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Abstract—In this paper, frequency selective surfaces (FSSs) are
analyzed and designed. The analytical procedure is based on method of
moments (MoM). The generalized minimal residual recursive method
combined with fast Fourier transform (GMRESR-FFT) is utilized to
accelerate the solution of the matrix equation. Our numerical results
show that the GMRESR-FFT method can converge at least 3 times
faster than the generalized minimal residual fast Fourier transform
method (GMRES-FFT). In this paper, the cross dipoles are first used
to design the FSS filter with a passband at 300 GHz and a stopband
at 450 GHz, and then the Jerusalem cross slots are utilized to avoid
grating lobes and improve the bandwidth of FSS. Numerical results
demonstrate the validity and efficiency of the presented method.

1. INTRODUCTION

The frequency selective surfaces (FSSs) often consist of an array
of periodic metallic patches or a conducting sheet periodically with
apertures [1]. FSSs have been intensively studied since the mid 1960s.
Over the years, FSSs have been widely used, including filters, laser
cavity output couplers, polarization diplexers, spectral diplexers, and
so on [2–9]. Nowadays, the fabrication of FSSs is not a problem, but
the analysis and design become more and more important.

In this paper, the FSS analysis method involves solving an electric
field integral equation (EFIE) for the current distribution on the FSS
and employs rooftop subdomain basis and testing functions with the
framework of the Galerkin testing procedure [10]. The GMRESR-FFT
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method is used to accelerate the solution of the impedance matrix
equation [11–13]. This method involves an outer generalized conjugate
residual method (GCR) [14] and an inner generalized minimal residual
method (GMRES) [15, 16], where the inner GMRES acts as a variable
preconditioner [13, 17–20] for the outer GCR. A typical FSS structure
is analyzed and the good results demonstrate the validity and efficiency
of the proposed algorithm. Our numerical results show that the
GMRESR-FFT method can converge at least 3 times faster than the
generalized minimal residual-fast Fourier transform (GMRES-FFT)
method.

The cross dipoles slots are first used to design the FSS filter,
but the stopband frequency does not coincide with the first zero of
the transmission coefficient. Therefore, in this paper, Jerusalem cross
slots are proposed to overcome this difficulty. With the decrease of
the periodicity size, the grating lobes vanish. From the results, the
filter exhibits much better performance than the one based on cross
dipole slots, with a (−3 dB) passband width of 30 GHz and a (−20 dB)
stopband width of 54 GHz.

2. ANALYSIS OF THE FSS

Figure 1 shows the geometry of a free-standing FSS model. a and b are
periodicity of the unit cell in the x- and y-directions, respectively. ki

0
is the incident wave number; θ, φ are the angles of the incident plane
wave. The scattered field Es from a conducting patch on the x-y plane
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Figure 1. Freestanding FSS with conducting patches.
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can be calculated as follows,

Es = −jωµ0A +
1

jωε0
∇(∇ · A) (1)

where

A(r) =
∫

G
(
r, r′

)
J

(
r′

)
dr′ (2)

Here, G is the Green’s function in the free space and J is the unknown
current. On the conducting patch, the tangential electric filed, denoted
by a subscript t, vanishes.

Einc
t + Es

t = 0 (3)

Here, the superscripts s and inc correspond to the scattered and
incident fields, respectively. Subsequently, Equation (1) becomes

Einc
t = jωµ0At(r) −

1
jωε0

[∇(∇ · A(r))]t (4)

For periodic structure, the Floquet’s periodicity condition is
enforced, and we can obtain the following equation,

−
[
Einc

x (x, y)
Einc

y (x, y)

]
=

∑
m

∑
n

[
G̃xx G̃xy

G̃yx G̃yy

] [
J̃x(αm, βn)
J̃y(αm, βn)

]
ej(αmx+βny) (5)

where Einc
x (x, y) and Einc

y (x, y) represent the x, y components of the
incident fields; G̃ are the spectral counterparts of G; and α and β are
the spectral variables corresponding to the spatial ones (x, y). The
explicit expressions for αm and βn are as follows,

αm =
2πm
a

+ k0 sin θ cosφ

βn =
2πn
b

+ k0 sin θ sinφ

(6)

If an FSS is embedded in or printed on the multilayered media, Green’s
functions in the free space shown in (5) should be displaced with that
in multilayered media shown in [10]. The unknown currents J̃x and
J̃y are solved by using the Galerkin’s procedure with the rooftop basis
functions for the current discretization.

The final equations can be written as follows,[
Zxx Zxy

Zyx Zyy

] [
Ix

Iy

]
=

[
Vx0

Vy0

]
(7)
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The impedance matrix Z is obviously a dense and symmetric complex
matrix. When direct-solution methods such as LU decomposition
are used, the computational complexity is O(N3). As the problem
size increases, the computational expense of these operations becomes
prohibitive. This has led to the development of various iterative
algorithms with the FFT technique for solving the surface current with
computational complexity of O(N logN), where N denotes the number
of unknowns. Here the details are omitted (see [11, 19–27]). After the
unknown currents are obtained, the transmission coefficient can be
calculated from the unknown currents.

During the iterative process, it is desirable to precondition the
coefficient matrix such that the modified system is well conditioned and
can converge in significantly fewer iterations than the original system.
Next, we will introduce the GMRESR-FFT algorithm.

3. GMRESR ALGORITHM

Consider the iterative solution of large linear systems of the form:

Ax = b (8)

To accelerate the convergence rate of iterative methods, precondition-
ing techniques are usually employed [17, 21, 22, 27–33]. One widely
used preconditioner is the incomplete LU (ILU) decomposition of the
coefficient matrix and its block variants [21, 28]. However, to form
these preconditioner, additional computing time is required, depend-
ing on the preconditioning algorithm. The approximate inverse of the
block banded coefficient matrix [22] is introduced as a preconditioner
to low complexity of the preconditioners. By means of the LU de-
composition of the band diagonal matrix, the computing time required
to set up this preconditioner is O(N). However, it is found that the
banded diagonal matrix preconditioning technique is very efficient only
when the discretization is taken along one dimension and the effective-
ness will diminish if the discretization is made in two directions. The
multigrid preconditioned CG method was used to analyze the scat-
tering of electromagnetic wave but the improvement is limited since
the problem is of time-harmonic [32, 33]. Like diagonal or block di-
agonal matrix preconditioner, the symmetric successive overrelaxation
(SSOR) preconditioner can also directly be derived from the coefficient
matrix without additional cost and can lead to convergence improve-
ment for sparse linear systems [17, 29–31]. But FFT technique cannot
be applied into Krylov subspace algorithms if SSOR preconditioner
is used. Furthermore, one of the significant advances in direct meth-
ods for sparse matrix solution is the development of the multifrontal
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method [27]. The method organizes the numerical factorization into
a number of steps and each involves the formation of a dense smaller
frontal matrix followed by its partial factorization.

The basic principle of preconditioning is to use iterative methods
for solving a modified system such as

AM−1(Mx) = b (9)

where M denotes the preconditioning matrix. Clearly, the matrix
AM−1 need not to be formed explicitly. We need only to solve
M−1v whenever such an operation is required for any vector v. A
fundamental requirement is that it should be easy to compute. In some
cases, solving a linear system with the matrix M consists of forming an
approximate solution by performing one or a few steps of a relaxation
type method. It is natural to consider preconditioners that do not
use only a single step of an iterative method but as many as needed to
solve a linear system within a given tolerance. For the GCR algorithm,
this can be achieved with the help of rather simple modification of the
standard algorithm, which is referred as GMRESR [12]. The GMRESR
algorithm consists of GCR as the outer algorithm and GMRES as inner
algorithm to get an approximation to M−1v.

The GMRESR algorithm is given bellow and the details are
described in [12, 13].

1. Select x0, m, tol
2. r0 = b − x0, k = −1
3. While ‖rk+1‖2 > tol do
4. k = k + 1
5. Solve Au0

k = rk approximately by m steps of GMRES
6. c0

k = Au0
k

7. For i = max(0, k − j), . . . , k − 1 do

8. αi = cT
i c(i)

k ; c(i+1)
k = c(i)

k − αici; u(i+1)
k = u(i)

k − αiui

9. End do
10. ck = c(k)

k /‖c(k)
k ‖2; uk = u(k)

k /‖u(k)
k ‖2

11. xk+1 = xk + ukcT
k rk; rk+1 = rk + ckcT

k rk

In the GMRESR algorithm, the preconditioner is performed by
approximately solving the residual equation Au0

k = rk using m steps
of GMRES iterations. Any other iterative methods, which give an
approximate solution to this equation, can also be used to find good
choices for u0

k. We may also vary such methods from one step to
the next and this leads to the so-called variable preconditioning. Let
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u0
k = rk, then no preconditioning is performed and the exact GCR

method is obtained. Hence, it is obvious that any vectors can be
used for u0

k and the algorithm still works. In general, the better the
choice of u0

k the faster the convergence can be obtained. The optimal
choice, of course, is u0

k = A−1rk. Therefore, the key point is to choose
a suitable approximation to A−1rk. In the above implementation,
as can be seen from line 5 of the algorithm, m steps of GMRES
iteration are added (applied) to get a better approximation to A−1rk.
Meanwhile, a truncation strategy in line 7 is introduced to restrict
memory requirements, where we only update from the last j outer
iterations. As can be seen from the algorithm, there is no additional
cost in memory for GMRESR when compared to the standard GCR
method, while the advantage of variable preconditioning is obtained
and it can be quite helpful, especially in the context of developing
robust iterative methods or for developing robust preconditioners.
Increasing the number of inner iterations m, better approximation
of u0

k to A−1rk will be arrived. Hence, it is possible to gradually
and monotonously improve the quality of the method by increasing
m. However, the computational complexity for inner GMRES is also
increased. Therefore, by tuning m, it is possible to achieve a balance
between the computational cost and the efficiency of the algorithm.

4. DESIGN METHODS

In this paper, an FSS filter will be designed with a passband at
300 GHz and a stopband at 450 GHz when the incident E-field has
TE-z polarization and incident angel θ = 20◦, and ϕ = 90◦. The filters
consist of two-dimensional aperture arrays printed on silicon substrates

L
d

e

WW

Figure 2. Unit cell of the FSS: (a) FSS with cross dipole slots and
(b) FSS with Jerusalem cross slots. In all analyses, the incident E-field
has TE-z polarization and incident angle θ = 20◦, ϕ = 90◦.



Progress In Electromagnetics Research B, Vol. 12, 2009 69

FSS unit cell

Thickness

Figure 3. Side view of the FSS.

wafer [4] with a relative dielectric constant of 11.8 as shown in Figure 2
(side view in Figure 3). The primary parameters of the FSS have to
be set:
• The thickness h of the substrate

According to Fabry-Perot resonance condition [4], the substrate
thickness h is defined in (10)

h = k · c

2fpass
√
εr

· cos
[
arcsin

(
1√
εr

sin θ

)]
(10)

where fpaa = 300 GHz, k = 2 and c is the speed of light in vacuum.
Therefore, the required thickness is h ≈ 289.7 µm for easy fabrication,
the thickness of wafers can be set at h ≈ 302 µm.
• The length L of the cross dipole slots

For easy fabrication, the thickness of wafers can be set as W � L;
the length L of the slots should be half wavelength in the substrate.

L =
λ

2
=

c

2fpass
√
εa

εa =
1 + εr

2

(11)

where εa is the effective dielectric permittivity, approximately. For
a resonance at fpass = 300 GHz, the slots length is L = 0.197 µm.
Moreover, the initial value of slot width is set to W = 0.03 mm. It
should be mentioned that the slight difference of W can results in
slight difference of resonance frequency.
• The size of the unit cell (Tx = Ty)

The size of the unit cell Tx can be used to define the stopband
frequency of the filter. According to [4], the required size of the unit
cell is given by

Tx = Ty =
c

fstop

(√
εr + sin θ sinφ

) (12)



70 Zhuang et al.

From (12), the periodicity is Tx = Ty = 0.176 mm for the FSS with a
stopband at 450 GHz. However, the slot length L is bigger than the
size of the unit cell. Therefore, Tx and Ty are initially set to be 25%
larger than the length of the slots (Tx = Ty = 0.25 mm).

In the optimization process, L is modified to satisfy the passband
frequency; meanwhile, Tx and Ty should be modified to obtain the
desired stopband frequency and other parameters are kept constant.

5. NUMERICAL RESULTS

The first analysis considers the metallic ring elements printed on
0.064-cm-thick Duroid substrate (RT-6010.5) with a relative dielectric
constant of 11.0 (as shown in Figure 4). All identical ring elements are
arranged in square lattice with element spacing equal to 0.724 cm. Each
ring has an inner diameter of 0.56 cm and an outer diameter of 0.61 cm.
Both the measured and calculated transmission coefficient of the single-
screen FSS versus frequency are presented in Figure 5. Good agreement
is obtained between the calculations and the measurements [34], which
shows the validity of the proposed method in this paper.

Figure 4. Side view of the ring element FSS.

Next, an FSS is designed with a passband at 300 GHz and
stopband at 450 GHz. The geometrical dimensions of the FSS are listed
in Table 1 (filter S2). The frequency response characteristics calculated
by our method and the commerical CAD tool — Ansoft Designer [35]
are shown in Figure 6. Good agreement shows the validity of the
proposed method in this paper.

Figure 7 gives the CPU times of the GMRESR-FFT and GMRES-
FFT algorithms versus frequency. It is found from Figure 7 that
the GMRESR-FFT algorithm can be at least three times faster than
GMRES-FFT when the residual errors reach 10−4 over all frequencies.

Assume N be the maximum number of iterations in the inner
iteration of GMRESR (m). The effect of varying the inner stop-
precision for the FSS structure is shown in Figure 8 with the stop
precision of the outer iteration is 10−4 and the truncated value m is
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Figure 5. Transmission coefficient versus frequency for ring element
FSS.

-40

-30

-20

-10

0

10

100 200 300 400 500

Frequency(GHz)

T
ra

ns
m

is
si

on
 c

oe
ff

ic
ie

nt
(d

B
)

Our method

Ansoft Designer

Figure 6. Transmission coefficients versus frequency of the FSSs
with the cross dipole slots calculated by our method and the Ansoft
Designer.

taken to be 40. It can be seen from Figure 8 that the number of
matrix-vector multiplies is invariable with the decrease of the inner
stop-precision. The number decreases first and then increases with
the increase of the maximum number of inner iterations. When the
maximum number of inner iterations is 15, the number of matrix-vector
multiplies is minimal.

With a different truncated value m in the outer iteration of
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Figure 7. CPU times versus frequency calculated by GMRES-FFT
and GMRESR-FFT algorithm.
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Figure 8. Number of matrix-vector multiplies for different inner stop
precision with outer stop-precision of 10−4.

GMRESR (m), the total number of matrix-vector multiplies will also
differ when the matrix equation is solved. The effect of varying the
truncated value m for the FSS structure resonance frequency 300 GHz
is shown in Figure 9, with the stop precision in the inner and outer
iterations taken to be 10−1 and 10−4, respectively. From Figure 9, it
is seen that the number of matrix-vector multiplies is the least when
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Figure 9. Residual norm histories with different truncated value m
and stop precision of 10−1 in the inner iteration and 10−4 in the outer
iteration.

Table 1. Geometry of the 300 GHz filters based on cross dipole slots
(S1–S3) and Jerusalem cross slots (J1–J3).

Filters
L

[µm]
W

[µm]
d

[µm]
e

[µm]
Tx = Ty

[µm]
fpass

[GHz]
S1 196 32 - - 220 288
S2 184 32 - - 220 300
S3 176 32 - - 220 307
J1 160 32 16 20 176 299
J2 152 32 16 20 176 300
J3 144 32 16 20 176 310

the truncated value m is selected to be 50.
To check the computational efficiency of our proposed method, we

compare the convergence history of the GMRESR (50) and GMRES
(50) methods combined with the FFT technique. The stop precision for
restarted GMRES is 10−4. The maximum number of inner iterations is
15 and the stop precision in the inner iteration is taken to be 10−1 and
10−4 for the outer iteration. Figure 10 shows the residual norm history
for the FSS structure at 300 GHz. It is noted that the GMRESR-FFT
algorithm can reach convergence in significantly fewer iterations than
the conventional GMRES-FFT algorithm.



74 Zhuang et al.

0.0001

0.001

0.01

0.1

1

0 1000 2000 3000 4000 5000

Number of Matrix-Vector Multiplies

R
es

id
ua

l N
or

m

GMRES-FFT

GMRESR-FFT

Figure 10. Residual norm histories at 300 GHz calculated by
GMRES-FFT and GMRESR-FFT algorithm.

The design above fulfills the design specifications, with a −3 dB
passband of 20 GHz and a −20 dB stopband of 20 GHz. Moreover, in
order to show the efficiency of manufacturing tolerances, two other
filters operating at slightly lower and higher frequency were also
designed (filter S1 and S3 in Table 1). The frequency response of
all these FSSs, calculated by our proposed method, is also shown in
Figure 11. In all cases, the stopband frequency does not coincide with
the first zero of the transmission coefficient, due to the value of Tx = Ty

larger than those resulting from (12).
This drawback can be avoided by adopting Jerusalem cross

aperture element, which permits obtaining the same resonance
frequency with a reduced element length. The geometrical dimensions
of the FSS required are listed in Table 1 (filter J2), and the dimensions
of two other filters are also shown in Table 1 (filter J1 and J3), which
has slightly lower and higher resonance frequency. The frequency
response characteristics are shown in Figure 12. The filter J2 in
Figure 10 exhibits much better performance than the one S2 based
on the cross dipoles, with a −3 dB passband of 30 GHz and a −20 dB
stopband of 54 GHz.

In order to show the efficiency of the dielectric losses, the filter S2
is taken for example with the dielectric loss tangent tan δ = 0.005. The
frequency response characteristics calculated is shown in Figure 13. For
the comparison, the frequency response without dielectric loss is also
shown in Figure 13. The results show that the increased insertion loss
near the resonance frequency is about 0.6 dB and unchanged elsewhere.



Progress In Electromagnetics Research B, Vol. 12, 2009 75

-40

-30

-20

-10

0

100 200 300 400 500

Frequency (GHz)

T
ra

ns
m

is
si

on
 c

oe
ff

ic
ie

nt
 (

dB
)

S1

S2

S3

Figure 11. Frequency responses of the FSSs with the cross dipoles
slots.
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Figure 13. Frequency responses of filter S2, calculated by our method
(both lossy and lossless case).

6. CONCLUSION

In this paper, an MoM-based computer code has been developed to
design the FSS filter with a passband at 300 GHz and a stopband
at 450 GHz. The GMRESR-FFT method is used to accelerate the
solution of the impedance matrix equation. A typical FSS structure
is analyzed and GMRESR-FFT method can converge 3 times faster
than the GMRES-FFT method. The cross dipoles are first used to
design the FSS filter, but the stopband frequency does not coincide
with the first zero of the transmission coefficient. In order to overcome
the difficulty, the Jerusalem cross slots are proposed to reduce the
size of the unit cell and improve the width of the stopband. From
the results, the filter exhibits much better performance than the one
based on cross dipole slots, with a −3 dB passband of 30 GHz and a
passband of −20 dB stopband of 54 GHz. In the end, the efficiency of
the dielectric loss to the FSS is studied. The results demonstrate that
the insertion loss near the resonance frequency is increased with 0.6 dB
and unchanged elsewhere.
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