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Abstract—A study is made of the excitation of electromagnetic
waves by spatially bounded, arbitrary sources in the presence of
a cylindrical guiding structure immersed in an infinitely extended,
homogeneous gyrotropic medium whose permittivity and permeability
are both describable by tensors with nonzero off-diagonal elements.
The axis of symmetry of the considered cylindrical structure is assumed
to coincide with the gyrotropic axis. The total field is sought in
terms of vector modal solutions of the source-free Maxwell equations.
We determine the content of the modal spectrum and obtain an
eigenfunction expansion of the source-excited field in terms of discrete-
and continuous-spectrum modes. The expansion coefficients of the
modes are derived in explicit form. An expression for the total power
radiated from sources is deduced and analyzed. It is shown that the
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developed approach makes it possible to readily represent the source-
excited field without preliminary calculation of the dyadic Green’s
functions, which significantly facilitates the field evaluation.

1. INTRODUCTION

Gyrotropic structures capable of guiding electromagnetic waves have
been an important research topic for a long time because of many
applications including, in particular, those related to the characteristics
of electromagnetic waves in plasma waveguides [1–3], helicon waves
in magnetized metals and semiconductors [4–6], waves in ferrites [7,
8], modes of gyrotropic fibers [9, 10], etc. The theory of excitation
of closed waveguides filled with gyrotropic media has received much
careful study, and there are many accounts of it (see, e.g., [11–
13] and references therein). Open gyrotropic waveguides surrounded
by an isotropic outer medium have been discussed in [10, 14–18].
The case where the outer medium is anisotropic is considered
in [19]. Recently, open gyrotropic guiding structures located in
a gyrotropic background medium have attracted considerable in-
terest [3, 20]. Several workers have discussed representations of
the dyadic Green’s functions for such structures (see, e.g., [20–22]).
Another approach is to obtain eigenfunction expansions of the source-
excited fields without preliminary calculations of the dyadic Green’s
functions [3]. In particular, this approach was applied for representing
the electromagnetic fields of given sources in the presence of cylindrical
guiding structures immersed in an unbounded gyroelectric medium [3,
23–26] such as a magnetoplasma, for example.

Note that for gyrotropic media, use of eigenfunction expansions
for the source-excited fields can have some advantages over the Green’s
function technique. This is related to the fact that even in the
simplest case of a homogeneous gyrotropic medium without spatial
dispersion, the dyadic Green’s functions cannot be expressed in closed
forms and are represented by improper integrals in the wave number
space [11, 27–29]. Moreover, two sets of the Green’s functions, which
correspond to two characteristic waves of such a medium, should be
introduced. Another, more substantial difficulty occurs when dealing
with resonant gyrotropic media in which the refractive index surface
for one of the characteristic waves extends to infinity when an angle
between the wavenormal direction and the gyrotropic axis approaches
a certain value determined by the medium parameters [3]. Under such
conditions, the Green’s functions turn out to be singular not only at
the source point, but also on some conical surfaces commonly known as
resonance cones [3, 12]. It is important that the structure of resonance
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surfaces of the spatially distributed sources may not coincide with
that of the resonance cones for the dyadic Green’s functions, which
significantly complicates evaluation of convolution integrals comprising
the Green’s functions.

The above-mentioned features make the development of methods
employing the eigenfunction expansions of the source-excited fields
very topical. It is the purpose of the present paper to extend such
methods, which were initially developed for the fields of sources in
cylindrically stratified gyroelectric media [3], to the case where given
sources are embedded in a gyrotropic medium whose permittivity and
permeability are both describable by tensors with nonzero off-diagonal
elements.

Our paper is organized as follows. In Sec. 2, we formulate the
studied problem and present the basic equations. In Sec. 3, rigorous
representations of cylindrical vector wave functions in a homogeneous
gyrotropic medium are discussed. In Sec. 4, the total source-excited
field in a cylindrically stratified unbounded gyrotropic medium is
found in the form of an eigenfunction expansion over the discrete-
and continuous-spectrum modes. Then, in Sec. 5, a reduction to
the special case of a uniaxial medium is made. In Sec. 6, we apply
the obtained field representation for determining the power radiated
from electromagnetic sources. Sec. 7 states our conclusions along
with suggestions for future work. Appendices A and B present
coefficients entering the field expressions and the derivation of the mode
orthogonality relations, respectively.

2. BASIC FORMULATION

Consider an unbounded gyrotropic medium containing a cylindrical
nonuniformity whose axis is aligned with the z axis of a cylindrical
coordinate system (ρ, φ, z). The medium can be frequency-dispersive
and is described by the permittivity and permeability tensors which,
for a monochromatic signal with a time dependence of exp(iωt), are
written as

ε = ε0

(
ε1 iε2 0

−iε2 ε1 0
0 0 ε3

)
, µ = µ0

(
µ1 iµ2 0

−iµ2 µ1 0
0 0 µ3

)
, (1)

where ε0 and µ0 are the electric and magnetic constants, respectively.
Note that such tensors are typical of a general bigyrotropic anisotropic
medium whose distinguished axis is parallel to the z axis [30]. The
tensor elements in (1) are prescribed piecewise-continuous functions of
distance ρ from the z axis. To avoid phenomena related to the resonant
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absorption of electromagnetic energy in an inhomogeneous medium in
the case where the diagonal elements of tensors (1) reverse signs in
the absence of losses, we assume that these elements pass zero in a
jump-like manner.

Let an electromagnetic field be excited by time-harmonic given
electric and magnetic currents whose densities, with time dependence
dropped, are represented by the functions Je(r) and Jm(r), respec-
tively. The currents are located in a limited spatial region defined by
ρ < b and z1 < z < z2.

Although our main task in this paper is to study the excitation
of electromagnetic waves by given currents in a gyrotropic medium in
the presence of the above-mentioned nonuniformity, we start from the
source-free Maxwell equations

∇× E = −iωµ · H, ∇× H = iω ε · E. (2)

The symmetry of the problem dictates that the solution of these
equations can be determined in terms of the vector wave functions[

E(r)
H(r)

]
=

[
E(ρ)
H(ρ)

]
exp(−imφ− ik0pz), (3)

where m is the azimuthal index (m = 0,±1,±2, . . . ), k0 is the wave
number in free space, and p is the axial wave number normalized to k0.
From the Maxwell equations, it can be shown that in the source-free
regions, the radial and azimuthal components of vector functions (3)
are related to their axial components by the expressions

Eρ =
1

k0∆

{
ipτgκ

2m

ρ
Ez + ip

(
p2 − κ2 − λ2

) ∂Ez

∂ρ

+ µ1

(
p2 − τeκ

2
e

) m
ρ
Z0Hz +

(
µ2p

2 + ε2µ+µ−
)
Z0

∂Hz

∂ρ

}
, (4)

Eφ =
1

k0∆

{
p

(
p2 − κ2 − λ2

) m
ρ
Ez + pτgκ

2∂Ez

∂ρ

− i
(
µ2p

2 + ε2µ+µ−
) m
ρ
Z0Hz− iµ1

(
p2−τeκ

2
e

)
Z0

∂Hz

∂ρ

}
, (5)

Hρ =
1

k0∆

{
−ε1

(
p2 − τmκ

2
m

) m
ρ

Ez

Z0
−

(
ε2p

2 + µ2ε+ε−
) 1
Z0

∂Ez

∂ρ

+ ipτgκ
2m

ρ
Hz + ip

(
p2 − κ2 − λ2

) ∂Hz

∂ρ

}
, (6)
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Hφ =
1

k0∆

{
i
(
ε2p

2 + µ2ε+ε−
) m
ρ

Ez

Z0
+ iε1

(
p2 − τmκ

2
m

) 1
Z0

∂Ez

∂ρ

+ p
(
p2 − κ2 − λ2

) m
ρ
Hz + pτgκ

2∂Hz

∂ρ

}
, (7)

where

∆ =
(
p2 − ε+µ+

) (
p2 − ε−µ−

)
, ε± = ε1 ± ε2, µ± = µ1 ± µ2,

τe =
ε1

ε3
, τm =

µ1

µ3
, τg =

ε2

ε1
+
µ2

µ1
,

κe =
(
ε3
µ2

1 − µ2
2

µ1

)1/2

, κm =
(
µ3

ε2
1 − ε2

2

ε1

)1/2

,

κ = (ε1µ1)1/2, λ = (ε2µ2)1/2,

(8)

and Z0 = (µ0/ε0)1/2 is the impedance of free space. The axial
components Ez and Hz, in turn, satisfy the following system of
equations:

L̂mEz + k2
0

(
κ2

e − τ−1
e p2

)
Ez = ik2

0τgµ3pZ0Hz + ΨE , (9)

L̂mHz + k2
0

(
κ2

m − τ−1
m p2

)
Hz = −ik2

0τgε3pZ
−1
0 Ez + ΨH . (10)

Here,

L̂m =
∂2

∂ρ2
+

1
ρ

∂

∂ρ
− m2

ρ2
,

ΨE = ik0ε
−1
1 p

(
Eρ

dε1

dρ
+ iEφ

dε2

dρ

)

+
µ+µ−
µ1

[(
m

ρ
Ez − k0pEφ

)
d

dρ

(
µ2

µ+µ−

)

−
(
∂Ez

∂ρ
+ ik0pEρ

)
d

dρ

(
µ1

µ+µ−

)]
, (11)

ΨH = ik0µ
−1
1 p

(
Hρ

dµ1

dρ
+ iHφ

dµ2

dρ

)

+
ε+ε−
ε1

[(
m

ρ
Hz − k0pHφ

)
d

dρ

(
ε2

ε+ε−

)

−
(
∂Hz

∂ρ
+ ik0pHρ

)
d

dρ

(
ε1

ε+ε−

)]
. (12)

Note that the components Eρ, Eφ, Hρ, and Hφ, which enter the
expressions for the functions ΨE and ΨH , should be replaced by
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expressions (4)–(7) to represent these functions only in terms of Ez

and Hz. However, the resulting formulas for ΨE and ΨH turn out to
be very cumbersome and will not be written here in the interests of
brevity.

When writing Equations (4)–(12), we did not specify the depen-
dence of the tensor elements on ρ. We now assume that they are
varying in the inner region of a column with radius a and are constant
in its outer region (see Fig. 1). For ρ > a, we thus have

ΨE = 0, ΨH = 0. (13)

Figure 1. Geometry of the problem.

In what follows, the notations ε1,2,3 and µ1,2,3 as well as the notations
introduced in (8) will be used only for the homogeneous outer region
ρ > a. For the inner region ρ < a, the corresponding quantities will be
denoted by the tilde (ε̃1,2,3, µ̃1,2,3, etc.). It is to be emphasized that at
first we will consider the case in which τg �= 0 in (9) and (10). Then
the special case τg = 0 where the outer medium has the property of
uniaxial anisotropy [30] will be discussed.

3. CYLINDRICAL VECTOR WAVE FUNCTIONS IN A
HOMOGENEOUS GYROTROPIC MEDIUM

Before proceeding further, it is necessary to discuss the solutions
of the source-free Maxwell equations in cylindrical coordinates for a
homogeneous medium whose parameters coincide with those of the
outer region ρ > a. In this case, Equations (9) and (10) with allowance
for (13) can be solved analytically in terms of cylindrical functions. Let
Zm be a cylindrical function, say a Bessel or Hankel function, of order
m. Putting Ez(ρ) = AZm(k0qρ) and Hz(ρ) = Z−1

0 BZm(k0qρ) in (9)
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and (10), where A and B are arbitrary constants, we get
 q2 + τ−1

e p2 − κ2
e iτgµ3p

−iτgε3p q2 + τ−1
m p2 − κ2

m


 ( A

B

)
= 0. (14)

The determinant of (14) must vanish, whence we obtain the following
quartic equation relating q and p [30]:

q4 +
[(
τ−1
e + τ−1

m

)
p2 − κ2

e − κ2
m

]
q2 + (τeτm)−1 p4

−
(
τ−1
m κ2

e + τ−1
e κ2

m + τ2
g ε3µ3

)
p2 + κ2

eκ
2
m = 0. (15)

It is worth noting that in the special case of a gyroelectric medium
where µ1 = µ3 = 1 and µ2 = 0, Equation (15) becomes the well-known
Booker quartic [31]. If (15) is regarded as a quartic equation in q, then
it determines four solutions ±q1(p) and ±q2(p) such that

qk(p)=2−1/2
[
κ2

e + κ2
m−

(
τ−1
e +τ−1

m

)
p2+(−1)kRq(p)

]1/2
, k = 1, 2, (16)

where

Rq(p) =
{(
τ−1
e − τ−1

m

)2
p4 − 2

[(
τ−1
e + τ−1

m

) (
κ2

e + κ2
m

)
− 2

(
τ−1
m κ2

e + τ−1
e κ2

m + τ2
g ε3µ3

)]
p2 +

(
κ2

e − κ2
m

)2
}1/2

. (17)

The ratio of the constants A and B for q = qk is(A
B

)∣∣∣∣
q=qk

= −iµ3

ε3
nk, (18)

where

nk =
q2
k + τ−1

m p2 − κ2
m

τgµ3p
=

τgε3p

q2
k + τ−1

e p2 − κ2
e

. (19)

Note that

n1n2 = − ε3

µ3
. (20)

If q = qk and A = inkqk/ε3, then, for a fixed k, the particular
solution of Equations (9) and (10) in the case of a homogeneous
medium takes the form

Ez(ρ) = iε−1
3 nkqkZm(k0qkρ), (21)

Hz(ρ) = −Z−1
0 µ−1

3 qkZm(k0qkρ). (22)
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Upon substituting (21) and (22) into (4)–(7), we get

Eρ(ρ) =
1
2

[βk,+Zm+1(k0qkρ) − βk,−Zm−1(k0qkρ)] , (23)

Eφ(ρ) =
i

2
[βk,+Zm+1(k0qkρ) + βk,−Zm−1(k0qkρ)] , (24)

Hρ(ρ) =
i

2Z0
nk [γk,+Zm+1(k0qkρ) + γk,−Zm−1(k0qkρ)] , (25)

Hφ(ρ) = − 1
2Z0

nk [γk,+Zm+1(k0qkρ) − γk,−Zm−1(k0qkρ)] , (26)

where

βk,± =
q2
k

µ3

pε−1
3 µ3nk ∓ µ∓
p2 − ε∓µ∓

= ±ε± ∓ nkp

ε1
, (27)

γk,± = ± q2
k

µ3

pn−1
k ∓ ε∓ε

−1
3 µ3

p2 − ε∓µ∓
=

µ± ∓ n−1
k p

µ1
. (28)

Note that expressions (27) and (28) can be derived by straightforward
manipulation.

Using the well-known formula

Zm+1(ζ) + Zm−1(ζ) =
2m
ζ

Zm(ζ), (29)

which is valid for cylindrical functions [32], and the identities

βk,+ + βk,− = 2(ε2 − nkp)ε−1
1 , βk,+ − βk,− = 2,

γk,+ + γk,− = 2, γk,+ − γk,− = 2(µ2 − n−1
k p)µ−1

1 ,
(30)

we can rewrite formulas (23)–(26) for the transverse field components
in alternative forms:

Eρ(ρ) =
ε2 − nkp

ε1
Zm+1(k0qkρ) − βk,−m

Zm(k0qkρ)
k0qkρ

= −
[
ε2 − nkp

ε1
Zm−1(k0qkρ) − βk,+m

Zm(k0qkρ)
k0qkρ

]
, (31)

Eφ(ρ) = i

[
Zm+1(k0qkρ) + βk,−m

Zm(k0qkρ)
k0qkρ

]

= −i
[
Zm−1(k0qkρ) − βk,+m

Zm(k0qkρ)
k0qkρ

]
, (32)
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Hρ(ρ) =
ink

Z0

[
µ2 − n−1

k p

µ1
Zm+1(k0qkρ) + γk,−m

Zm(k0qkρ)
k0qkρ

]

=− ink

Z0

[
µ2 − n−1

k p

µ1
Zm−1(k0qkρ)−γk,+m

Zm(k0qkρ)
k0qkρ

]
, (33)

Hφ(ρ) = −nk

Z0

[
Zm+1(k0qkρ) − γk,−m

Zm(k0qkρ)
k0qkρ

]

=
nk

Z0

[
Zm−1(k0qkρ) − γk,+m

Zm(k0qkρ)
k0qkρ

]
. (34)

The above expressions yield the components of cylindrical vector
wave functions in a homogeneous gyrotropic medium for a given axial
wave number p. For later work, it will also be necessary to employ
another representation of these functions, for which (15) is regarded as
a quartic equation in p. Then it determines four functions ±p1(q) and
±p2(q) such that

pα(q) = 2−1/2
[
σ − (τe + τm)q2 + χαRp(q)

]1/2
, (35)

where

σ = τeκ
2
e + τmκ

2
m + τ2

gκ
2,

Rp(q) =
{
(τe − τm)2q4 − 2

[
(τe + τm)σ − 2τeτm

(
κ2

e + κ2
m

)]
q2

+σ2 − 4τeτmκ2
eκ

2
m

}1/2
, (36)

α = 1, 2, and χ1 = −χ2 = −1. It may be noted that substituting
p = pα(q) into (16) yields two quantities qk one of which coincides
with q, while the other, hereafter denoted by qα(q), differs from q.
Therefore, we have

q2
α(q) = q2

k̂
(pα(q)) �= q, (37)

where the value of k̂, equal to either 1 or 2, is chosen such as to ensure
the inequality on the extreme right-hand side of (37). Another way to
calculate qα as a function of q is to put one of two quantities q1 or q2
in (19) equal to q, and the other, to qα(q), provided that p = pα(q).
Then formula (20) yields(

q2 + τ−1
m p2

α(q) − κ2
m

) (
q2
α(q) + τ−1

m p2
α(q) − κ2

m

)
=−τ2

g ε3µ3p
2
α(q),

(38)
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whence we get

qα(q)=
{
κ2

m−τ−1
m p2

α(q)−τ2
g ε3µ3p

2
α(q)

[
q2+τ−1

m p2
α(q)−κ2

m

]−1
}1/2

. (39)

The quantity qα(q) may be called the auxiliary transverse wave number
corresponding to the transverse wave number q. Similarly, two
quantities nk, regarded as functions of p and given by (19), can be
replaced by the corresponding functions of q if we substitute q and
qα(q) for q1,2, and pα(q) for p in (19).

In what follows, to make the functions pα(q) and qα(q) single-
valued, we require that

Im pα(q) < 0 (40)

and

Im qα(q) < 0. (41)

In a lossless medium, the functions pα(q) and qα(q) can be purely real
for some values of q. In such a case, one should introduce small losses
in the medium, choose the branches of pα(q) and qα(q) in accordance
with (40) and (41), respectively, and then put the losses equal to zero
in the resulting formulas for the discussed functions.

4. FIELD EXPANSION IN THE PRESENCE OF A
CYLINDRICAL NONUNIFORMITY

4.1. The Boundary-value Problem for an Open Cylindrical
Waveguide in a Gyrotropic Medium

We now proceed to seeking and discussing solutions of the source-
free Maxwell equations in a gyrotropic medium with a cylindrical
nonuniformity. Such solutions can be sought in terms of the modal
fields[

Em,s,α(r, q)
Hm,s,α(r, q)

]
=

[
Em,s,α(ρ, q)
Hm,s,α(ρ, q)

]
exp[−imφ− ik0ps,α(q)z], (42)

where q is the normalized (to k0) transverse wave number in the
outer medium (ρ > a), which was introduced in Sec. 3; the functions
ps,α(q) describe the dependence of the normalized axial wave number
p on q for two characteristic waves of the outer medium, denoted
by the subscript values α = 1 and α = 2; the subscript s denotes
the wave propagation direction (s = − and s = + designate waves
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propagating in the negative and positive directions of the z axis,
respectively); and Em,s,α(ρ, q) and Hm,s,α(ρ, q) are the vector wave
functions describing the radial distribution of the field of a mode
corresponding to the transverse wave number q and the indices m,
s, and α. The functions ps,α(q) obey the relation p+,α(q) ≡ pα(q) =
−p−,α(q). Recall that pα(q) is given by (35) and satisfies condition (40).
We note that any solution of the source-free Maxwell equations that
satisfies the boundary conditions at ρ = a and the required conditions
at ρ→∞ is a mode if its z-dependence is represented by (42).

It is evident that the radial and azimuthal components of the
vector functions Em,s,α(ρ, q) and Hm,s,α(ρ, q) are related to their
axial components by expressions coinciding in form with (4)–(7), and
the axial components of these vector functions are determined by
Equations (9) and (10) if we put p = ps,α(q) and substitute ε̃1,2,3, µ̃1,2,3

and ε1,2,3, µ1,2,3 for the tensor elements in the regions ρ < a and ρ > a,
respectively.

To find the values of q over which the corresponding modal
fields (42) should be summed for representing the total field, it is
required that the quantities Em,s,α(ρ, q) and Hm,s,α(ρ, q) be regular
on the z axis and satisfy both the boundary conditions, which
consist in continuity of the components Eφ; m,s,α(ρ, q), Ez; m,s,α(ρ, q),
Hφ; m,s,α(ρ, q), and Hz; m,s,α(ρ, q) at the discontinuity points of the
tensor elements, and the following boundedness conditions at ρ →
∞ [3, 33]:

ρ1/2 |Em,s,α(ρ, q)| < R(1)
m,α, ρ1/2 |Hm,s,α(ρ, q)| < R(2)

m,α, (43)

where R
(1)
m,α and R

(2)
m,α are finite constants. It can be shown that

the total field yielded by summing (or integrating) modes over the
found values of q will satisfy the radiation condition at infinity
(r = (ρ2 + z2)1/2 → ∞) [3, 19, 33]. Note that in the considered
case, conditions (43) turn out to be sufficient for finding the
eigenvalues q and the corresponding modes in contrast to the case of an
isotropic outer medium where, along with the boundedness conditions,
certain additional conditions should be imposed on the desired modal
fields [10, 16, 19, 33, 34].

4.2. Discrete- and Continuous-spectrum Modes

In the homogeneous outer medium (ρ > a), the solution for the axial
field components Ez; m,s,α(ρ, q) and Hz; m,s,α(ρ, q) can be written using
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the results of Sec. 3:

Ez; m,s,α(ρ, q) =
i

ε3

[
2∑

k=1

C(k)
m,s,α(q)n(1)

s,αqH
(k)
m (k0qρ)

+ Cm,s,α(q)n(2)
s,αqαH

(2)
m (k0qαρ)

]
, (44)

Hz; m,s,α(ρ, q) = − 1
Z0µ3

[
2∑

k=1

C(k)
m,s,α(q)qH(k)

m (k0qρ)

+ Cm,s,α(q)qαH
(2)
m (k0qαρ)

]
. (45)

Here, C(1)
m,s,α, C(2)

m,s,α, and Cm,s,α are coefficients to be determined, and
H

(1)
m and H

(2)
m are Hankel functions of the first and second kinds,

respectively, of order m. The functions qα(q) are determined by
formula (39), and

n(1,2)
s,α (q) =

(
q
(1,2)
α

)2
+ τ−1

m p2
α(q) − κ2

m

τgµ3ps,α(q)
, (46)

where q
(1)
α = q and q

(2)
α = qα(q). Formula (46) follows from the

expression (19) derived in Sec. 3. When writing (44) and (45),
we took into account condition (41) determining the choice of the
branches of qα(q). With this point of mind, the particular solution
comprising H

(1)
m (k0qαρ) has been rejected in (44) and (45) in order

that the functions Em,s,α(ρ, q) and Hm,s,α(ρ, q) do not contradict the
boundedness conditions (43).

Expressions for the transverse components of the field in the region
ρ > a with allowance for formulas (23)–(28) can be written as

Eρ; m,s,α(ρ, q)

=
1
2

[
2∑

k=1

C(k)
m,s,α(q)

(
b
(1)
α,+H

(k)
m+1(k0qρ) − b

(1)
α,−H

(k)
m−1(k0qρ)

)

+ Cm,s,α(q)
(
b
(2)
α,+H

(2)
m+1(k0qαρ) − b

(2)
α,−H

(2)
m−1(k0qαρ)

)]
, (47)

Eφ; m,s,α(ρ, q)

=
i

2

[
2∑

k=1

C(k)
m,s,α(q)

(
b
(1)
α,+H

(k)
m+1(k0qρ) + b

(1)
α,−H

(k)
m−1(k0qρ)

)
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+ Cm,s,α(q)
(
b
(2)
α,+H

(2)
m+1(k0qαρ) + b

(2)
α,−H

(2)
m−1(k0qαρ)

)]
, (48)

Hρ; m,s,α(ρ, q)

=
i

2Z0

[
2∑

k=1

C(k)
m,s,α(q)n(1)

s,α

(
g
(1)
α,+H

(k)
m+1(k0qρ) + g

(1)
α,−H

(k)
m−1(k0qρ)

)

+ Cm,s,α(q)n(2)
s,α

(
g
(2)
α,+H

(2)
m+1(k0qαρ) + g

(2)
α,−H

(2)
m−1(k0qαρ)

)]
, (49)

Hφ; m,s,α(ρ, q)

= − 1
2Z0

[
2∑

k=1

C(k)
m,s,α(q)n(1)

s,α

(
g
(1)
α,+H

(k)
m+1(k0qρ) − g

(1)
α,−H

(k)
m−1(k0qρ)

)

+ Cm,s,α(q)n(2)
s,α

(
g
(2)
α,+H

(2)
m+1(k0qαρ) − g

(2)
α,−H

(2)
m−1(k0qαρ)

)]
, (50)

where

b
(1,2)
α,± = ±ε± ∓ n

(1,2)
s,α ps,α

ε1
, g

(1,2)
α,± =

µ± ∓
(
n

(1,2)
s,α

)−1
ps,α

µ1
. (51)

We now consider the special case where the medium in the inner
region (ρ < a) is homogeneous. According to (21) and (22), the axial
field components that are regular at ρ = 0 are represented for ρ < a in
the form

Ez; m,s,α(ρ, q) =
i

ε̃3

2∑
k=1

B(k)
m,s,α(q) ñ(k)

s,α q̃
(k)
α Jm

(
k0q̃

(k)
α ρ

)
, (52)

Hz; m,s,α(ρ, q) = − 1
Z0µ̃3

2∑
k=1

B(k)
m,s,α(q) q̃(k)

α Jm

(
k0q̃

(k)
α ρ

)
, (53)

where Jm are Bessel functions of the first kind of order m, B(1)
m,s,α and

B
(2)
m,s,α are undetermined coefficients,

ñ(1,2)
s,α (q) =

(
q̃
(1,2)
α

)2
+ τ̃−1

m p2
α(q) − κ̃2

m

τ̃gµ̃3ps,α(q)
, (54)
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and the functions q̃
(1)
α (q) and q̃

(2)
α (q) are yielded by formula (16) for

q1(p) and q2(p), respectively, if we substitute pα(q) for p in (16)
and make the replacements ε1,2,3 → ε̃1,2,3 and µ1,2,3 → µ̃1,2,3 in all
quantities entering that formula and comprising the tensor elements.
Such replacements are also used for obtaining the corresponding tilde
quantities in (54).

It is now a simple matter to verify that the transverse components
of the field in the homogeneous inner region, which correspond to the
axial components (52) and (53), are written as follows:

Eρ; m,s,α(ρ, q) =
1
2

2∑
k=1

B(k)
m,s,α(q)

(
b̃
(k)
α,+Jm+1

(
k0q̃

(k)
α ρ

)

− b̃
(k)
α,−Jm−1

(
k0q̃

(k)
α ρ

))
, (55)

Eφ; m,s,α(ρ, q) =
i

2

2∑
k=1

B(k)
m,s,α(q)

(
b̃
(k)
α,+Jm+1

(
k0q̃

(k)
α ρ

)

+ b̃
(k)
α,−Jm−1

(
k0q̃

(k)
α ρ

))
, (56)

Hρ; m,s,α(ρ, q) =
i

2Z0

2∑
k=1

B(k)
m,s,α(q)ñ(k)

s,α

(
g̃
(k)
α,+Jm+1

(
k0q̃

(k)
α ρ

)

+ g̃
(k)
α,−Jm−1

(
k0q̃

(k)
α ρ

))
, (57)

Hφ; m,s,α(ρ, q) = − 1
2Z0

2∑
k=1

B(k)
m,s,α(q)ñ(k)

s,α

(
g̃
(k)
α,+Jm+1

(
k0q̃

(k)
α ρ

)

− g̃
(k)
α,−Jm−1

(
k0q̃

(k)
α ρ

))
, (58)

where

b̃
(1,2)
α,± = ± ε̃± ∓ ñ

(1,2)
s,α ps,α

ε̃1
, g̃

(1,2)
α,± =

µ̃± ∓
(
ñ

(1,2)
s,α

)−1
ps,α

µ̃1
(59)

with ε̃± = ε̃1 ± ε̃2 and µ̃± = µ̃1 ± µ̃2.
It may be noted that using formulas (29) and (30), expres-

sions (47)–(50) and (55)–(58) for the transverse field components can
be rewritten in another form that is similar to (31)–(34). Such a rep-
resentation is more convenient when analyzing the field behavior at
ρ → ∞.

Satisfying the continuity conditions for the tangential field com-
ponents at the boundary ρ = a, we arrive at the system of linear
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equations for unknown coefficients B
(1,2)
m,s,α, C(1,2)

m,s,α, and Cm,s,α. This
system can thus be represented in matrix form:

S · G = C(1)
m,s,αF . (60)

The elements of the matrix S and the column vectors F and G are
written in Appendix A.

The coefficients B
(1,2)
m,s,α, C

(1,2)
m,s,α, and Cm,s,α related by (60) en-

sure the fulfillment of the boundary conditions. However, matrix
Equation (60) gives only four linear relationships for five coefficients
B

(1,2)
m,s,α, C(1,2)

m,s,α, and Cm,s,α, so that one of these coefficients can be
taken arbitrary. This circumstance reflects the fact that the mode
fields are defined up to an arbitrary factor independent of the spatial
coordinates. For convenience of the further calculations, we put
C

(1)
m,s,α = imdet||S||. In this case, all the coefficients turn out to be

finite, as is evident from their expressions given in Appendix A.
Some general remarks can be made concerning the coefficients

B
(1,2)
m,s,α, C(1,2)

m,s,α, and Cm,s,α. It is seen from the differential equations
for the axial fields that the solutions for the field components in the
inner region ρ < a are even functions of q since they depend on q2. This
is also evident from the expressions for B(1,2)

m,s,α. The field expressions
for the outer region ρ > a comprise the Hankel functions H(1,2)

m (k0qρ)
having a branch point q = 0, from which a branch cut goes along the
negative real q axis. Therefore, it is necessary to distinguish the field
quantities corresponding to the q values belonging to different sides of
the branch cut. Using the relations

Jm

(
e∓iπζ

)
= (−1)mJm(ζ), H(1)

m

(
eiπζ

)
= −e−imπH(2)

m (ζ), (61)

which are valid for cylindrical functions [32], and the fact that pα(q),
qα(q), and n

(1,2)
s,α (q) are even functions of q, we get

C
(1)
m,s,α

(
e−iπq

)
= (−1)m+1C

(2)
m,s,α(q),

C
(2)
m,s,α

(
eiπq

)
= (−1)m+1C

(1)
m,s,α(q),

∆Cm,s,α

(
e∓iπq

)
= (−1)m+1∆Cm,s,α(q),

(62)

where

∆Cm,s,α(q) = C(2)
m,s,α(q) − C(1)

m,s,α(q).

Bearing this in mind, we make the rearrangements

C(1)
m,s,α

(
e−iπq

)
H(1)

m

(
k0e

−iπqρ
)

+ C(2)
m,s,α

(
e−iπq

)
H(2)

m

(
k0e

−iπqρ
)

= 2C(1)
m,s,α

(
e−iπq

)
Jm

(
k0e

−iπqρ
)
+∆Cm,s,α

(
e−iπq

)
H(2)

m

(
k0e

−iπqρ
)

(63)
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and

C(1)
m,s,α

(
eiπq

)
H(1)

m

(
k0e

iπqρ
)

+ C(2)
m,s,α

(
eiπq

)
H(2)

m

(
k0e

iπqρ
)

= −∆Cm,s,α

(
eiπq

)
H(1)

m

(
k0e

iπqρ
)
+2C(2)

m,s,α

(
eiπq

)
Jm

(
k0e

iπqρ
)

(64)

in the expressions for Ez; m,s,α(ρ, q) and Hz; m,s,α(ρ, q) in the region ρ >
a. Using the relationship Cm,s,α(e∓iπq) = Cm,s,α(q) and formulas (61)–
(64), we can deduce that in the outer region,

Ez; m,s,α

(
ρ, e∓iπq

)
= Ez; m,s,α(ρ, q),

Hz; m,s,α

(
ρ, e∓iπq

)
= Hz; m,s,α(ρ, q).

(65)

Taking into account the expressions for the transverse components via
the axial components, we find that the transverse components obey
relationships that are similar to (65). We thus have

Em,s,α

(
ρ, e∓iπq

)
= Em,s,α(ρ, q),

Hm,s,α

(
ρ, e∓iπq

)
= Hm,s,α(ρ, q)

(66)

for all values of ρ.
The foregoing analysis has been performed for a uniform cylin-

drical column immersed in a homogeneous background medium. In
the case where the medium parameters inside the column depend on
ρ, the field solutions in the region ρ < a cannot be expressed in
terms of known functions, and Equations (9) and (10) should be solved
numerically for assumed radial profiles of the medium parameters. Two
independent solutions, Ẽ(1)

z; m,s,α(ρ, q), H̃(1)
z; m,s,α(ρ, q) and Ẽ

(2)
z; m,s,α(ρ, q),

H̃
(2)
z; m,s,α(ρ, q), that are regular at ρ = 0 can be found, and they should

be used instead of the Bessel functions for the field inside the radially
nonuniform column. This yields

Ez; m,s,α(ρ, q) =
2∑

k=1

B(k)
m,s,α(q)Ẽ(k)

z; m,s,α(ρ, q),

Hz; m,s,α(ρ, q) =
2∑

k=1

B(k)
m,s,α(q)H̃(k)

z; m,s,α(ρ, q).

(67)

Note that the particular solutions denoted by the superscripts k = 1
and k = 2 in (67) are distinguished by their behavior near the axis
ρ = 0, in the vicinity of which they are described by Bessel functions
with the arguments k0q̃

(1)
α (0)ρ and k0q̃

(2)
α (0)ρ, respectively, where the

local transverse wave numbers q̃
(1)
α (0) and q̃

(2)
α (0) correspond to the
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parameters of the medium at ρ = 0. The solutions for the field outside
the column remain intact. Next, satisfying the boundary conditions
at ρ = a, we again arrive at a matrix equation in the form (60).
Taking into account the above-discussed properties of Equations (9)
and (10) and repeating the foregoing analysis for solutions in the inner
and outer regions, we can show that the resulting field will satisfy
the relationships (66) in the case of a nonuniform column, as well.
Therefore, allowance for radial nonuniformity of a cylindrical column
surrounded by a homogeneous background medium does not require
any significant modifications of the present procedure, and only a
consistent use of new field quantities for the region ρ < a is needed.

The obtained field representation allows us to find the spectrum
of eigenvalues q and the corresponding eigenfunctions of the guiding
structure. First, it is easy to verify that the field represented by (44),
(45), and (47)–(50) for ρ > a satisfies the boundedness conditions (43)
for all real transverse wave numbers q. Next, it follows from (66)
that the negative values of q do not yield new solutions and can be
excluded from the analysis. Thus, all positive values of q constitute
the continuous eigenvalue spectrum.

Along with the continuous spectrum of q, conditions (43) can also
be ensured for certain discrete complex values q = qm,n (n = 1, 2, . . . )
which satisfy the equations

C(1)
m,s,α(qm,n) = 0 for Im qm,n < 0 (68)

and

C(2)
m,s,α(qm,n) = 0 for Im qm,n > 0. (69)

With allowance for (62) and (66), it can easily be verified that
the roots of Equation (69) do not give new solutions for the field
compared with those yielded by the solutions of Equation (68) and
can therefore be rejected. Since the quantities q̂m,n = qα(qm,n) also
satisfy Equation (68), we should unambiguously distinguish between
qm,n and q̂m,n, to choose only one set of the discrete values satisfying
Equation (68). To this end, we assume that the discrete part of
the spectrum of eigenvalues q is constituted only by the roots of
Equation (68) for which the inequality |Im qm,n| < |Im qα(qm,n)| takes
place. The subscript α for which this inequality holds will further be
denoted by α̂. It is evident that the waves corresponding to the discrete
values qm,n are localized eigenmodes (discrete-spectrum modes) of the
considered guiding structure. The fields of these modes decay to zero
for ρ → ∞ and will further be written in the form[

Em,ns(r)
Hm,ns(r)

]
=

[
Em,ns(ρ)
Hm,ns(ρ)

]
exp(−imφ− ik0pm,nsz), (70)
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where the vector functions Em,ns(ρ) = Em,s,α̂(ρ, qm,n) and Hm,ns(ρ) =
Hm,s,α̂(ρ, qm,n) describe the field distribution of an eigenmode with
indices m and ns, and pm,ns = ps,α̂(qm,n) is the axial wave number
of this mode. It is assumed here that the indices n+ = n > 0 and
n− = −n < 0 correspond to discrete-spectrum modes propagating in
the positive and negative directions of the z axis, respectively.

Thus, we have established that a complete set of normal modes
of the considered open structure comprises the discrete spectrum of
guided eigenmodes and the continuous spectrum of unguided modes.
It is important that the developed formulation enables us to use only
one transverse wave number q in the outer medium as an eigenvalue
determining a particular mode for fixed m, s, and α. This is ensured
by using the concept of the auxiliary transverse wave number qα(q)
which represents the other transverse wave number of the mode in the
outer region as a function of q.

4.3. Mode Orthogonality and Expansion Coefficients

The discrete- and continuous-spectrum modes that were determined in
the foregoing section satisfy the following orthogonality relations:

Jm,n
m̃,ñ =

∫ 2π

0

∫ ∞

0

[
Em,n(r) × H

(T)
m̃,ñ(r) − E

(T)
m̃,ñ(r) × Hm,n(r)

]
·ẑ0 ρ dρ dφ = Nm,nδm,−m̃ δn,−ñ, (71)

Jm,s,α
m̃,ñ =

∫ 2π

0

∫ ∞

0

[
Em,s,α(r, q) × H

(T)
m̃,ñ(r) − E

(T)
m̃,ñ(r) × Hm,s,α(r, q)

]
·ẑ0 ρ dρ dφ = 0, (72)

Jm,s,α
m̃,s̃,α̃ =

∫ 2π

0

∫ ∞

0

[
Em,s,α(r, q)×H

(T)
m̃,s̃,α̃(r, q̃)−E

(T)
m̃,s̃,α̃(r, q̃)×Hm,s,α(r, q)

]
·ẑ0 ρ dρ dφ = Nm,s,α(q) δ(q − q̃)δm,−m̃ δs,−s̃δα,α̃, (73)

where ẑ0 is the unit vector aligned with the z axis, δα,β is the Kronecker
delta, δ(q) is the Dirac function, and the superscript (T) denotes
fields taken in an auxiliary (“transposed”) medium described by the
transposed tensors εT and µT. The normalization quantities Nm,n and
Nm,α = Nm,+,α for waves propagating in the positive direction of the
z axis are given by the formulas

Nm,α(q) = − 16π
Z0k2

0

(
dpα(q)
dq

)−1

×
[
µ−1

3 + ε−1
3

(
n(1)

s,α

)2
]
C(1)

m,s,α(q)C(2)
m,s,α(q), (74)
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Nm,n =
1

2πi
dNm,α̂

dq

∣∣∣∣
q=qm,n

. (75)

It is evident that Nm,−n = −Nm,n and Nm,−,α(q) = −Nm,+,α(q).
Orthogonality relations (71)–(73) and formulas (74) and (75) are
derived in Appendix B.

Using the above orthogonality relations, we can calculate the
amplitude coefficients of the discrete- and continuous-spectrum modes
due to given sources. Outside the source region, i.e., for z < z1 and
z > z2, the total field can be expanded in the form

[
E(r)
H(r)

]
=

∞∑
m=−∞

(∑
ns

am,ns

[
Em,ns(r)
Hm,ns(r)

]

+
∑
α

∫ ∞

0
am,s,α(q)

[
Em,s,α(r, q)
Hm,s,α(r, q)

]
dq

)
, (76)

where am,ns and am,s,α are the expansion coefficients of the discrete-
and continuous-spectrum modes, respectively. In (76), one should take
ns = n > 0 and s = + for z > z2, and ns = −n and s = − for z < z1

(see Fig. 1). Then, following the well-known method for determining
the expansion coefficients of waves of closed and open waveguides with
gyrotropic filling (see, e.g., [3, 12, 16, 33]) on the basis of Lorentz’s
theorem in the transposed form [35, 36], we find that the expansion
coefficients in (76) are given by the following expressions:

am,±n =
1

Nm,n

∫ [
Je(r) · E(T)

−m,∓n(r)

− Jm(r) · H(T)
−m,∓n(r)

]
dr, (77)

am,±,α(q) =
1

Nm,α(q)

∫ [
Je(r) · E(T)

−m,∓,α(r, q)

− Jm(r) · H(T)
−m,∓,α(r, q)

]
dr. (78)

Here, integration is performed over the region occupied by currents [3].
We do not dwell on the procedure of deriving expressions (77) and (78)
in detail since it fully coincides with that discussed for open gyroelectric
waveguides in [3, 16]. Following the line of approach of [3], it is also
possible to derive an expression for the total field in the source region
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z1 < z < z2:[
E(r)
H(r)

]
=

∞∑
m=−∞

+∑
s=−

(∑
ns

am,ns(z)
[
Em,ns(r)
Hm,ns(r)

]

+
∑
α

∫ ∞

0
am,s,α(z, q)

[
Em,s,α(r, q)
Hm,s,α(r, q)

]
dq

)

+
i

k0

[
ε−1
3 (ρ)Z0J

e
z

µ−1
3 (ρ)Z−1

0 Jm
z

]
ẑ0, (79)

where ε3(ρ) and µ3(ρ) denote the values of the corresponding elements
of tensors (1) at the considered point of space. In contrast to the
preceding expansion (76), the expansion coefficients in (79) are z-
dependent. They are found to be

am,ns(z) =
1

Nm,n

∫
(
z
(1)
s , z

(2)
s

)
[
Je(r) · E(T)

−m,−ns
(r)

− Jm(r) · H(T)
−m,−ns

(r)
]
dr, (80)

am,s,α(z, q) =
1

Nm,α(q)

∫
(
z
(1)
s , z

(2)
s

)
[
Je(r) · E(T)

−m,−s,α(r, q)

− Jm(r) · H(T)
−m,−s,α(r, q)

]
dr, (81)

where the notation
(
z
(1)
s , z

(2)
s

)
stands to designate the interval of

integration with respect to z:

z(1)
s =

{
z1 for s = +,
z for s = −, z(2)

s =
{
z for s = +,
z2 for s = −. (82)

Now it remains to check that the total field obtained in the above
satisfies the radiation condition at infinity (r = (ρ2 + z2)1/2 → ∞). To
this end, we should note that the contributions of the discrete-spectrum
modes and the terms comprising Hankel functions with the argument
k0qαρ vanish in the outer medium in the limit r → ∞. Assuming
for simplicity that the medium is lossless, we can thus conclude
that the nonzero contributions to the far field come only from the
remaining terms in integrals over the values of q for which the functions
pα(q) are real-valued. Taking the large-argument approximations of
Hankel functions with the argument k0qρ and applying the saddle-
point method for evaluation of the integrals over the corresponding
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q values, we can arrive at the sum of spherical waves in the far-field
representation. The number of such waves at an observation point is
determined by the number of rays coming to it. This implies that the
obtained field indeed satisfies the radiation condition at infinity. We do
not present the corresponding far-field expressions since the procedure
of their derivation is similar to that discussed in [3] for a gyroelectric
outer medium. Furthermore, we leave aside the discussion of the
possible influence of leaky modes, which can be separated from the
integral over the continuous spectrum in some cases, on the radiation
field [3, 23, 25]. This needs separate consideration in itself, and falls
beyond the scope of this paper.

It is important to emphasize that the derived formulas allow one
to immediately obtain the source-excited field without preliminary
calculation of the dyadic Green’s functions. This is the main
implication of the presented approach. Of course, if required, this
approach can be used to derive the components of the dyadic Green’s
functions in the form of eigenfunction expansions. To do this, one
should take expansion (76) and substitute the appropriate point
sources for Je(r) and Jm(r) into (77) and (78).

4.4. Limiting Transition to the Case of a Homogeneous
Medium

It is instructive to consider the transition from the eigenfunction
expansion obtained for a cylindrically nonuniform medium to the
case of a homogeneous medium described by tensors (1). By sol-
ving the above-posed boundary-value problem with the boundedness
conditions (43) at ρ → ∞, it can be found that in the case of
a homogeneous medium, the eigenvalue spectrum consists only of
positive real values of q, and the axial components of the corresponding
continuous-spectrum modes are written as

Ez; m,s,α(ρ, q) = iε−1
3 Em,s,αn

(1)
s,αqJm(k0qρ), (83)

Hz; m,s,α(ρ, q) = −Z−1
0 µ−1

3 Em,s,αqJm(k0qρ), (84)

where Em,s,α is an arbitrary factor independent of ρ. It is evident that
the modes given by (83) and (84) can formally be obtained from the
expressions (44), (45), and (47)–(50) by putting

C(1)
m,s,α = Em,s,α/2, C(2)

m,s,α = Em,s,α/2, Cm,s,α = 0. (85)

Note that a particular form of the coefficient Em,s,α is unimportant
since it cancels in the resulting expansion for the total source-excited
field. Nevertheless, it is convenient to take this coefficient in the
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form Em,s,α = im. With such a choice, the relationships in (B6) will
immediately be ensured, which facilitates the procedure of establishing
mode orthogonality. In the considered case, the continuous-spectrum
modes obey the orthogonality relations (73) in which the normalization
quantity is again given by (74), with allowance for (85). The fields
inside and outside the source region are given by expansions (76)
and (79), respectively, in which one should omit the discrete wave terms
that are absent in the case of an unbounded homogeneous medium.
The expansion coefficients of the remaining continuous-spectrum waves
are given by the previous formulas (78) and (81).

5. THE CASE OF A UNIAXIALLY ANISOTROPIC
OUTER MEDIUM

If τg = 0 but ε2 �= 0 and µ2 �= 0, then the outer medium becomes
a generalized uniaxial one. The case where τg = 0 also includes the
special case of an uniaxially anisotropic medium with ε2 = µ2 = 0.

Consider a cylindrical guiding system located in a generalized
uniaxial outer medium. In such a medium, i.e., for τg = 0, the set of
coupled Equations (9) and (10) splits into two independent equations
for Ez; m,s,α(ρ, q) and Hz; m,s,α(ρ, q):

L̂Ez; m,s,α + k2
0ε3

(
µ2

1 − µ2
2

µ1
− p2

α

ε1

)
Ez; m,s,α = 0, (86)

L̂Hz; m,s,α + k2
0µ3

(
ε2
1 − ε2

2

ε1
− p2

α

µ1

)
Hz; m,s,α = 0. (87)

The functions pα(q) for α = 1 and α = 2 can be written as

p1(q) =
(
ε1
µ2

1 − µ2
2

µ1
− ε1

ε3
q2

)1/2

,

p2(q) =
(
µ1

ε2
1 − ε2

2

ε1
− µ1

µ3
q2

)1/2

.

(88)

The corresponding auxiliary transverse wave numbers qα(q) have the
form

q1(q) =
(
ε1µ3

ε3µ1

)1/2

q, q2(q) =
(
ε3µ1

ε1µ3

)1/2

q. (89)

Recall that conditions (40) and (41) are assumed to hold. For α �= β,
we have

pα(q) = pβ(qα(q)).
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It is important to emphasize that the function pα is taken for the
same value of q in each of Equations (86) and (87) in order that their
solutions yield fields satisfying the boundary conditions at ρ = a. For
α = 1, Equations (86) and (87) reduce to

L̂Ez; m,s,α + (k0q)2Ez; m,s,α = 0, (90)

L̂Hz; m,s,α + (k0qα(q))2Hz; m,s,α = 0. (91)

The solution of these equations is written as

Ez; m,s,α(ρ, q) =
ips,α

ε3

2∑
k=1

C(k)
m,s,α(q)qH(k)

m (k0qρ), (92)

Hz; m,s,α(ρ, q) = − 1
Z0µ3

Cm,s,α(q)qαH
(2)
m (k0qαρ). (93)

For α = 2, from (86) and (87) we have the equations

L̂Ez; m,s,α + (k0qα(q))2Ez; m,s,α = 0, (94)

L̂Hz; m,s,α + (k0q)2Hz; m,s,α = 0, (95)

whose solution is

Ez; m,s,α(ρ, q) =
ips,α

ε3
Cm,s,α(q)qαH

(2)
m (k0qαρ), (96)

Hz; m,s,α(ρ, q) = − 1
Z0µ3

2∑
k=1

C(k)
m,s,α(q)qH(k)

m (k0qρ). (97)

The meanings of the notations used in (90)–(97) are the same as
in Sec. 4. Thus, it is seen that for fixed indices m, s, and α, the
solutions of two field equations again comprise both the transverse
wavenumber q and the auxiliary transverse wave number qα(q).

If the medium of the inner region remains gyrotropic, then we have
two solutions with coefficients B(1)

m,s,α and B
(2)
m,s,α for ρ < a. Satisfying

the boundary conditions at ρ = a, we arrive at four equations for
five coefficients B

(1,2)
m,s,α, C(1,2)

m,s,α, and Cm,s,α in matrix form (60). The
problem has become one coinciding with that considered in Sec. 4. In
the case of a uniaxial medium in the inner region, we again have
a similar problem if modes are nonsymmetric, i.e., m �= 0. This
fact is stipulated by the hybrid nature of nonsymmetric modes in
the considered case. In contrast to this, the axisymmetric (m = 0)
modes of a uniaxially anisotropic open waveguide split into TE and
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TM waves, and the boundary conditions are ensured for them without
terms comprising the auxiliary transverse wave number.

Thus, the approach of Sec. 4 remains applicable when dealing
with a cylindrically stratified uniaxially anisotropic medium. Note
that in such a case, the superscript (T) may be omitted in formulas
representing orthogonality relations and modal expansion coefficients.
In addition, it is worth mentioning that the discrete- and continuous-
spectrum modes in the case discussed in this section can be obtained
by an alternative approach based on the so-called S-operator method
(see for details [19] and references therein).

6. POWER RADIATED

The total power PΣ radiated from given currents Je and Jm can be
calculated by the formula

PΣ = −1
2

Re
∫

[(Je(r))∗ · E(r) + (Jm(r))∗ · H(r)] dr, (98)

where the integration is performed over the source region and the
asterisk denotes complex conjugation. In the absence of losses in a
medium, this power can also be calculated by integrating the Poynting
vector over two infinite cross-sectional areas on both sides of the source
region. For evaluations of integrals in this case, it is convenient to take
into account the fact that in a loss-free medium, the discrete- and
continuous-spectrum modes with real axial wave numbers satisfy the
power orthogonality relations∫ 2π

0

∫ ∞

0

[
Em,n(r) × H∗

m̃,ñ(r) + E∗
m̃,ñ(r) × Hm,n(r)

]
·ẑ0ρ dρ dφ = 4Pm,nδm,m̃δn,ñ, (99)∫ 2π

0

∫ ∞

0

[
Em,s,α(r, q) × H∗

m̃,ñ(r) + E∗
m̃,ñ(r) × Hm,s,α(r, q)

]
·ẑ0ρ dρ dφ = 0, (100)∫ 2π

0

∫ ∞

0

[
Em,s,α(r, q) × H∗

m̃,s̃,α̃(r, q̃)+E∗
m̃,s̃,α̃(r, q̃) × Hm,s,α(r, q)

]
·ẑ0ρ dρ dφ = 4Pm,s,α(q)δ(q − q̃)δm,m̃δs,s̃δα,α̃, (101)

where

Pm,+,α(q) = −Pm,−,α(q)=− 2π
Z0k2

0

(
dpα(q)
dq

)−1[
µ3

−1+ε−1
3

(
n

(1)
+,α

)2
]

×
[∣∣C(1)

m,+,α(q)
∣∣2 +

∣∣C(2)
m,+,α(q)

∣∣2] . (102)
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The derivation of relations (99)–(101) is basically analogous to that
of orthogonality relations (71)–(73) and the mathematical details are
not given here. However, there is an important difference between
relations (71)–(73) and (99)–(101). It consists in that in contrast to
the power orthogonality relations which cease to hold in lossy media,
relations (71)–(73) remain valid regardless of whether the considered
medium is lossy or lossless.

With allowance for (98)–(101), the expression for the total
radiated power takes the following form:

PΣ =
+∞∑

m=−∞

{∑
n

[
|am,n|2 + |am,−n|2

]
Pm,n

+
∑
α

∫ [
|am,+,α(q)|2 + |am,−,α(q)|2

]
Pm,+,α(q) dq

}
, (103)

where the integration is performed over the positive real values of q for
which the axial wave numbers ps,α(q) are purely real. Note that the
term Pm,±n = |am,±n|2 Pm,n is the partial power going to a mode with
indices m and ±n. It is seen from (103) that in a lossless medium,
the total radiated power is given by the sum of the partial powers
going to individual discrete-spectrum modes and the power going to
the continuous-spectrum modes. This fact obviously results from the
power orthogonality which takes place in lossless media.

7. CONCLUSION

In this paper, we presented the complete eigenfunction expansion
of the total electromagnetic field excited by spatially bounded given
sources in a cylindrically stratified gyrotropic medium. The field has
been expanded in terms of modes whose spectrum comprises both the
discrete and continuous parts, and the expansion coefficients of the
discrete- and continuous-spectrum modes have been calculated using
a method based on Lorentz’s theorem in the transposed formulation.
Our analysis extends the theory of excitation of open waveguides in a
gyroelectric medium to the case of open guiding structures located in
a generalized gyrotropic medium whose permittivity and permeability
are both described by off-diagonal tensors. Although the problem
of excitation of guiding structures in such a medium, also called
bigyrotropic, can be solved using the dyadic Green’s functions, the
approach developed herein makes it possible to immediately obtain
the source-excited field without preliminary calculation of the dyadic
Green’s functions, which significantly facilitates evaluation of the field.
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Finally, we note that this study is a necessary step towards
considering special cases of wave excitation in natural or artificial
gyrotropic media containing cylindrical nonuniformities, which can be
of interest from academic or applied viewpoints.
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APPENDIX A. EXPRESSIONS FOR THE FIELD
COEFFICIENTS

The elements of the matrix S and the column vectors F and G in (60)
are written as follows:

S1k = µ̃−1
3 Q̃(k)

α Jm

(
Q̃(k)

α

)
,

S13 = −µ−1
3 QH(2)

m (Q), S14 = −µ−1
3 QαH

(2)
m (Qα),

S2k = ε̃−1
3 ñ(k)

s,αQ̃
(k)
α Jm

(
Q̃(k)

α

)
,

S23 = −ε−1
3 n(1)

s,αQH
(2)
m (Q), S24 = −ε−1

3 n(2)
s,αQαH

(2)
m (Qα),

S3k = Q̃(k)
α Jm

(
Q̃(k)

α

)
J (k)

m ,

S33 = −QH(2)
m (Q)H(2)

m , S34 = −QαH
(2)
m (Qα)Hm,

S4k = ñ(k)
s,αQ̃

(k)
α Jm

(
Q̃(k)

α

)
Ĵ (k)

m ,

S43 = −n(1)
s,αQH

(2)
m (Q)Ĥ(2)

m , S44 = −n(2)
s,αQαH

(2)
m (Qα)Ĥm; (A1)

F1 = µ−1
3 QH(1)

m (Q), F2 = ε−1
3 n(1)

s,αQH
(1)
m (Q),

F3 = QH(1)
m (Q)H(1)

m , F4 = n(1)
s,αQH

(1)
m (Q)Ĥ(1)

m ; (A2)

Gk = B(k)
m,s,α, G3 = C(2)

m,s,α, G4 = Cm,s,α, (A3)
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where

Q̃(k)
α = k0q̃

(k)
α a, Q = k0qa,

Qα = k0qαa, k = 1, 2,

J (k)
m = b̃

(k)
α,+

Jm+1

(
Q̃

(k)
α

)
Q̃

(k)
α Jm

(
Q̃

(k)
α

) + b̃
(k)
α,−

Jm−1

(
Q̃

(k)
α

)
Q̃

(k)
α Jm

(
Q̃

(k)
α

) ,

Ĵ (k)
m = g̃

(k)
α,+

Jm+1

(
Q̃

(k)
α

)
Q̃

(k)
α Jm

(
Q̃

(k)
α

) − g̃
(k)
α,−

Jm−1

(
Q̃

(k)
α

)
Q̃

(k)
α Jm

(
Q̃

(k)
α

) ,

H(k)
m = b

(1)
α,+

H
(k)
m+1(Q)

QH
(k)
m (Q)

+ b
(1)
α,−

H
(k)
m−1(Q)

QH
(k)
m (Q)

,

Ĥ(k)
m = g

(1)
α,+

H
(k)
m+1(Q)

QH
(k)
m (Q)

− g
(1)
α,−

H
(k)
m−1(Q)

QH
(k)
m (Q)

,

Hm = b
(2)
α,+

H
(2)
m+1(Qα)

QαH
(2)
m (Qα)

+ b
(2)
α,−

H
(2)
m−1(Qα)

QαH
(2)
m (Qα)

,

Ĥm = g
(2)
α,+

H
(2)
m+1(Qα)

QαH
(2)
m (Qα)

− g
(2)
α,−

H
(2)
m−1(Qα)

QαH
(2)
m (Qα)

. (A4)

The coefficients B(1,2)
m,s,α, C(1,2)

m,s,α, and Cm,s,α are given by the expressions

B(1,2)
m,s,α = ∆m,αχ

(1,2) 8
iπ

[
n

(1)
s,α − n

(2)
s,α

ε3µ3

(
n(1)

s,αJ
(2,1)
m − ñ(2,1)

s,α Ĵ (2,1)
m

)

+

(
ñ

(2,1)
s,α

ε̃3µ3
− n

(1)
s,α

ε3µ̃3

)(
n(1)

s,αHm − n(2)
s,αĤm

)

−2mn(1)
s,α

b
(1)
α,−+g

(1)
α,−

Q2

(
ñ

(2,1)
s,α

ε̃3µ3
− n

(2)
s,α

ε3µ̃3

)](
Q̃(1,2)

α Jm

(
Q̃(1,2)

α

))−1
,

(A5)

C(1,2)
m,s,α = ∆m,αχ

(1,2)QH(2,1)
m (Q)

×
[
ñ

(2)
s,α − ñ

(1)
s,α

ε̃3µ̃3

(
n(2)

s,αH(2,1)
m Ĥm − n(1)

s,αĤ(2,1)
m Hm

)

+
n

(2)
s,α − n

(1)
s,α

ε3µ3

(
ñ(2)

s,αĴ
(2)
m J (1)

m − ñ(1)
s,αĴ

(1)
m J (2)

m

)
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+

(
ñ

(2)
s,α

ε̃3µ3
− n

(2)
s,α

ε3µ̃3

)(
n(1)

s,αJ
(1)
m Ĥ(2,1)

m − ñ(1)
s,αĴ

(1)
m H(2,1)

m

)

+

(
ñ

(1)
s,α

ε̃3µ3
− n

(1)
s,α

ε3µ̃3

)(
n(2)

s,αJ
(2)
m Ĥm − ñ(2)

s,αĴ
(2)
m Hm

)

+

(
n

(2)
s,α

ε3µ̃3
− ñ

(1)
s,α

ε̃3µ3

)(
n(1)

s,αJ
(2)
m Ĥ(2,1)

m − ñ(2)
s,αĴ

(2)
m H(2,1)

m

)

+

(
n

(1)
s,α

ε3µ̃3
− ñ

(2)
s,α

ε̃3µ3

)(
n(2)

s,αJ
(1)
m Ĥm − ñ(1)

s,αĴ
(1)
m Hm

)]
, (A6)

Cm,s,α = ∆m,α
8
iπ

[(
ñ

(2)
s,α

ε̃3µ3
− n

(1)
s,α

ε3µ̃3

)(
n(1)

s,αJ
(1)
m − ñ(1)

s,αĴ
(1)
m

)

+

(
n

(1)
s,α

ε3µ̃3
− ñ

(1)
s,α

ε̃3µ3

)(
n(1)

s,αJ
(2)
m − ñ(2)

s,αĴ
(2)
m

)
− 2mn(1)

s,α

×
b
(1)
α,− + g

(1)
α,−

Q2

ñ
(2)
s,α − ñ

(1)
s,α

ε̃3µ̃3

] (
QαH

(2)
m (Qα)

)−1
, (A7)

where

χ(1) = −χ(2) = 1,

∆m,α = imQ̃(1)
α Jm

(
Q̃(1)

α

)
Q̃(2)

α Jm

(
Q̃(2)

α

)
QαH

(2)
m (Qα) . (A8)

The coefficients B(1,2)
m,s,α, C(1,2)

m,s,α, and Cm,s,α satisfy the relationships

(
B

(1,2)
−m,−s,α

)(T)
= (−1)mB

(1,2)
m,s,α,(

C
(1,2)
−m,−s,α

)(T)
= (−1)mC

(1,2)
m,s,α,

(C−m,−s,α)(T) = (−1)mCm,s,α,

(A9)

which are useful for deriving the orthogonality relations (71)–(73).
Note that the common factor ∆m,α, which is invariant with respect to
the replacements m → −m, s → −s, and τg → −τg, can be canceled
out in formulas (A5)–(A7) without any violation of the relationships
in (A9).
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APPENDIX B. DERIVATION OF THE
ORTHOGONALITY RELATIONS FOR MODES

To prove the orthogonality relations (71)–(73) and formulas (74)
and (75), we consider two fields, EI,HI and E

(T)
II ,H

(T)
II , that have

the same frequencies and are taken in different media described by the
tensors ε,µ and εT,µT, respectively. It is a straightforward matter to
deduce from the Maxwell equations that

∇ ·
(
EI × H

(T)
II − E

(T)
II × HI

)
= 0. (B1)

Applying the divergence theorem in a two-dimensional form, we get

∂

∂z

∫
Σ

(
EI × H

(T)
II − E

(T)
II × HI

)
· ẑ0 ρ dρ dφ

= −
∮

L

(
EI × H

(T)
II − E

(T)
II × HI

)
· n̂ d4, (B2)

where Σ is an arbitrary cross-sectional area of the open guiding
structure, the line integral is along the boundary L of Σ, and n̂ is
the unit outward normal on L in the plane of Σ.

To obtain the relation (71), we put EI = Em,n(r), HI = Hm,n(r)
and E

(T)
II = E

(T)
m̃,ñ(r), H

(T)
II = H

(T)
m̃,ñ(r), where[

Em,n(r)
Hm,n(r)

]
=

[
Em,n(ρ)
Hm,n(ρ)

]
exp(−imφ− ik0 pm,n z)

and [
E

(T)
m̃,ñ(r)

H
(T)
m̃,ñ(r)

]
=

[
E

(T)
m̃,ñ(ρ)

H
(T)
m̃,ñ(ρ)

]
exp

(
−im̃φ− ik0 p

(T)
m̃,ñz

)
,

and perform integration in (B2) over a cross-sectional circular area Σ
of infinite radius. After some algebra, we get

Jm,n
m̃,ñ =

∫ 2π

0
exp [−i (m+ m̃)φ] dφ

× lim
ρ→∞

exp[−ik0 (pm,n − p−m̃,−ñ) z]
ik0 (pm,n − p−m̃,−ñ)

×ρ
[
Em,n(ρ) × H

(T)
m̃,ñ(ρ) − E

(T)
m̃,ñ(ρ) × Hm,n(ρ)

]
· ρ̂0. (B3)
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Here, we made use of the relationship

p
(T)
m̃,ñ = p−m̃,ñ = −p−m̃,−ñ

deduced from the dispersion relation (68) for the discrete-spectrum
modes, and ρ̂0 is the radial unit vector lying in the cross-sectional
plane z = const. Noting that∫ 2π

0
exp[−i (m+ m̃)φ]dφ = 2π δm,−m̃ (B4)

and observing that the fields of the discrete-spectrum modes vanish
with ρ, one sees that the right-hand side of (B3) is equal to zero if
pm,n �= p−m̃,−ñ. In the absence of mode degeneration this implies that
Jm,n

m̃,ñ = 0 for m �= −m̃ and n �= −ñ. In addition, it is easily verified that
Nm,−n = −Nm,n. We have thus derived the orthogonality relation (71)
for the discrete-spectrum modes. For degenerate modes, an additional
orthogonalization procedure can always be performed to arrive at the
desired orthogonality relation.

Relation (72) can be established analogously if we put[
EI(r)
HI(r)

]
=

[
Em,s,α(ρ, q)
Hm,s,α(ρ, q)

]
exp[−imφ− ik0 ps,α(q) z]

and take the same field E
(T)
II , H

(T)
II as in the preceding derivation.

Following the above procedure and making use of the fact that
ps,α(q) �= p−m̃,−ñ for all real values of q, one can readily obtain
relation (72). Hence, each discrete-spectrum mode is orthogonal to
each continuous-spectrum mode, and, therefore, to the total outward
radiating field.

Next, to derive relation (73), we take the last form for EI and HI,
put [

E
(T)
II (r)

H
(T)
II (r)

]
=

[
E

(T)
m̃,s̃,α̃(ρ, q̃)

H
(T)
m̃,s̃,α̃(ρ, q̃)

]
exp[−im̃φ− ik0 ps̃,α̃(q̃) z]

and then apply the same procedure. We thus find

Jm,s,α
m̃,s̃,α̃ =

∫ 2π

0
exp[−i (m+m̃)φ]dφ lim

ρ→∞
exp{−ik0[ps,α(q)−p−s̃,α̃(q̃)]z}

ik0[ps,α(q)−p−s̃,α̃(q̃)]

×ρ
[
Em,s,α(ρ, q)×H

(T)
m̃,s̃,α̃(ρ, q̃)−E

(T)
m̃,s̃,α̃(ρ, q̃)×Hm,s,α(ρ, q)

]
·ρ̂0.

(B5)
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At first, consider the case where the conditions m = −m̃, s = −s̃, and
α = α̃ are simultaneously satisfied. By inspection of Equations (4)–
(12), it is found that the following conventions can be adopted without
any loss of generality:

E
(T)
φ;−m,−s,α(ρ, q) = Eφ; m,s,α(ρ, q), E

(T)
z;−m,−s,α(ρ, q) = Ez; m,s,α(ρ, q),

H
(T)
φ;−m,−s,α(ρ, q) = Hφ; m,s,α(ρ, q), H

(T)
z;−m,−s,α(ρ, q) = Hz; m,s,α(ρ, q).

(B6)

Note that these relationships are ensured under conditions (A9). Using
the relationships in (B6) along with the large-argument approximations
of the Hankel functions H(1,2)

m (k0qρ) and H
(2)
m (k0qα ρ), we obtain the

following representation:

Jm,s,α
−m,−s,α

= lim
ρ→∞

4(q̃−q) exp{−ik0[ps,α(q)−ps,α(q̃)]z}
Z0k2

0(q q̃)
1/2 [ps,α(q) − ps,α(q̃)]

[
µ−1

3 +ε−1
3 n(1)

s,α(q)n(1)
s,α(q̃)

]

×
{

(q+q̃)
[
C(1)

m,s,α(q)C(2)
m,s,α(q̃)+C(1)

m,s,α(q̃)C(2)
m,s,α(q)

] sin[k0ρ(q − q̃)]
q − q̃

− i(q + q̃)
[
C(1)

m,s,α(q)C(2)
m,s,α(q̃)−C(1)

m,s,α(q̃)C(2)
m,s,α(q)

]cos[k0ρ (q − q̃)]
q − q̃

+ i(−1)m
[
C(1)

m,s,α(q)C(1)
m,s,α(q̃)−C(2)

m,s,α(q)C(2)
m,s,α(q̃)

]
sin[k0ρ (q + q̃)]

+ (−1)m
[
C(1)

m,s,α(q)C
(1)
m,s,α(q̃)+C(2)

m,s,α(q)C(2)
m,s,α(q̃)

]
cos[k0ρ(q+q̃)]

}
.

(B7)

In the above, use was made of the fact that the functions H(2)
n (k0qαρ)

vanish with ρ because of condition (41). Passing to the limit ρ → ∞
in (B7) in accordance with the theory of distributions and using the
well-known relation

δ(ξ) = lim
R→∞

sinRξ
πξ

,

we obtain from (B7) the orthogonality relation (73) for the continuous-
spectrum modes, with Nm,s,α(q) given by (74). In other possible cases
where either s �= −s̃ or α �= α̃ (here, ps,α(q) �= p−s̃,α̃(q̃) for all real
values of q and q̃), or m �= −m̃, we have the trivial result for Jm,s,α

m̃,s̃,α̃ ,
as expressed by (73).

We note that the continuous-spectrum modes possessing the same
eigenvalues q and indices s and α, but different azimuthal indices are
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degenerate since they have the same axial wave number p = ps,α(q).
Nevertheless, any two such modes are orthogonal due to the “angular”
orthogonality expressed by (B4).

It now remains to establish relation (75) for Nm,n. The normali-
zation quantity Nm,n can be represented as

Nm,n = 2π lim
R→∞

lim
q→qm,n

∫ R

0

[
Em,n(r) × H

(T)
−m,−,α̂(r, q)

−E
(T)
−m,−,α̂(r, q) × Hm,n(r)

]
· ẑ0 ρ dρ. (B8)

Following steps similar to those that led to (B3), and making use of
the fact that pm,n = pα̂(qm,n), we rewrite (B8) in the form

Nm,n = 2π lim
R→∞

lim
q→qm,n

exp{−ik0 [pα̂(qm,n) − pα̂(q)] z}
ik0 [pα̂(qm,n) − pα̂(q)]

×ρ
[
Em,n(ρ) × H

(T)
−m,−,α̂(ρ, q)

−E
(T)
−m,−,α̂(ρ, q) × Hm,n(ρ)

]
· ρ̂0

∣∣∣∣
ρ=R

. (B9)

Performing the operations indicated here and taking into account
the relationships in (B6) and the chain of inequalities Im qα̂(qm,n) <
Im qm,n < 0, we find

Nm,n =
8i

Z0k2
0

(
dpα̂

dq

)−1 [
µ−1

3 + ε−1
3

(
n

(1)
s,α̂

)2
]
dC

(1)
m,s,α̂

dq
C

(2)
m,s,α̂

∣∣∣∣
q=qm,n

.

(B10)

Using (68) and (74), we come from (B10) to the resulting expres-
sion (75) for Nm,n.

Finally, we note that the above-derived orthogonality relations
can be generalized to be valid for transversely unbounded modes, as
well. To do this, one should use a method similar to that employed in
[19, 37–39] for open waveguides located in a nongyrotropic medium.
The generalized orthogonality relations turn out to be useful when
analyzing leaky modes.
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