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Abstract—The diffraction by a semi-infinite parallel-plate waveguide
with sinusoidal wall corrugation is analyzed for the E-polarized
plane wave incidence using the Wiener-Hopf technique together
with the perturbation method. The problem is formulated in
terms of the simultaneous Wiener-Hopf equations by introducing
the Fourier transform for the unknown scattered field and applying
approximate boundary conditions in the transform domain. Employing
the factorization and decomposition procedure together with a
perturbation series expansion, the zero- and first-order solutions of
the Wiener-Hopf equations are obtained. Explicit expressions of the
scattered field inside and outside the waveguide are derived analytically
by taking the inverse Fourier transform and applying the saddle point
method. Far field scattering characteristics of the waveguide are
discussed in detail via representative numerical examples.

1. INTRODUCTION

In microwave and optical engineering, there are many devices with
periodic structures including resonators, filters, and couplers composed
of gratings as well as reflector antennas. Therefore the analysis of the
scattering by periodic structures is one of the important subjects in
electromagnetic theory and optics. Various analytical and numerical
methods have been developed thus far and the diffraction phenomena
have been investigated for a number of periodic structures. The
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Riemann-Hilbert problem technique [1–3], the analytical regularization
methods [3–5], the Yasuura method [6–8], the integral and differential
method [9], the point matching method [10], and the Fourier series
expansion method [11, 12] are efficient for the analysis of the diffraction
by periodic structures. The authors of these papers have analyzed
diffraction problems involving various gratings and periodic structures,
and obtained important results. The Wiener-Hopf technique [13–
17] is known as a powerful tool for analyzing electromagnetic wave
problems related to canonical geometries rigorously, and can be applied
efficiently to problems of the diffraction by specific periodic structures
such as gratings. There are significant contributions to the analysis of
the diffraction by gratings based on the Wiener-Hopf technique [18–
22]. In the previous papers, we have analyzed the diffraction problems
involving transmission-type gratings with the aid of the Wiener-
Hopf technique [23–26], where rigorous solutions valid over a broad
frequency range have been obtained.

It is noted that the analysis in most of the above-mentioned
papers are restricted to periodic structures of infinite extent and
plane boundaries. Therefore, it is important to investigate scattering
problems involving periodic structures without these restrictions. As
an example of infinite periodic structures with non-plane boundaries,
Das Gupta [27] analyzed the plane wave diffraction by a half-plane
with sinusoidal corrugation by means of the Wiener-Hopf technique
together with the perturbation method. The method developed in [27]
has been generalized thereafter by Chakrabarti and Dowerah [28] for
the Wiener-Hopf analysis of the H-polarized plane wave diffraction by
two parallel sinusoidal half-planes. We have also considered a finite
sinusoidal grating as another important generalization and analyzed
the plane wave diffraction by means of the Wiener-Hopf technique [29–
31].

In this paper, we shall analyze the E-polarized plane wave
diffraction by a semi-infinite parallel-plate waveguide with sinusoidal
wall corrugation by the Wiener-Hopf technique together with the
use of the perturbation method. As mentioned above, this problem
was solved in the past for the H-polarized plane wave incidence by
Chakrabarti and Dowerah [28] following a similar method, but their
analysis was incomplete since important contributions to the scattered
field were not taken into account. In addition, no numerical results
were presented in their paper. We shall derive, in this paper, various
new expressions of the scattered field inside and outside the waveguide
via a more rigorous approach.

Assuming that the corrugation amplitude of the waveguide walls
is small compared with the wavelength, we replace the original problem
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by the problem of diffraction by a flat, semi-infinite parallel-plate
waveguide with impedance-type boundary conditions. Taking the
Fourier transform of the two-dimensional Helmloltz equation and
applying approximate boundary conditions in the transform domain,
the problem is formulated in terms of the simultaneous Wiener-Hopf
equations satisfied by unknown spectral functions. The Wiener-Hopf
equations are then solved via the factorization and decomposition
procedure together with the perturbation scheme leading to the zero-
and first-order perturbation solutions. Taking the Fourier inverse of
the solution in the transform domain and applying the saddle point
method, explicit expressions of the scattered field in the real space are
derived analytically. Illustrative numerical examples on the scattered
far field are presented, and the effect of sinusoidal corrugation of the
waveguide walls is investigated in detail.

The time factor is assumed to be e−iωt and suppressed throughout
this paper.

2. FORMULATION OF THE PROBLEM

We consider the diffraction of an E-polarized plane wave by a semi-
infinite parallel-plate waveguide with sinusoidal wall corrugation as
shown in Fig. 1, where the E-polarization implies that the incident
electric field is parallel to the y-axis. The surface of the two half-planes
is assumed to be infinitely thin, perfectly conducting, and uniform in
the y-direction, which is defined by

x = ±b + h sinmz, z < 0, (1)

where m and h are some positive constants. In view of the waveguide
geometry and the characteristics of the incident field, this problem
reduces to a two-dimensional problem.

Figure 1. Geometry of the problem.



78 Zheng and Kobayashi

Let us define the total electric field φt(x, z)[≡ Et
y(x, z)] by

φt(x, z) = φi(x, z) + φ(x, z), (2)

where φi(x, z) is the incident field given by

φi(x, z) = e−ik(x sin θ0+z cos θ0) (3)

for 0<θ0 <π/2 with k
[≡ ω(ε0µ0)1/2

]
being the free-space wavenum-

ber. The scattered field φ(x, z) satisfies the two-dimensional Helmholtz
equation (

∂2/∂x2 + ∂2/∂z2 + k2
)
φ(x, z) = 0. (4)

Nonzero components of the scattered electromagnetic fields are derived
from the following relations:

(Ey, Hx, Hz) =
[
φ,

i

ωµ0

∂φ

∂z
,

1
iωµ0

∂φ

∂x

]
. (5)

The total electric field satisfies the perfect conductor condition

φt(±b + h sinmz, z) = 0, z < 0 (6)

on the waveguide walls. Assuming that the corrugation amplitude
2h of the waveguide walls is small compared with the wavelength, we
approximate the boundary condition (6) by ignoring the O

(
h2

)
terms

with the aid of Taylor’s theorem. Then we deduce that

φt(±b, z) + h sinmz
∂φt(±b, z)

∂x
+ O

(
h2

)
= 0 (7)

for z < 0. We note that, by letting h → 0 in (7), the problem reduces to
the classical diffraction problem involving a flat, semi-infinite parallel-
plate waveguide [13–16].

For convenience of analysis, we assume that the medium is slightly
lossy as in k = k1 + ik2 with 0 < k2 ¿ k1. The solution for real k
is obtained by letting k2 → 0 at the end of analysis. In view of the
radiation condition, it follows that, for any fixed x, the scattered field
φ(x, z) in (2) shows the asymptotic behavior

φ(x, z) = O(ek2z cos θ0), z → −∞
= O(e−k2z), z →∞. (8)

Let us introduce the Fourier transform of the scattered field as in

Φ(x, α) = (2π)−1/2

∫ ∞

−∞
φ(x, z)eiαzdz (9)
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for α = Reα+i Imα(≡ σ+iτ). Using (8), we find from (9) that Φ(x, α)
is regular in the strip −k2 < τ < k2 cos θ0 of the complex α-plane. We
further introduce the Fourier integrals as

Φ±(x, α) = ±(2π)−1/2

∫ ±∞

0
φ(x, z)eiαzdz. (10)

Then it is seen from (8) that Φ+(x, α) and Φ−(x, α) are regular in
τ > −k2 and τ < k2 cos θ0, respectively. It follows from (9) and (10)
that

Φ(x, α) = Φ+(x, α) + Φ−(x, α). (11)

We also see with the aid of (8) that Φ (x, α) is bounded as |x| → ∞.
Taking the Fourier transform of (4) and making use of (8), we derive
that [

d2/dx2 − γ2(α)
]
Φ(x, α) = 0, (12)

where γ(α) = (α2 − k2)1/2 with Re γ(α) > 0. Equation (12) is the
transformed wave equation and holds for any α in the strip −k2 < τ <
k2 cos θ0.

Taking into account the radiation condition, the solution of (12)
is expressed as

Φ(x, α) = A(α)e−γ(α)x, x > b,

= B(α)e−γ(α)x + C(α)eγ(α)x, |x| < b,

= D(α)eγ(α)x, x < −b, (13)

where A(α), B(α), C(α), and D(α) are unknown functions. For
convenience of analysis, we introduce the Fourier integrals as in

P+(α) =
∫ ∞

0

[
φ (b + 0, z) + h sinmz

∂

∂x
φ (b + 0, z)

]
eiαzdz, (14)

Q+(α) =
∫ ∞

0

[
φ (−b− 0, z) + h sinmz

∂

∂x
φ (−b− 0, z)

]
eiαzdz, (15)

M−(α) =
∫ 0

−∞

[
∂

∂x
φ (b + 0, z)− ∂

∂x
φ (b− 0, z)

]
eiαzdz, (16)

N−(α) =
∫ 0

−∞

[
∂

∂x
φ (−b + 0, z)− ∂

∂x
φ (−b− 0, z)

]
eiαzdz. (17)

In Appendix A, we have investigated some important relations among
the functions A(α), B(α), C(α), and D(α) in (13) and the functions
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P+(α), Q+(α), M−(α), and N−(α) defined by (14)–(17). Referring to
(A13)–(A18) in Appendix A, it follows that

A(α) = −eγ(α)b

2

{
M−(α)
γ(α)

− ih

2
[M−(α+m)−M−(α−m)]

}

−e−γ(α)b

2

{
N−(α)
γ(α)

− ih

2
[N−(α+m)−N−(α−m)]

}
, (18)

B(α) = −e−γ(α)b

2

{
N−(α)
γ(α)

− ih

2
[N−(α+m)−N−(α−m)]

}
, (19)

C(α) = −e−γ(α)b

2

{
M−(α)
γ(α)

− ih

2
[M−(α−m)−M−(α+m)]

}
, (20)

D(α) = −e−γ(α)b

2

{
M−(α)
γ(α)

− ih

2
[M−(α−m)−M−(α+m)]

}

−eγ(α)b

2

{
N−(α)
γ(α)

− ih

2
[N−(α−m)−N−(α+m)]

}
(21)

and

F1(α)+P+(α) = e−2γ(α)b

{
ih

4
[N−(α + m)−N−(α−m)]−N−(α)

2γ(α)

}

−M−(α)
2γ(α)

+
ihγ(α + m)

2

·
(

e−2γ(α+m)b

{
ih

4
[N−(α+2m)−N−(α)] −N−(α+m)

2γ(α+m)

}

+
ih

4
[M−(α)−M−(α + 2m)]

)
− ihγ(α−m)

2

·
(

e−2γ(α−m)b

{
ih

4
[N−(α)−N−(α− 2m)] − N−(α−m)

2γ(α−m)

}

+
ih

4
[M−(α)−M−(α−2m)]

)
, (22)

F2(α)+Q+(α) = e−2γ(α)b

{
ih

4
[M−(α−m)−M−(α + m)]−M−(α)

2γ(α)

}

−N−(α)
2γ(α)

+
ihγ(α+m)

2

·
(

e−2γ(α+m)b

{
ih

4
[M−(α+2m)−M−(α)] +

M−(α+m)
2γ(α+m)

}
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+
ih

4
[N−(α+2m)−N−(α)]

)
+

ihγ(α−m)
2

·
(

e−2γ(α−m)b

{
ih

4
[M−(α− 2m)−M−(α)] −M−(α−m)

2γ(α−m)

}

+
ih

4
[N−(α− 2m)−N−(α)]

)
, (23)

where

Fj(α) =
∫ 0

−∞
fj(z)eiαzdz, j = 1, 2 (24)

with

f1,2(z) = −
[
φi(±b, z) + h sinmz

∂

∂x
φi(±b, z)

]
. (25)

Using the boundary conditions and carrying out some manipulations,
we derive that

S+(α) + G1(α) = −K(α)U−(α)

+
ih

4

{
V−(α−m)

[
e−2γ(α)b − e−2γ(α−m)b

]

+V−(α + m)
[
e−2γ(α+m)b − e−2γ(α)b

]}
, (26)

D+(α) + G2(α) = −L(α)V−(α)

+
ih

4

{
U−(α + m)

[
e−2γ(α)b − e−2γ(α+m)b

]

+ U−(α−m)
[
e−2γ(α−m)b − e−2γ(α)b

]}
, (27)

where

S+(α) = P+(α) + Q+(α), (28)
D+(α) = P+(α)−Q+(α), (29)
U−(α) = M−(α) + N−(α), (30)
V−(α) = M−(α)−N−(α), (31)

G1(α) = F1(α) + F2(α)

= 2i cos(kb sin θ0)
[

1
α− k cos θ0

− kh sin θ0

m2 − (α−k cos θ0)2

]
,(32)

G2(α) = F1(α)− F2(α)

= 2 sin(kb sin θ0)
[

1
α− k cos θ0

− kh sin θ0

m2 − (α−k cos θ0)2

]
, (33)



82 Zheng and Kobayashi

K(α) = e−γ(α)b cosh[γ(α)b]
γ(α)

, (34)

L(α) = e−γ(α)b sinh[γ(α)b]
γ(α)

. (35)

Equations (26) and (27) are the simultaneous Wiener-Hopf equations
satisfied by S+(α), D+(α), U−(α), and V−(α), which hold for any α in
the strip −k2 < τ < k2 cos θ0. In the above, K(α) and L(α) defined
by (34) and (35) are kernel functions. It is noted that, by taking
the limit h → 0, (26) and (27) reduce to the Wiener-Hopf equations
arising in the problem of diffraction by a flat, semi-infinite parallel-
plate waveguide [13–16].

3. PERTURBATION SERIES SOLUTIONS OF THE
WIENER-HOPF EQUATIONS

In order to solve the Wiener-Hopf equations (26) and (27), we express
the unknown functions S+(α), D+(α), U−(α), and V−(α) in terms of
a perturbation series expansion in h as

S+(α) = S0
+(α) + hS1

+(α) + O(h2), (36)

D+(α) = D0
+(α) + hD1

+(α) + O(h2), (37)

U−(α) = U0
−(α) + hU1

−(α) + O(h2), (38)

V−(α) = V 0
−(α) + hV 1

−(α) + O(h2). (39)

We can also express the known functions G1(α) and G2(α) defined by
(32) and (33) in the form of a perturbation series in h as in

G1(α) = G0
1(α) + hG1

1(α) + O(h2), (40)

G2(α) = G0
2(α) + hG1

2(α) + O(h2). (41)

Substituting (36)–(41) into (26) and (27), the original Wiener-Hopf
equations can be separated into the zero-order equations

S0
+(α) = −K(α)U0

−(α)− 2i cos (kb sin θ0)
α− k cos θ0

, (42)

D0
+(α) = −L(α)V 0

−(α)− 2 sin (kb sin θ0)
α− k cos θ0

(43)
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and the first-order equations

S1
+(α) = −K(α)U1

−(α) +
i

4

[
e−2γ(α)b − e−2γ(α−m)b

]
V 0
−(α−m)

+
i

4

[
e−2γ(α+m)b − e−2γ(α)b

]
V 0
−(α + m)

+
2ik sin θ0 cos (kb sin θ0)
m2 − (α− k cos θ0)

2 , (44)

D1
+(α) = −L(α)V 1

−(α) +
i

4

[
e−2γ(α−m)b − e−2γ(α)b

]
U0
−(α−m)

+
i

4

[
e−2γ(α)b − e−2γ(α+m)b

]
U0
−(α + m)

+
2k sin θ0 sin (kb sin θ0)
m2 − (α− k cos θ0)

2 . (45)

The kernel functions K(α) and L(α) defined by (34) and (35) are
factorized as [13–16]

K(α) = K+(α)K−(α) = K+(α)K+(−α), (46)
L(α) = L+(α)L−(α) = L+(α)L+(−α), (47)

where K±(α) and L±(α) are the split functions given by

K+(α) = (cos kb)1/2eiπ/4(k + α)−1/2 exp
[
iγ(α)b

π
ln

α− γ(α)
k

]

· exp
[
iαb

π

(
1−C+ln

π

2kb
+i

π

2

)] ∞∏

n=1,odd

(
1+

α

iγn

)
e2iαb/nπ, (48)

L+(α) =
(

sin kb

k

)1/2

exp
[
iγ(α)b

π
ln

α− γ(α)
k

]

· exp
[
iαb

π

(
1−C+ln

2π

kb
+i

π

2

)] ∞∏

n=2,even

(
1+

α

iγn

)
e2iαb/nπ (49)

with C (= 0.57721566 · · · ) being Euler’s constant and

γn =
[
(nπ/2b)2 − k2

]1/2
. (50)

It is seem from (48) and (49) that K±(α) and L±(α) are regular and
nonzero in τ ≷ ∓k2. We can also verify that

K±(α) ∼ (∓2iα)−1/2 , L±(α) ∼ (∓2iα)−1/2 (51)
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as α →∞ with τ ≷ ∓k2.
First let us consider the solution of the zero-order Wiener-Hopf

equations (42) and (43). These are the Wiener-Hopf equations arising
in the classical diffraction problem for a flat, semi-infinite parallel-plate
waveguide, and have the following exact solution [13–16]:

U0
−(α) =

−2i cos(kb sin θ0)
K+(k cos θ0)(α− k cos θ0)K−(α)

, (52)

V 0
−(α) = − 2 sin(kb sin θ0)

L+(k cos θ0)(α− k cos θ0)L−(α)
. (53)

Next we shall solve the first order Wiener-Hopf equations as given
by (44) and (45). Multiplying both sides of (44) and (45) by 1/K+(α)
and 1/L+(α), respectively and rearranging the results, it follows that

S1
+(α)

K+(α)
− ik sin θ0 cos (kb sin θ0)

mK+(α)

[
1

(α− k cos θ1)
− 1

(α− k cos θ2)

]

= −K−(α)U1
−(α) +

i

4
V 0−(α + m)

[
e−2γ(α+m)b − e−2γ(α)b

]

K+(α)

+
i

4
V 0−(α−m)

[
e−2γ(α)b − e−2γ(α−m)b

]

K+(α)
, (54)

D1
+(α)

L+(α)
− k sin θ0 sin (kb sin θ0)

mL+(α)

[
1

(α− k cos θ1)
− 1

(α− k cos θ2)

]

= −L−(α)V 1
−(α) +

i

4
U0−(α + m)

[
e−2γ(α)b − e−2γ(α+m)b

]

L+(α)

+
i

4
U0−(α−m)

[
e−2γ(α−m)b − e−2γ(α)b

]

L+(α)
. (55)

Applying the decomposition theorem [13, 15–17] to (54) and (55), we
obtain that

S1
+(α)

K+(α)
− ik sin θ0 cos (kb sin θ0)

m (α− k cos θ1)

[
1

K+(α)
− 1

K+(k cos θ1)

]

+
ik sin θ0 cos (kb sin θ0)

m (α− k cos θ2)

[
1

K+(α)
− 1

K+(k cos θ2)

]

+
1
8π

∫

C

V 0− (u + m)
[
e−2γ(u)b − e−2γ(u+m)b

]

K+(α)(u− α)
du

+
1
8π

∫

C

V 0−(u−m)
[
e−2γ(u−m)b − e−2γ(u)b

]

K+(α)(u− α)
du
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= −K−(α)U1
−(α) +

ik sin θ0 cos (kb sin θ0)
m (α− k cos θ1) K+ (k cos θ1)

− ik sin θ0 cos (kb sin θ0)
m (α− k cos θ2) K+ (k cos θ2)

+ H1(α) + H2(α), (56)

D1
+(α)

L+(α)
− k sin θ0 sin (kb sin θ0)

m (α− k cos θ1)

[
1

L+(α)
− 1

L+(k cos θ1)

]

+
k sin θ0 sin (kb sin θ0)

m (α− k cos θ2)

[
1

L+(α)
− 1

L+(k cos θ2)

]

− 1
8π

∫

C

U0− (u + m)
[
e−2γ(u)b − e−2γ(u+m)b

]

L+(α)(u− α)
du

− 1
8π

∫

C

U0−(u−m)
[
e−2γ(u−m)b − e−2γ(u)b

]

L+(α)(u− α)
du

= −L−(α)V 1
−(α) +

k sin θ0 sin (kb sin θ0)
m (α− k cos θ1) L+ (k cos θ1)

− k sin θ0 sin (kb sin θ0)
m (α− k cos θ2) L+ (k cos θ2)

− J1(α)− J2(α), (57)

where

H1,2(α) = ± 1
8π

∫

D

V 0−(u±m)[e−2γ(u)b − e−2γ(u±m)b]
K+(u)(u− α)

du, (58)

J1,2(α) = ± 1
8π

∫

D

U0−(u±m)[e−2γ(u)b − e−2γ(u±m)b]
L+(u)(u− α)

du. (59)

In (56)–(59), C and D are infinite integration paths running parallel
to the real axis in the u-plane, as shown in Fig. 2, where c and d are
some constants such that −k2 < c < τ < d < k2 cos θ0 with τ = Imα.

It is seen that the left-hand and right-hand sides of (56) are
regular in the upper (τ > −k2) and lower (τ < k2 cos θ0) half-
planes, respectively, and both sides have a common strip of regularity
−k2 < τ < k2 cos θ0. Hence by analytic continuation, we can show
that both sides of (56) must be equal to an entire function, which we
denote by P (α). Taking into account the edge condition, we deduce
that

S1
+(α) = o(α−1/2), τ > −k2, (60)

U1
−(α) = o(α1/2), τ < k2 cos θ0 (61)
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Figure 2. Integration paths C and D(−k2 < c < τ < d < k2 cos θ0).

as α → ∞. We also see from (51) that the split functions K±(α) are
O(α−1/2) as α →∞ with τ ≷ ∓k2. These considerations show that

P (α) = o(1), α →∞. (62)

Thus, we can conclude with the aid of Liouville’s theorem that P (α)
must be identically zero. The same argument can also be applied to
(57) and its both sides are identically equal to zero. Therefore equating
the right-hand sides of (56) and (57) to zero, it follows that

U1
−(α) =

1
K−(α)

[H1(α) + H2(α)]

+
A1

K−(α) (α− k cos θ1)
+

A2

K−(α) (α− k cos θ2)
, (63)

V 1
−(α) = − 1

L−(α)
[J1(α)+ J2(α)]

+
B1

L−(α)(α− k cos θ1)
− B2

L−(α)(α− k cos θ2)
, (64)

where

cos θ1,2 = cos θ0 ±m/k, (65)

A1,2 =
ik sin θ0 cos(kb sin θ0)

mK+(k cos θ1,2)
, (66)

B1,2 =
k sin θ0 sin(kb sin θ0)

mL+(k cos θ1,2)
. (67)
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Equations (63) and (64) contain the infinite integrals H1,2(α) and
J1,2(α) defined by (58) and (59), respectively. These integrals can
be evaluated in closed form by using the residue theorem. Taking
into account (52) and (53) and carrying out some manipulations, we
arrive at

H1,2(α) = ∓B0

4

(
k

sin kb

)1/2 ∞∑

q=2,even

iγq

∞∏

n=2,even
n 6=q

γn exp(−2γqb/nπ)
γn − γq

· exp
[
−2γqb

qπ
− γqb

π

(
1− C + ln

2π

kb
+ i

π

2

)]

· exp
[
ibγ(α)

π
ln
−iγq − γ(α)

k

]

·
[

e−2γ(u)b − e−2γ(u−m)b

(u± k cos θ1,2)K∓(u)(u± α)

]

u=∓iγq+m

, (68)

J1,2(α) =
∓iC0

4 exp(iπ/4)(cos kb)1/2

·
∞∑

p=1,odd

iγp (k − iγp)
1/2

∞∏

n=1,odd
n6=p

γn exp(−2γpb/nπ)
γn − γp

·exp
[
−2γpb

pπ
− γpb

π

(
1− C + ln

π

2kb
+ i

π

2

)]

·exp
[
ibγ(α)

π
ln
−iγp − γ(α)

k

]

·
[

e−2γ(u)b − e−2γ(u−m)b

(u± k cos θ1,2)L∓(u)(u± α)

]

u=∓iγp+m

. (69)

where

B0 = −2 sin (kb sin θ0)
L+ (k cos θ0)

, (70)

C0 = −2i cos (kb sin θ0)
K+ (k cos θ0)

. (71)

Substituting (68) and (69) into (63) and (64), respectively, we obtain
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that

U1
−(α) =

B0

4K−(α)

(
k

sin kb

)1/2





∞∑

q=2,even

iγq

∞∏

n=2,even
n 6=q

γn exp(−2γqb/nπ)
γn − γq

· exp
[
−2γqb

qπ
− γqb

π

(
1− C + ln

2π

kb
+ i

π

2

)]

· exp
[
ibγ(α)

π
ln
−iγq − γ(α)

k

]

·
[

e−2γ(u)b − e−2γ(u−m)b

(u + k cos θ1)K−(u)(u + α)

]

u=−iγq+m

−
∞∑

q=2,even

iγq

∞∏

n=2,even
n 6=q

γn exp(−2γqb/nπ)
γn − γq

· exp
[
−2γqb

qπ
− γqb

π

(
1− C + ln

2π

kb
+ i

π

2

)]

· exp
[
ibγ(α)

π
ln
−iγq − γ(α)

k

]

·
[

e−2γ(u)b − e−2γ(u−m)b

(u− k cos θ2)K+(u)(u− α)

]

u=iγq+m





+
A1

K−(α) (α− k cos θ1)
+

A2

K−(α) (α− k cos θ2)
, (72)

V 1
−(α) =

iC0

4 exp(iπ/4)(cos kb)1/2L−(α)

·





∞∑

p=1,odd

iγp (k − iγp)
1/2

∞∏

n=1,odd
n6=p

γn exp(−2γpb/nπ)
γn − γp

· exp
[
−2γpb

pπ
− γpb

π

(
1− C + ln

π

2kb
+ i

π

2

)]

· exp
[
ibγ(α)

π
ln
−iγp − γ(α)

k

]

·
[

e−2γ(u)b − e−2γ(u−m)b

(u + k cos θ1)L−(u)(u + α)

]

u=−iγp+m
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−
∞∑

p=1,odd

iγp (k − iγp)
1/2

∞∏

n=1,odd
n 6=p

γn exp(−2γpb/nπ)
γn − γp

· exp
[
−2γpb

pπ
− γpb

π

(
1− C + ln

π

2kb
+ i

π

2

)]

· exp
[
ibγ(α)

π
ln
−iγp − γ(α)

k

]

·
[

e−2γ(u)b − e−2γ(u−m)b

(u− k cos θ2)L+(u)(u− α)

]

u=iγp+m





+
B1

L−(α)(α− k cos θ1)
− B2

L−(α)(α− k cos θ2)
. (73)

Equations (72) and (73) provide exact solutions of the first order
Wiener-Hopf equations (44) and (45), respectively.

4. SCATTERED FIELD

In this section, we shall derive a scattered field expression inside
and outside the waveguide explicitly by using the results obtained in
Section 3. The scattered field in the real space can be derived by taking
the inverse Fourier transform according to the formula

φ(x, z) = (2π)−1/2

∫ ∞+ic

−∞+ic
Φ(x, α)e−iαzdα, (74)

where c is a constant satisfying −k2 < c < k2 cos θ0.
First we consider the scattered field inside the waveguide.

Substituting the field representation for |x| < b in (13) into (74) and
taking into account (19), (20), (30), (31), (38), and (39), the scattered
field is expressed using the zero- and first-order terms as follows:

φ(x, z) = (2π)−1/2
∫ ∞+ic

−∞+ic

{
−U0−(α) cosh γ(α)x+V 0−(α) sinh γ(α)x

2γ(α)

+h

[
U0−(α + m) sinh γ(α)x+V 0−(α + m) cosh γ(α)x

4i

−U0−(α−m) sinh γ(α)x+V 0−(α−m) cosh γ(α)x
4i

− U1−(α)cosh γ(α)x+V 1−(α)sinh γ(α)x
2γ(α)

]}
e−γ(α)b−iαzdα. (75)
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Substituting (52), (53), (72), and (73) into (75) and evaluating the
resultant integral, we derive, after some manipulations, that

φ(x, z) = φ0(x, z) + hφ1(x, z), (76)

where φ0(x, z) and φ1(x, z) are the zero- and first-order scattered fields,
respectively, and take the form

φ0(x, z) = −φi(x, z) +
∞∑

n=1

T 0
n sin

nπ

2b
(x + b)eγnz, (77)

φ1(x, z) =
∞∑

n=1

T 1
n cos

nπ

2b
(x + b) eγnz, (78)

where

T 0
n = − nπ

2b2γn
U0
−(iγn)L(iγn) for odd n,

=
nπ

2b2γn
V 0
−(iγn)N(iγn) for even n, (79)

T 1
n =

iC0

2

[
sin(kb sin θ1)
K−(k cos θ1)

K1
n(iγn −m)

−sin(kb sin θ2)
K−(k cos θ2)

K1
n(iγn + m)

+
nπ

21/2beiπ/4
K1

n (iγn)
]

for odd n,

=
B0

2

[
cos(kb sin θ1)
L−(k cos θ1)

L1
n(iγn −m)

+
cos(kb sin θ2)
L−(k cos θ2)

L1
n(iγn + m)

− nπ

21/2b
L1

n (iγn)
]

for even n (80)

with

K1
n(iγn ±m) =

exp [±mi− γn − ikb sin(iγn ±m)]
exp {(γnb/π) [1− C + ln(π/2kb) + iπ/2]}
· sin [kb sin(iγn ±m)]
exp ([ibγ(iγn ±m)/π] ln {[−iγn − γ(iγn ±m)] /k})
· k − iγn ±m

∞∏
p=1,odd

p6=n

[(γp − γn)/γp] exp(2γpb/pπ)
, (81)
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L1
n(iγn ±m) =

(
k

sin kb

)1/2 exp [±mi− γn − ikb sin(iγn ±m)]
exp {(γnb/π) [1− C + ln(2π/kb) + iπ/2]}

· cos [kb sin(iγn ±m)]
exp ([ibγ(iγn ±m)/π] ln {[−iγn − γ(iγn ±m)] /k})
· k − iγn ±m

∞∏
q=2,even

q 6=n

[(γq − γn) /γq] exp(2γqb/qπ)
, (82)

K1
n(iγn) =

exp [−γn − ikb sin(iγn)]
exp {(γnb/π) [1− C + ln(π/2kb) + iπ/2]}
· sin [kb sin(iγn ±m)]
exp ([ibγ(iγn)/π] ln {[−iγn − γ(iγn)] /k})
· k − iγn

∞∏
p=1,odd

p6=n

[(γp − γn)/γp] exp(2γpb/pπ)
, (83)

L1
n(iγn) =

(
k

sin kb

)1/2 exp [−γn − ikb sin(iγn)]
exp {(γnb/π) [1− C + ln(2π/kb) + iπ/2]}

· cos [kb sin(iγn)]
exp ([ibγ(iγn)/π] ln {[−iγn − γ(iγn)] /k})
· k − iγn

∞∏
q=2,even

q 6=n

[(γq − γn) /γq] exp(2γqb/qπ)
. (84)

Equations (77) and (78) are explicit expressions of the zero- and first-
order scattered fields inside the waveguide, respectively. It is seen that
by letting h → 0, (76) is reduced to the scattered field expression
for the diffraction problem involving a flat, semi-infinite parallel-plate
waveguide [13–16].

Next we shall consider the field outside the waveguide and derive
the scattered far field. The region outside the waveguide actually
includes z > 0 with |x| < b, but contributions from this region are
negligibly small at large distances from the origin. Therefore, only
the scattered far field for |x| > b will be discussed in the following.
Substituting (18) and (21) into (13) and using (30) and (31) together
with (38) and (39), an integral representation of the scattered field for
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x ≷ ±b is given by

φ(x, z) = (2π)−1/2

∫ ∞+ic

−∞+ic

{
−U0−(α) cosh γ(α)b± V 0−(α) sinh γ(α)b

2γ(α)

+h

[
∓U0−(α + m) cosh γ(α)b∓ V 0−(α + m) sinh γ(α)b

4i

±U0−(α−m) cosh γ(α)b± V 0−(α−m) sinh γ(α)b
4i

−U1−(α) cosh γ(α)b± V 1−(α) sinh γ(α)b
2γ(α)

]}
e∓γ(α)x−iαzdα,(85)

where −k2 < c < k2 cos θ0. Let us introduce the cylindrical coordinates
(ρ±, θ±) centered at the waveguide edges (x, z) = (±b, 0) as follows:

x− b = ρ+ sin θ+, z = ρ+ cos θ+ for 0 < θ+ < π, (86)
x + b = ρ− sin θ−, z = ρ− cos θ− for − π < θ− < 0. (87)

Applying the saddle point method together with the use of the
formulas presented in Appendix B, we can derive a far field asymptotic
expression of the scattered field for x ≷ ±b. Omitting the details, we
obtain the results presented below.
(i) Scattered far field for x > b
The scattered far field for region x > b (i.e., 0 < θ+ < π) is derived as

φ(ρ+, θ+) ∼ φ+
r (ρ+, θ+) + φ+

d (ρ+, θ+) (88)

for kρ+ →∞, where

φ+
r (ρ+, θ+) =

2∑

j=0

φrj (θ0, θj)

·
{

e−ikρ+ cos(θ+−θj)F

[
(2kρ+)1/2 cos

θ+ − θj

2

]

+ e−ikρ+ cos(θ++θj)F

[
(2kρ+)1/2 cos

θ+ + θj

2

]}
, (89)

φ+
d (ρ+, θ+) =

2∑

j=0

φdj (θ+, θ0, θj)
ei(kρ+−π/4)

(kρ+)1/2
(90)

with
φr0 (θ0, θ0) = −e−ikb sin θ0 , (91)
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φr1 (θ0, θ1) =
hk sin θ0

2

[
e−ikb sin θ0 − eikb(sin θ0−2 sin θ1)

]

+
h

8

(
e−2ikb sin θ1 − e−2ikb sin θ0

)

·
[

C0

K− (k cos θ0)
− B0

L− (k cos θ0)

]
, (92)

φr2 (θ0, θ2) =
hk sin θ0

2
eikb sin θ0

(
1 + e−2ikb sin θ2

)

+
h

8

(
e−2ikb sin θ0 − e−2ikb sin θ2

)

·
[

C0

K− (k cos θ0)
− B0

L− (k cos θ0)

]
, (93)

φd1,2 (θ+, θ0, θ1,2) =± ih sin θ+

23/2π1/2 (cos θ+ + cos θ1,2)

· [U0
− (±m− k cos θ+) cos (kb sin θ+)

+ V 0
− (±m− k cos θ+) sin (kb sin θ+)

]

∓ ih

23/2π1/2k (cos θ+ + cos θ1,2)

·
[
A1,2 cos (kb sin θ+)

K+ (k cos θ+)
+

B1,2 sin (kb sin θ+)
L+ (k cos θ+)

]
, (94)

φd0 (θ+, θ0, θ0) =
1

2k (cos θ+ + cos θ0)
· [U0

− (−k cos θ+) cos (kb sin θ+)

−V 0
− (−k cos θ+) sin (kb sin θ+)

]

+
iC0h

8

∞∑

n=1,odd

{
L− (k cos θ+)

[
e−2γ(iγn)b−e−2γ(iγn−m)b

]

p−n (θ+) (m− k cos θ+ − iγn)

+
L− (k cos θ+)

[
e−2γ(iγn+m)b − e−2γ(iγn−m)b

]

p+
n (θ+) (−m− k cos θ+ − iγn)

}

+
iB0h

8

∞∑

n=2,even

{
K− (k cos θ+)

[
e−2γ(iγn)b−e−2γ(iγn−m)b

]

q−n (θ+) (m− k cos θ+ − iγn)

+
K− (k cos θ+)

[
e−2γ(iγn+m)b − e−2γ(iγn−m)b

]

q+
n (θ+) (−m− k cos θ+ − iγn)

}
, (95)
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p±n (Θ) =
L− (k cosΘ)

(iγn − k cos θ0) L+ (iγn ±m)Res [K− (iγn)]
, (96)

q±n (Θ) =
K− (k cosΘ)

(iγn − k cos θ0) K+ (iγn ±m)Res [L− (iγn)]
, (97)

Res [K− (iγn)] =
eiπ/4(cos kb)1/2e2γnb/nπ

(k − iγn)1/2 exp ([ibγ(iγn)/π] ln{[−iγn−γ(iγn)]/k})
·exp{(γnb/π)[1− C + ln(π/2kb) + iπ/2]}

∞∏
p=1,odd

p6=n

γp exp(−2γpb/pπ)
γp − γn

, (98)

Res [L− (iγn)] =
(sin kb/k)1/2 exp(2γnb/nπ)

exp{(γnb/π)[1− C + ln(2π/kb) + iπ/2]}
·exp ([ibγ (iγn) /π] ln {[−iγn − γ (iγn)] /k})

∞∏
q=2,even

q 6=n

γq exp(−2γqb/qπ)
γq − γn

, (99)

In (89), F (·) is the Fresnel integral defined by (B4) in Appendix B. It
is noted that (88) is a uniform asymptotic expression of the scattered
far field for region x > b, which holds for any incidence and observation
angles including the shadow boundaries.
(ii) Scattered far field for x < −b
The scattered far field for region x < −b (i.e.,−π < θ− < 0) is derived
as

φ(ρ−, θ−) ∼ φ−r (ρ−, θ−) + φ−d (ρ−, θ−) (100)

for kρ− →∞, where

φ−r (ρ−, θ−) = φr0 (θ0, θ0)

·
{
exp[−ikρ− cos (θ−−θ0)]F

[
(2kρ−)1/2 cos

θ−−θ0

2

]

+exp[−ikρ− cos (θ−+θ0)]F
[
(2kρ−)1/2 cos

θ−+θ0

2

]}
, (101)

φ−d (ρ−, θ−) =
2∑

j=0

φdj (θ−, θ0, θj)
ei(kρ−−π/4)

(kρ−)1/2
(102)

with
φr0 (θ0, θ0) = −eikb sin θ0 , (103)
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φd1,2 (θ−, θ0, θ1,2) =∓ ih sin θ−
25/2π1/2 (cos θ− + cos θ1,2)

· [U0
− (±m− k cos θ−) cos (kb sin θ−)

− V 0
− (±m− k cos θ−) sin (kb sin θ−)

]

± ih

23/2π1/2k (cos θ− + cos θ1,2)

·
[
A1,2 cos (kb sin θ−)

K+ (k cos θ−)
−B1,2 sin (kb sin θ−)

L+ (k cos θ−)

]
, (104)

φd0 (θ−, θ0, θ0) =− 1
2k (cos θ− + cos θ0)

· [U0
− (−k cos θ−) cos (kb sin θ−)

− V 0
− (−k cos θ−) sin (kb sin θ−)

]

+
iC0h

8

∞∑

n=1,odd

{
L− (k cos θ−)

[
e−2γ(iγn)b−e−2γ(iγn−m)b

]

p−n (θ−) (m− k cos θ− − iγn)

+
L− (k cos θ−)

[
e−2γ(iγn+m)b − e−2γ(iγn−m)b

]

p+
n (θ−) (−m− k cos θ− − iγn)

}

+
iB0h

8

∞∑

n=2,even

{
K− (k cos θ−)

[
e−2γ(iγn)b−e−2γ(iγn−m)b

]

q−n (θ−) (m− k cos θ− − iγn)

+
K− (k cos θ−)

[
e−2γ(iγn+m)b−e−2γ(iγn−m)b

]

q+
n (θ−) (−m− k cos θ− − iγn)

}
. (105)

It is noted that (100) is a uniform asymptotic expression of the
scattered far field for region x < −b and holds for any incident and
observation angles.
(iii) Physical interpretation of the results
As mentioned earlier, (88) and (100) are uniform asymptotic
expressions of the scattered far field for x > b and x < −b, respectively,
which are valid for any incidence and observation angles including
the shadow boundaries. In the following, we shall make physical
interpretation of the results obtained in (i) and (ii) above.

In (88) and (100), φ+
r (ρ+, θ+) and φ−r (ρ−, θ−) comprise

contributions due to the geometrical optics fields and the singly
diffracted fields. In particular, we can verify by using the asymptotic
expansion of the Fresnel integral that φ+

r (ρ+, θ+) in (88) contain the
reflected waves propagating along the directions at π− θ0, π− θ1, and
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π − θ2 and the singly diffracted fields emanating from the waveguide
edges at x = ±b. It is important to note that π − θ0, π − θ1, and
π − θ2 are, respectively, propagation directions of the (0), (−1), and
(+1) order diffracted waves involved in the Floquet space harmonic
modes arising in periodic structures of infinite extent. Similarly it
can be shown that φ−r (ρ−, θ−) in (100) contain the geometrical optics
term canceling exactly the incident field and the singly diffracted fields
from the waveguide edges at x = ±b. In addition, φ+

d (ρ+, θ+) and
φ−d (ρ−, θ−) denote the multiply diffracted fields for regions x > b and
x < −b, respectively, which account for the higher-order diffraction
between the edges of the two sinusoidal half-planes.

5. NUMERICAL RESULTS AND DISCUSSION

In this section, we shall present illustrative numerical examples of the
scattered far field for various physical parameters and investigate the
scattering characteristics of the waveguide in detail. For convenience,
we introduce the cylindrical coordinate

x = ρ sin θ, z = ρ cos θ for− π < θ < π (106)

and define the scattered far field intensity as

|φ (ρ, θ)| [dB] = 20 log10




lim
ρ→∞

∣∣∣(kρ)1/2 φ (ρ, θ)
∣∣∣

max
|θ|<π

lim
ρ→∞

∣∣∣(kρ)1/2 φ (ρ, θ)
∣∣∣


 , (107)

where

φ(ρ, θ) = φ+
r (ρ+, θ+) + φ+

d (ρ+, θ+) for 0 < θ < π,

= φ−r (ρ−, θ−) + φ−d (ρ−, θ−) for − π < θ < 0. (108)

Comparing (106) with (86) and (87), we see that, in the far field,
ρ± and θ± can be approximately replaced by ρ and θ, respectively
for the amplitude terms involved in (108). By careful numerical
experimentation, we have found that, when the corrugation depth 2h
and the corrugation period 2π/m satisfy kh ≤ 1.0 and mh/kh ≤ 0.3,
the approximate boundary condition given by (7) can be employed
to simulate a perfectly conducting sinusoidal surface with sufficient
accuracy.

Figures 3–6 show numerical examples of the scattered far field
intensity as a function of observation angle θ for various values of kh,
mh and kb, where the incidence angle θ0 is fixed as 60◦. In order
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Figure 3(a). Scattered far field for θ0 = 60◦, mh/kh = 0.2, kb =
15.7, kh = 0.1. : corrugated waveguide. : flat waveguide.
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Figure 3(b). Scattered far field for θ0 = 60◦, mh/kh = 0.2, kb =
15.7, kh = 0.5. : corrugated waveguide. : flat waveguide.



98 Zheng and Kobayashi

 

-180 -150 -120 -90 -60 -30 0 30 60 90 120 150 180
-60

-50

-40

-30

-20

-10

0

 

 

S
C
A
T
T
E
R
E
D
 F
A
R
 F
IE
L
D
 (
D
B
)

OBSERVATION ANGLE (DEG)

Figure 3(c). Scattered far field for θ0 = 60◦, mh/kh = 0.2, kb =
15.7, kh = 1.0. : corrugated waveguide. : flat waveguide.
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Figure 4(a). Scattered far field for θ0 = 60◦, mh/kh = 0.3, kb =
15.7, kh = 0.1. : corrugated waveguide. : flat waveguide.
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Figure 4(b). Scattered far field for θ0 = 60◦, mh/kh = 0.3, kb =
15.7, kh = 0.5. : corrugated waveguide. : flat waveguide.
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Figure 4(c). Scattered far field for θ0 = 60◦, mh/kh = 0.3, kb =
15.7, kh = 1.0. : corrugated waveguide. : flat waveguide.
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Figure 5(a). Scattered far field for θ0 = 60◦, mh/kh = 0.2, kb =
31.4, kh = 0.1. : corrugated waveguide. : flat waveguide.
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Figure 5(b). Scattered far field for θ0 = 60◦, mh/kh = 0.2, kb =
31.4, kh = 0.5. : corrugated waveguide. : flat waveguide.
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Figure 5(c). Scattered far field for θ0 = 60◦, mh/kh = 0.2, kb =
31.4, kh = 1.0. : corrugated waveguide. : flat waveguide.
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Figure 6(a). Scattered far field for θ0 = 60◦, mh/kh = 0.3, kb =
31.4, kh = 0.1. : corrugated waveguide. : flat waveguide.
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Figure 6(b). Scattered far field for θ0 = 60◦, mh/kh = 0.3, kb =
31.4, kh = 0.5. : corrugated waveguide. : flat waveguide.
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Figure 6(c). Scattered far field for θ0 = 60◦, mh/kh = 0.3, kb =
31.4, kh = 1.0. : corrugated waveguide. : flat waveguide.
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to investigate the effect of sinusoidal corrugation of the waveguide
walls in detail, we have chosen the normalized corrugation depth
kh and the periodicity parameter mh/kh as kh = 0.1, 0.5, 1.0 and
mh/kh = 0.2, 0.3. In addition, the normalized waveguide spacing kb
has been taken as kb = 15.7, 31.4. The results for a flat, semi-infinite
parallel-plate waveguide have also been added for comparison.

It is seen from all the figures that the scattered far field has
maximum peaks at θ = −120◦ as this direction corresponds to the
incident shadow boundary. Comparing the results for the corrugated
waveguide with those for the flat waveguide, we observe that the
effect of sinusoidal corrugation of the waveguide walls is noticeable
for the range 90◦ < θ < 180◦, and the scattered far field intensity has
sharp peaks at two particular observation angles around the specularly
reflected direction at θ = 120◦. Consideration on the structure of an
infinite sinusoidal surface may offer a physical understanding of the
scattering mechanism at these particular observation angles. Referring
to (65), it is seen that π− θ1 and π− θ2 are, respectively, propagation
directions of the (−1) and (+1) order diffracted waves involved in the
Floquet space harmonic modes arising in the periodic structures of
infinite extent. These angles are 107.5◦, 134.4◦ for the parameters
chosen in Figs. 3 and 5, and 101.5◦, 143.1◦ for those in Figs. 4 and 6,
at which somewhat large reflection is expected. In fact, we see that
observation angles associated with the two peaks around π−θ0 in each
figure are very close to π − θ1 and π − θ2. On the other hand, the
peaks along the specular reflection are also expected from the grating
theory since they exactly correspond to the propagation direction of
the zero-order Floquet mode. Therefore it is confirmed that the three
peaks at π − θ0, π − θ1, and π − θ2 in numerical examples are due to
the effect of periodicity of the sinusoidal surface of the waveguide. It
can also be observed from the figures for fixed kb and mh/kh that the
peaks occurring in the π−θ1 and π−θ2 directions become sharper with
an increase of kh. This is because the waves in propagation directions
of the particular Floquet modes are strongly excited for larger kh.
We also find by comparing the results for kb = 15.7 in Figs. 3 and
4 with those for kb = 31.4 in Figs. 5 and 6 that sharp oscillation is
observed for the case kb = 31.4 since the waveguide dimension then
moves towards the high-frequency range. In addition, the effect of
sinusoidal corrugation of the waveguide walls is seen more clearly for
larger kb.
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6. CONCLUDING REMARKS

In this paper, we have considered a semi-infinite parallel-plate
waveguide with sinusoidal wall corrugation and analyzed the E-
polarized plane wave diffraction by means of the Wiener-Hopf
technique combined with perturbation method. Explicit expressions
of the scattered field inside and outside the waveguide have been
obtained. In particular, the field outside the waveguide has been
evaluated asymptotically using the saddle point method leading to the
far field expressions, which are uniformly valid in arbitrary incidence
and observation angles. We have carried out numerical computation of
the scattered far field for various physical parameters, and investigated
the effect of sinusoidal corrugation of the waveguide walls in detail. The
results obtained in this paper are valid for the corrugation amplitude,
small compared with the wavelength.

APPENDIX A. SOME IMPORTANT RELATIONS
SATISFIED BY THE UNKNOWN FUNCTIONS IN THE
WIENER-HOPF EQUATIONS

This appendix is concerned with the derivation of some important
relations satisfied by the unknown functions arising in the Wiener-
Hopf equations (26) and (27). Taking into account the approximate
boundary condition on the waveguide surface as given by (7) and
carrying out some manipulations, we find from (14), (15), (24), and
(25) that

F1(α) + P+(α) = Φ (b + 0, α)

+
h

2i

[
Φ′ (b + 0, α + m)− Φ′ (b + 0, α−m)

]
, (A1)

F2(α) + Q+(α) = Φ (−b− 0, α)

+
h

2i

[
Φ′ (−b− 0, α + m)− Φ′ (−b− 0, α−m)

]
, (A2)

where the prime denotes differentiation with respect to x. Substituting
the scattered field expression in (13) into (A1), (A2), (16), and (17),
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it follows that

F1(α) + P+(α) = A(α)e−γ(α)b +
ih

2

[
γ(α + m)A(α + m)e−γ(α+m)b

− γ(α−m)A(α−m)e−γ(α−m)b
]
, (A3)

F2(α) + Q+(α) = D(α)e−γ(α)b − ih

2

[
γ(α + m)D(α + m)e−γ(α+m)b

− γ(α−m)D(α−m)e−γ(α−m)b
]
. (A4)

M−(α) = −γ(α)
[
A(α)e−γ(α)b −B(α)e−γ(α)b + C(α)eγ(α)b

]
, (A5)

N−(α) = −γ(α)
[
B(α)eγ(α)b − C(α)e−γ(α)b + D(α)e−γ(α)b

]
, (A6)

Φ′′ (b + 0, α)− Φ′′ (b− 0, α)

= γ2(α)
[
A(α)e−r(α)b −B(α)e−r(α)b − C(α)er(α)b

]
, (A7)

Φ (−b + 0, α)− Φ(−b− 0, α)

= B(α)er(α)b + [C(α)−D(α)e] e−r(α)b. (A8)

Making use of the continuity of tangential electric fields across x = ±b,
we deduce the following relations:

Φ (−b+0, α)−Φ(−b− 0, α)=− h

2i
[N−(α+m)−N−(α−m)] , (A9)

Φ′′ (b+0, α)−Φ′′ (b− 0, α)=γ2(α) [Φ (b+0, α)− Φ(b− 0, α)] .(A10)

We now substitute (A7) and (A8) into (A10) and (A9), respectively,
and making arrangements for the results. This leads to

[A(α)−B(α)]e−r(α)b−C(α)er(α)b =
ih

2
[M−(α+m)−M−(α−m)] , (A11)

B(α)er(α)b+[C(α)−D(α)]e−r(α)b =− ih

2
[N−(α+m)−N−(α−m)] .(A12)

Equations (A5), (A6), (A11), and (A12) constitute a system
of simultaneous equations, which relates the unknown functions
A(α), B(α), C(α), and D(α) to the unknown functions M(α) and
N(α). Solving these equations for A(α), B(α), C(α), and D(α), we
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derive that

A(α) =−eγ(α)b

2

{
M−(α)
γ(α)

− ih

2
[M−(α + m)−M−(α−m)]

}

−e−γ(α)b

2

{
N−(α)
γ(α)

− ih

2
[N−(α + m)−N−(α−m)]

}
, (A13)

B(α) =−e−γ(α)b

2

{
N−(α)
γ(α)

−ih

2
[N−(α + m)−N−(α−m)]

}
, (A14)

C(α) =−e−γ(α)b

2

{
M−(α)
γ(α)

−ih

2
[M−(α−m)−M−(α + m)]

}
, (A15)

D(α) =−e−γ(α)b

2

{
M−(α)
γ(α)

− ih

2
[M−(α−m)−M−(α + m)]

}

−eγ(α)b

2

{
N−(α)
γ(α)

− ih

2
[N−(α−m)−N−(α + m)]

}
. (A16)

Substituting (A13) and (A16) into (A1) and (A2), respectively and
arranging the results, we deduce that

F1(α) + P+(α)

= e−2γ(α)b

{
ih

4
[N−(α + m)−N−(α−m)]− N−(α)

2γ(α)

}

−M−(α)
2γ(α)

+
ihγ(α + m)

2

·
(

e−2γ(α+m)b

{
ih

4
[N−(α + 2m)−N−(α)] −N−(α + m)

2γ(α + m)

}

+
ih

4
[M−(α)−M−(α + 2m)]

)
− ihγ(α−m)

2

·
(

e−2γ(α−m)b

{
ih

4
[N−(α)−N−(α− 2m)] − N−(α−m)

2γ(α−m)

}

+
ih

4
[M−(α)−M−(α− 2m)]

)
, (A17)
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F2(α) + Q+(α)

= e−2γ(α)b

{
ih

4
[M−(α−m)−M−(α + m)]− M−(α)

2γ(α)

}

−N−(α)
2γ(α)

+
ihγ(α + m)

2

·
(

e−2γ(α+m)b

{
ih

4
[M−(α + 2m)−M−(α)] +

M−(α + m)
2γ(α + m)

}

+
ih

4
[N−(α + 2m)−N−(α)]

)
+

ihγ(α−m)
2

·
(

e−2γ(α−m)b

{
ih

4
[M−(α− 2m)−M−(α)] −M−(α−m)

2γ(α−m)

}

+
ih

4
[N−(α− 2m)−N−(α)]

)
. (A18)

It should be noted that, in the derivation of (A13)–(A18), the O
(
h2

)
terms occurring in the unknown functions P+(α), Q+(α), M−(α),
and N−(α) have been ignored according to the boundary condition
as given by (7). Equations (A13)–(A18) can be conveniently used in
the derivation of the Wiener-Hopf equations.

APPENDIX B. EVALUATION OF SOME CANONICAL
INTEGRALS IN TERMS OF THE FRESNEL INTEGRAL

This appendix is concerned with the evaluation of some canonical
integrals in terms of the Fresnel integral. Let us define the integrals
I± as

I± =
∫ ∞+ic

−∞+ic

e−γ|x|−iαz

(α± k)1/2(α− k cos θ0)
dα (B1)

for real x and z with γ and k being γ = (α2− k2)1/2 and k = k1 + ik2,
where 0 < θ0 < π/2 and −k2 < c < k2 cos θ0. We take a proper
branch of the double-valued function γ as Re γ > 0. Introducing the
cylindrical coordinate x = ρ sin θ, z = ρ cos θ for −π < θ < π, (B1) can



108 Zheng and Kobayashi

be evaluated exactly as [16, 17]

I+ =
(

2
k

)1/2

πi sec
θ0

2

{
e−ikρ cos(θ−θ0)F

[
(2kρ)1/2 cos

θ − θ0

2

]

+ e−ikρ cos(θ+θ0)F

[
(2kρ)1/2 cos

θ + θ0

2

]}
, (B2)

I− =
(

2
k

)1/2

πcosec
θ0

2
sgn(θ)

{
e−ikρ cos(θ−θ0)F

[
(2kρ)1/2 cos

θ − θ0

2

]

−e −ikρ cos(θ+θ0)F

[
(2kρ)1/2 cos

θ + θ0

2

]}
, (B3)

where F (·) is the Fresnel integral defined by

F (x) =
e−iπ/4

π1/2

∫ ∞

x
eit2dt, (B4)

and

sgn(ξ) = 1 for ξ > 0, (B5)
= −1 for ξ < 0. (B6)
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