON THE COEFFICIENTS f+
n , fmn, AND

gmn FOR n = 1, 2, 3, . . . WITH m = 1, 2, 3, 4 IN (22)–(25)

The coefficients f+
n , fmn and gmn for n = 1, 2, 3, . . . with m = 1, 2, 3, 4

have appeared in the scattered field expression (15) (see (22)–(25)).
These are given as

f+
n =

nπ

2b
e−Γ1n(d1−d2)e−γnd5P1nU(+) (iγn) for odd n,

= −nπ

2b
e−Γ1n(d1−d2)e−γnd5P1nV(+) (iγn) for even n, (A1)

fmn =
nπ

2b
PmnU(+) (iγn) for odd n,

= −nπ

2b
PmnV(+) (iγn) for even n, (A2)

gmn =
nπ

2b
QmnU(+) (iγn) for odd n,

= −nπ

2b
QmnV(+) (iγn) for even n, (A3)

where Pmn and Qmn are defined by

P4n =
(1 + ρ4n)

[
1 − e−2Γ4n(d4−d5)ρ3n

]
ρ4n

[
1 − e2Γ4n(d4−d5)ρ3nρ4n

] Γ4nε4

γnε4 + Γ4n
, (A4)

Q4n =
e−2Γ4n(d4−d5)ρ3n − ρ4n

1 − e−2Γ4n(d4−d5)ρ3nρ4n
, (A5)

P3n =
(1 − ρ4n) e−Γ4n(d4−d5)

1 − e−2Γ4n(d4−d5)ρ3nρ4n

(1 + δ2n) Γ3nε4

(ε4/ε3) Γ3n + δ2nΓ4n
, (A6)

Q3n =
e−Γ4n(d4−d5)ρ3n (1 − ρ4n) ε4Γ3n

1 − e−2Γ4n(d4−d5)ρ3nρ4n
, (A7)

P2n =
(1 + δ1n) Γ2ne

−Γ3n(d3−d4)

(ε3/ε2) Γ2n + δ1nΓ3n

· (1 − ρ4n) e−Γ4n(d4−d5)

1 − e−2Γ4n(d4−d5)ρ3nρ4n

(1 + δ2n) Γ3nε4

(ε4/ε3) Γ3n + δ2nΓ4n
, (A8)

Q2n =
e−Γ3n(d3−d4)ρ2ne

−Γ4n(d4−d5) (1−ρ4n)
1−e−2Γ4n(d4−d5)ρ3nρ4n

ε4Γ3n

(ε4/ε3) Γ3n+δ2nΓ4n
, (A9)
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P1n =
(Kn + Γ1n) e−Γ2n(d2−d3)

(ε2/ε1)Kn + Γ2n

(1 + δ1n) Γ2ne
−Γ3n(d3−d4)

(ε3/ε2) Γ2n + δ1nΓ3n

· (1 − ρ4n) e−Γ4n(d4−d5)

1 − e−2Γ4n(d4−d5)ρ3nρ4n

(1 + δ2n) Γ3nε4

(ε4/ε3) Γ3n + δ2nΓ4n
, (A10)

Q1n =
e−Γ2n(d2−d3)ρ1n (1 + δ1n) Γ2n

(ε2/ε1) Γ2n + δ1nΓ3n

·e
−Γ3n(d3−d4)e−Γ4n(d4−d5) (1−δ3n)

1 − e−2Γ4n(d4−d5)ρ3nρ4n

ε4Γ3n

(ε4/ε3) Γ3n+δ2nΓ4n
, (A11)

where

Kn =
Γ1n + e−2Γ1n(d1−d2)

1 − e−2Γ1n(d1−d2)
, (A12)

ρ1n =
(ε2/ε1)Kn − Γ2n

(ε2/ε1)Kn + Γ2n
, (A13)

δ1n =
1 − ρ1ne

−2Γ2n(d2−d3)

1 + ρ1ne−2Γ2n(d2−d3)
, (A14)

ρ2n =
(ε3/ε2) Γ2n − δ1nΓ3n

(ε3/ε2) Γ2n + δ1nΓ3n
, (A15)

δ2n =
1 − ρ2ne

−2Γ3n(d3−d4)

1 + ρ2ne−2Γ3n(d3−d4)
, (A16)

ρ3n =
(ε4/ε3) Γ3n − δ2nΓ4n

(ε4/ε3) Γ3n + δ2nΓ4n
, (A17)

ρ4n =
ε4γn − Γ4n

ε4γn + Γ4n
. (A18)

Substituting (A2) and (A3) with m = 4 into (21) and setting α = −iγn,
we also find that

c5n(−iγn) =
nπ

2b
δnU(+) (iγn) for odd n,

= −nπ

2b
δnV(+) (iγn) for even n, (A19)

where

δn =

[
ρ3ne

−2Γ4n(d4−d5) − ρ4n

]
e−2γnd5

1 − ρ3nρ4ne−2Γ4n(d4−d5)
. (A20)
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