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Abstract—Based on the improvements of both Genetic Algorithm
and Particle Swarm Optimization, a novel IGA-edsPSO(Improved
Genetic Algorithm-extremum disturbed simple Particle Swarm
Optimization) Hybrid algorithm is proposed in this paper. An
improved performance of GA is achieved by reducing the array space.
By discarding the particle velocity vector in the PSO evolutionary
equation, the sPSO (simple PSO) can avoid the problem of slow later
convergence velocity and low precision caused by determining the
maximal velocity vector factitiously. And the edsPSO can overstep
local extremum point more effectively with the help of the extremum
disturbed factor. The proposed IGA-edsPSO Hybrid algorithm is used
in the design of the sparse arrays with minimum element spacing
constraint. Given the array aperture and the number of the array
elements, the suppression of the peak sidelobe level (PSLL) with a
certain half power beamwidth (HPBW) restriction is implemented with
a high efficiency by optimizing the HPBW and PSLL synchronously.
The simulation results show that faster convergence velocity (which
means less computation time) and lower sidelobe level are obtained
using IGA-edsPSO compared to IGA, standard PSO, GA-PSO and
GA-sPSO.

1. INTRODUCTION

The maximum Peak SideLobe Level (PSLL) of array antennas is an
important parameter in judging antenna performance [1, 2]. However,
it is quite difficult to determine a Sidelobe Level satisfying the
requirements in the practical array synthesis. The synthesis of
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unequally spaced arrays [3–5] is more difficult compared to equally
spaced ones. The element spacing of the sparse arrays is greater than
the half-wave length. The radiation pattern and sidelobe level of the
array can be controlled by optimizing the element spacing satisfying
a certain constraint condition. The radiation pattern of the sparse
array can be further controlled by optimizing the feeding magnitude
and phase. As the distance between each two elements of the sparse
array can be freely adjusted under the condition of some constraints, it
is necessary to search for the best result using numerical optimization
method.

On the basis of biological evolution theory, Genetic algorithm
(GA) [6–13] accomplishes the search by simulating the natural
selection, crossover and mutation in the course of biological evolution,
thus possesses an intrinsic flexibility to nonlinear optimization
problem. However, GA has a low convergence velocity and may even
stagnate when searching near the extremum because of its lack of the
local area searching mechanism.

Particle swarm optimization (PSO) algorithm [14–19], in which
the optimization is performed in terms of the colony aptitude produced
by the cooperation and competition among the particles, carries out
the search according to its own velocity. It can memorize the best
solution of each particle so far, which results in a higher convergence
velocity. However, it also has some demerits. For example, as all the
particles fly to the same optimum direction and tend to be identical, the
convergence velocity of the PSO in the later evolution process becomes
lower, which easily leads to relapsing into local extremum.

The Hybrid algorithm is formed by combining the advantages of
GA and PSO [20], which is of great significance in the design and
synthesis of Sparse Arrays. IGA-edsPSO Hybrid algorithm is proposed
in this paper, which has faster convergence velocity (which means less
computation time) and lower sidelobe level than IGA, standard PSO,
GA-PSO and GA-sPSO.

2. IGA AND FITNESS FUNCTION

2.1. Optimal Variable and Fitness Function

Let us consider a one-dimensional linear array which is shown in Fig. 1.
The array consists of N -element positioned randomly with the

first element as the origin of the coordinate system. For this array of



Progress In Electromagnetics Research, PIER 89, 2009 123

1I 2I 3I 1NI
NI. . . 

2d01d
3d 1Nd. . . LdN

θ

= =

−

−

Figure 1. Geometry of sparse linear array.

isotropic ideal elements, the array factor can be written as:

E(θ) =
N∑

n=1

In exp(jkdn cos θ) (1)

where In and dn represent the amplitude of the excitation of the
nth element and the distance of the nth element from the origin,
respectively; θ represents the steering angle from the broadside of the
array satisfying 0 ≤ θ ≤ π; and the wavenumber k = 2π/λ, in which
λ represents the wavelength. Let d1 = 0, dN = L, thus the aperture
dimension is always L. The optimization problem could be expressed as
searching for the optimum solution of element excitation amplitude and
coordinate vector to minimize the PSLL of the array subjected to the
constraints of min{di−dj} ≥ c0 and max{di−dj} ≤ c′0, 1 ≤ j < i ≤ N ,
where c0 is the design constraint of the minimum element spacing, and
c′0 is that of the maximum one.

Let the optimal variable {I1, I2 · · · , IN , d1, d2, · · · , dN}T act as an
individual, which means it is a real vector. The coding scheme of GA
is real-code. The goal is to minimize the PSLL of the sparse array
with a certain HPBW restriction, and the fitness function is defined as
follows:

fitness(I1, · · ·, IN , d1, · · ·, dN )=min{ω1∗20∗log
∣∣∣∣ E(θ)
FFmax

∣∣∣∣+ω2∗HPBW}
(2)

where FFmax is the peak of the main beam; ω1 and ω2 are both weights;
HPBW is the half power beamwidth; and the range of θ in which the
fitness is valid should exclude the main beam region. Through many
experimental attempts, it is found that a better result can be obtained
while ω1 = 2.8 and ω2 = 1.2.
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2.2. Real Coding and Starting Population

2.2.1. Individual

The real coding scheme is used in this paper. First N random real
numbers subjected to U(0,1) distribution are produced, then they are
expressed as the vector of excitation amplitude {I1, I2 · · · , IN}.

Let the coordinate of the first element be 0, and that of the
Nth one be L. So (N − 2) elements are placed randomly over the
aperture. There is a region of the size of (N − 1)c0 in which elements
are not placed in order to satisfy the design constraint of minimum
element spacing c0. Therefore, the size of the remaining region over
the aperture becomes:

Y = L− (N − 1)c0 (3)

Because the constraint of minimum element spacing is satisfied
by using formula (3), much running time is saved in judging whether
the condition is satisfied. Then (N − 2) random real numbers in the
range of [0, Y ] are produced using a random-number producer. And
their ranking sequence is reset so that they are increasing by degrees,
then the random real number sequence can be expressed as the vector
notation S = {0, e2, e3, · · · , eN−1, L}T , where 0 ≤ e2 ≤ e3 ≤ · · · ≤
eN−1 ≤ L. And the element coordinate vector is obtained as follows:

d = S + P (4)

where P = {0, c0, 2c0, · · · , (N − 1)c0, 0}T .

2.2.2. Starting Population

The matrix of starting population F (in which each column is
an individual) containing M individuals and the matrix X of the
constraint of element spacing are expressed as follows:

F=




I1,1 I1,2 · · · I1,M

I2,1 I2,2 · · · I2,M

...
...

. . .
...

IN,1 IN,2 · · · IN,M

0 0 · · · 0
d2,1 d2,2 · · · d2,M

...
...

. . .
...

dN−1,1 dN−1,2 · · · dN−1,M

L L · · · L




, X=




0 0 · · · 0
...

...
. . .

...
0 0 · · · 0
0 0 · · · 0
c0 c0 · · · c0

2c0 2c0 · · · 2c0

...
...

. . .
...

(N−2)c0 (N−2)c0 · · · (N−2)c0

0 0 · · · 0



(5)
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2.3. Genetic Processing

2.3.1. Selection

The method of competition selection is used in this paper, and elitism
is also employed in order to assure convergence. Two individuals are
chosen randomly each time, and the one whose fitness is smaller is
included in the population of the next generation. This is done until
the size of the population is satisfied.

2.3.2. Crossover and Mutation

The preprocessing matrix Z which is formed through the genetic
prepocessing and not the individual real-coding themselves is obtained
as follows:

Z = F1 −X (6)

Take two individuals for example:

Z1 = {I1,1, I2,1 · · · , IN,1, d1,1, d2,1, · · · , dN,1}T

Z2 = {I1,2, I2,2 · · · , IN,2, d1,2, d2,2, · · · , dN,2}T

Two different crossover strategies are used here. The uniform
crossover strategy is used for the first N genes, and the single-point
crossover strategy is used for the last N genes with the crossover
probability of 0.8.

The mutation probability in this paper is 0.05. By reseting the
last N genes of each individual from small to big after the mutation
operation, we can obtain the new preprocessing matrix Z ′. It has
been demonstrated that the produced two individuals also satisfy the
constraint of element spacing. So the offspring population is expressed
as follows:

F2 = Z ′ +X (7)

3. IMPROVED PSO

3.1. PSO

The canonical particle swarm algorithm loops which are shown in
literature [16] through a pair of formulas, one for assigning the velocity
and another for changing the particle’s position:

vid(t+ 1) = ω ∗ vid(t) + c1r1(pid − xid(t)) + c2r2(pgd − xid(t)) (8)
xid(t+ 1) = xid(t) + vid(t+ 1) (9)
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where i = 1, 2, . . . , 2N, d = 1, 2, . . . ,M , r1 and r2 are random
real numbers subjected to the U(0,1) distribution. In this paper,
let c1 = c2 = 2, ω = 0.8, vid ∈ [−vmax, vmax]; vmax = 0.2, pgd is
the optimum position found so far by any member of i’s topological
neighborhood; pid is the optimum position found so far when individual
i is at its current position xid in the searching space with velocity vid.

3.2. SPSO

By analyzing the biological model and formulas (8) and (9), it is found
that the velocity vector is not necessary. Let i’s current position xi

in the searching space be the solution of the current problem, and
the goal of optimization is to make xi infinitely approach the best
position. Thus, we only take the direct change of xi into account. The
velocity vector vi, which only represents the particle’s moving speed,
does not assure the particle’s approaching the best solution effectively.
Furthermore, it may even lead to the particle’s departing from the
correct direction, which results in a slow convergence velocity and a
low convergence precision in the later evolution process.

Take one particle as example, we can rewrite (8) and (9) as follows:

v(t+ 1) = ω ∗ v(t) + (c1r1 + c2r2)
(
c1r1pb + c2r2pg

c1r1 + c2r2
− x(t)

)
(10)

x(t+ 1) = x(t) + v(t+ 1) (11)

where pb is the optimum position found so far of the particle discussed,
and pg is the optimum position in its topological neighborhood.

Iterating the formulas of (10) and (11), we can obtain the following
formula:

x(t+ 2) + (c1r1 + c2r2 − ω − 1) ∗ x(t+ 1) + ω ∗ x(t) = c1r1pb + c2r2pg

(12)

Although the velocity vector is eliminated in formula (12), it is still
“hidden” in it. And formula (13), which is inspired by formula (12),
is put forward to discard the velocity vector totally. The simulation
results show that it can obtain a better result.

Through the analysis above, the formula which doesn’t have the
velocity vector is expressed as:

xid(t+ 1) = ω ∗ xid(t) + c1r1(pid − xid(t)) + c2r2(pgd − xid(t)) (13)

The significance of formula (13) is to discard the velocity vector,
which can avoid the problem of slow convergence velocity in the later
evolution process and low precision caused by determining the velocity
vector factitiously.
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3.3. edsPSO

Experiments show that the particles of the swarm will get together
when the evolution is stagnant. They will not disperse until the
stagnancy is broken out. Because the particles will get together at
the extremum determined by the extremum itself and the extremum
of the population, so two methods are given in this paper to sovle this
problem by adjusting pb and pg respectively so that all the particles
will fly to a new direction. Then it is more possible to find the optimum
solution.

As shown in formulas (14) and (15), r3 and r4 are the disturbed
coefficients, T0 and T1 are the disturbed threshold valve values. Let
T0 = 3, T1 = 3, r5, r6 and r7 be the random real numbers in the range
of [0,1].

r3 =
{

1, t < T0

α ∗ [0.8 + 0.2 ∗ r5], t ≥ T0
,

r4 =
{

1, t < T1

−α ∗ [0.8 + 0.2 ∗ r5], t ≥ T1

(14)

α =
{

1, r7 ≥ 0.5
−1, r7 < 0.5 (15)

3.3.1. IedsPSO

The formula of IedsPSO (Internal extremum disturbed simple particle
swarm optimization) algorithm can be expressed as:

xid(t+ 1) = ω ∗ xid(t) + c1r1(r3 ∗ pid − xid(t)) + c2r2(r4 ∗ pgd − xid(t))
(16)

3.3.2. edsPSO

The formula of edsPSO (External extremum disturbed simple particle
swarm optimization) Hybrid algorithm can be expressed as:

xid(t+ 1) = ω ∗ xid(t) + c1r1r3 ∗ (pid − xid(t)) + c2r2r4 ∗ (pgd − xid(t))
(17)

4. IGA-edsPSO HYBRID ALGORITHM

The flow chart of IGA-edsPSO is shown in Fig. 2:
Step 1: initialize a population M1;
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Figure 2. Flow chart of IGA-edsPSO.
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Step 2: iterate M1 for N1 times by using IGA and obtain the
offspring population M2, then select the best individual Z3 of the
population M2;

Step 3: initialize a population M3 whose individuals are all
around Z3;

Step 4: iterate M3 for N2 times by using edsPSO and select the
best individual Z4;

Step 5: replace the worst individual of M2 by Z4;
Step 6: change r3 when t0 > T0 while change r4 when t1 > T1;
Step 7: iterate until termination criteria is met.

5. SIMULATION RESULTS AND ANALYSIS

A sparse array synthesis technique called the transformation of
Legendre polynomial is proposed in literature [4], and the design
constraint of 0.5λ ≤ c0 ≤ λ is also described. A 17-element linear
sparse array of an aperture of 9.744λ is synthetized, and the optimized
PSLL is −19.49 dB. An optimum result of −19.797 dB is achieved for
the same sparse array using an improved GA in literature [6], in which
the population contains 200 individuals and the number of iterations
is 300. It should be noted from the comparative results that the IGA-
edsPSO not only achieves a better PSLL performance of −20.56 dB
(the best result of 10 runs, and the worst one is −19.73 dB) as shown in
Fig. 7, but also requires a smaller population size (30 individuals) and
consumes a shorter process time(50 generations). All the algorithms
mentioned in this paper run at least for 10 times, and the difference
between the best and worst results of each algorithm is less than 0.9 dB,
so each algorithm is high in stability. The best result of each algorithm
discussed in this paper is used for comparison. The more complex the
problem is, the less computation time is cost by IGA-edsPSO than
other algorithms mentioned in this paper. A more complex problem is
given below. When a lower sidelobe level is required for the 17-element
linear array, we can optimize the element excitation amplitude and the
coordinate synchronously. As shown in Table 1, less computation time
and lower sidelobe level are obtained by using IGA-edsPSO compared
to other algorithms mentioned in this paper.

The population size of IGA and standard PSO is 200 and 100,
respectively. And the number of generations of them is 300 and 100
respectively for each run.

Then the methods of the improved Hybrid algorithm proposed in
this paper are used. Let M1 = 50, M3 = 20, N1 = 10, N2 = 20 (the
parameters are shown in the flow chart). A program in FORTRAN
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Table 2. The optimization results of the algorithms.

IGA IGA-PSO IGA-edPSO

Ele-

men t

list

Coor-

dinae

( )

ampl-

itude

excit-

ation

Ele-

men t

list

Coor-

dinae

( )

ampl-

itude

excit-

ation

Ele-

men t

list

Coor-

dinae

( )

ampl-

itude

excit-

ation

1 0 0.367 1 0 0.195 1 0 0.413

2 0.635 0.489 2 0.687 0.373 2 0.798 0.345

3 1.382 0.702 3 1.233 0.240 3 1.605 0.772

4 1.952 0.528 4 1.768 0.458 4 2.287 0.820

5 2.464 0.488 5 2.419 0.656 5 2.920 0.858

6 3.056 0.820 6 2.966 0.634 6 3.467 0.538

7 3.642 0.982 7 3.474 0.652 7 3.969 0.829

8 4.284 0.929 8 3.977 0.926 8 4.498 0.806

9 4.863 0.760 9 4.549 0.873 9 5.010 0.804

10 5.410 0.974 10 5.161 0.847 10 5.546 0.942

11 6.044 0.984 11 5.736 0.864 11 6.179 0.962

12 6.672 0.746 12 6.476 0.851 12 6.805 0.655

13 7.256 0.718 13 7.161 0.688 13 7.409 0.683

14 7.879 0.555 14 7.759 0.391 14 8.041 0.521

15 8.458 0.499 15 8.385 0.452 15 8.578 0.371

16 9.117 0.363 16 9.139 0.436 16 9.094 0.407

17 9.744 0.324 17 9.744 0.104 17 9.744 0.260

PSLL 24.73 (dB) PSLL 25.20 (dB) PSLL 25 .46 (dB)

λ λ λ

− − −

Figure 3. Contrast of the
radiation pattern.

Figure 4. Contrast of the
radiation pattern.
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Table 3. The optimization results of the algorithms.

λ

−

IGA-SPSO IGA-edsPSO

Element

list

Coordinate

( )

Amplitude

excitation

Element

list

Coordinate

( )

Amplitude

excitation

1 0 0.301 1 0 0.254

2 0.654 0.521 2 0.654 0.521

3 1.384 0.644 3 1.384 0.644

4 2.015 0.686 4 2.011 0.717

5 2.601 0.741 5 2.545 0.815

6 3.167 0.974 6 3.147 0.937

7 3.721 0.897 7 3.726 0.905

8 4.226 0.872 8 4.286 0.963

9 4.807 0.991 9 4.839 0.784

10 5.392 0.772 10 5.339 0.772

11 5.904 0.828 11 5.891 0.953

12 6.493 0.646 12 6.457 0.622

13 7.076 0.628 13 6.993 0.628

14 7.653 0.591 14 7.652 0.550

15 8.272 0.417 15 8.491 0.417

16 9.046 0.219 16 9.140 0.219

17 9.744 0.184 17 9.744 0.184

PSLL 27.17 (dB) PSLL 27.67 (dB)−

λ

Figure 5. Contrast of conver-
gence velocity.

Figure 6. Contrast of conver-
gence velocity.
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Table 1. Contrast of the computation time and PSLL among the
algorithms.

Algorithm IGA
Standard

PSO
IGA-PSO IGA-edPSO IGA-sPSO IGA-edsPSO

Time(minutes) 50 13 8 13 6 4

PSLL(dB) −24.73 −24.78 −25.20 −25.46 −27.17 −27.67

Figure 7. Contrast of the
radiation pattern.

Figure 8. Contrast of the
radiation pattern.

language is written for a PC to operate (Inter Celeron processor
3.0 GHz, SDRAM 1 GBytes). The optimized results are shown in
Tables 1–3 and Figures 3–8. The results in Table 1 and Fig. 8 show that
IGA-edsPSO obtains lower sidelobe level and costs less computation
time than IGA and standard PSO. The results in Fig. 4 and Fig. 6 show
that compared with IGA-PSO and IGA-edPSO, IGA-SPSO accelerates
the convergence velocity in the later evolution process and increases
the precision greatly by discarding the velocity vector in PSO. And
it is also seen that IGA-edPSO can get a better solution than IGA-
PSO with the help of extremum diturbed factor. The results in Fig. 5
shows that the two kinds of disturbed methods proposed in this paper
have the similar effect. The results in Fig. 3 and Fig. 5 reveal that
IGA-edsPSO, which takes extremum distrubed factor into account and
dicards the velocity vetor in PSO, can reduce the time it takes for
the particles to overstep the local extremum. Thus, it can speed up
the convergence and increase the precison to a large extent. What is
more, the HPBW is not broadened with the decreasing of sidelobe level,
which achieves the goal of optimization, and the IGA-edsPSO requires
a smaller population size (50 individuals) and involves a shorter process
time (35 generations). This is a significant saving in the computational
effort as compared to that needed by the IGA and standard PSO.
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6. CONCLUSION

An IGA-edsPSO Hybrid algorithm is proposed in this paper in the
optimization of the sparse array, which is based on the improvements of
both GA and PSO, so it inherits the advantages of GA and PSO. The
simulation results show that the IGA-edsPSO Hybrid algorithm can
accelerate the convergence in the later evolution process and overstep
the local extremum rapidly, thus can improve the precision greatly. At
present, further work is in progress to extend this synthesis technique
to more practical antenna configurations, such as planar arrays of
practical antenna elements.
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