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Abstract—Plane-wave reflection from and transmission through a
slab of uniaxial anisotropic medium is studied and the concept of
ZAP (Zero-Axial-Parameter) medium sheet is defined as the limiting
case when the axial parameters and the thickness of the slab vanish
simultaneously. It is shown that the ZAP sheet may act as a spatial
filter for the incident waves with transmission in a narrow cone around
normal direction. Such a sheet may find application in narrowing the
radiation beam and reducing sidelobes of an antenna or as a computer
privacy filter in optical frequencies.

1. INTRODUCTION

It has been recently found [1, 2] that boundary conditions of the simple
form

n · D = 0, n · B = 0, (1)

labeled for brevity as conditions of the DB boundary, show quite
interesting properties to electromagnetic fields. In fact, it was shown
that the planar DB boundary z = 0 with normal unit vector n = uz,
in terms of which any given electromagnetic field can be split in
transverse electric (TE) and transverse magnetic (TM) components,
reacts differently to the two components so that the TE component
sees the boundary as perfect electric conductor (PEC) and the TM
component sees the boundary as perfect magnetic conductor (PMC).
For fields in an isotropic medium the DB-boundary conditions (1) can
be alternatively expressed as

n · E = 0, n · H = 0. (2)
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Further, it was shown that the planar DB boundary can be realized
by the interface of a uniaxially anisotropic medium defined by the
permittivity and permeability dyadics of the form

ε = εtIt + εzuzuz = εt(It + euzuz), (3)

µ = µtIt + µzuzuz = µt(It + muzuz), (4)

with the transverse unit dyadic defined by

It = uxux + uyuy. (5)

Here the relative axial parameters are defined by

m = µz/µt, e = εz/εt. (6)

The four medium parameters are here assumed to have real non-
negative values and the parameters

kt = ω
√

µtεt, ηt =
√

µt/εt (7)

are assumed real and non-negative as well. Further, the medium is
assumed lossless and its frequency dispersion is not taken into account
as the first approximation.

In the limiting case of εz → 0 and µz → 0, or e → 0, m → 0, the
medium can be called zero axial parameter medium or ZAP medium
for short. In such a medium the axial components of the D and B
fields obviously vanish, Dz → 0 and Bz → 0, whence from continuity
the conditions (1) will be satisfied at the interface. Media with zero-
valued medium parameters have been studied recently [3–6] and their
realization by mixing metamaterials of positive and negative parameter
values have been suggested.

Because a plane wave incident normally to the DB boundary
with TEM polarization satisfies the DB conditions identically, it forms
a strange anomaly which can only understood by starting from an
approximative representation of the boundary, for example in terms of
an interface of the anisotropic medium with small but nonzero relative
axial parameter values m, e. Instead of considering the half space
of infinite extent, the slab of such a medium forms a more realistic
problem to be studied. Letting the thickness of the slab become
zero simulatneously with the axial parameters of the uniaxial slab the
concept of ZAP sheet is obtained. To study the effect of the ZAP sheet
to an incident plane wave forms the topic of the present paper.
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2. PLANE WAVES IN UNIAXIAL MEDIUM

Let us briefly consider plane-wave propagation in the uniaxial
anisotropic medium defined by the permittivity and permeability
dyadics (3) and (4). It is well known [7, 8] that fields of a plane wave
in any medium satisfy E ·B = 0 and H ·D = 0, whence in the uniaxial
medium they satisfy

εtE · B − µtH · D = (εtµz − µtεz)EzHz = 0. (8)

Thus, unless the parameters satisfy the special condition

µtεz − εtµz = 0, or m = e, (9)

a plane wave in the uniaxially anisotropic medium must be either TE
or TM polarized with respect to the axial direction uz. The TE and
TM waves do not interact at an interface perpendicular to the axial
direction and can be handled separately. If the special condition (9)
is satisfied, the two wave-vector surfaces coincide and the medium can
be reduced to an isotropic medium through an affine transformation
(linear transformation of spatial coordinates) which transforms the
single k-vector surface to a sphere. In this case the polarization of
a plane wave can be a combination of TE and TM components. Such
a medium was called affine isotropic in [8].

Let us assume that the wave vector of a plane wave in the
uniaxially anisotropic medium is of the form

k = uzβ + K, uz · K = 0, (10)

where K is a real vector transverse to the axis, the dispersion equations
for the TE and TM waves are, respectively [8],

β2
TE +

1
m

K · K = k2
t , (11)

β2
TM +

1
e
K · K = k2

t . (12)

The dispersion diagram for the k vector is a spheroid in both cases
when m and e have finite positive values, as is seen from the form of
(11) and (12). For the special case m = e the two spheroids coincide.
For m → 0 and e → 0 the medium approaches a ZAP medium in which
case the two spheroids become thin needles. Real β is then possible
only for small magnitude of K which corresponds to wave incident in
almost axial direction. For |K| � kt

√
m and |K| � kt

√
e the axial
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propagation factors are imaginary and their magnitudes approach the
values

|βTE | ≈ |K|/
√

m, |βTM | ≈ |K|/
√

e. (13)

This means that the waves decay exponentially along the z coordinate
for oblique incidence for small values of the parameters e and m.

3. SLAB OF UNIAXIAL MEDIUM

Let us now consider the problem of a slab (0 > z > −d) of uniaxial
medium between two isotropic half spaces 1 (z > 0) and 2 (z <
−d) defined by the respective medium parameters µ1, ε1 and ε2, µ2,
Figure 1. The medium dyadics of the slab are given by (3) and (4).
Because the TE and TM components of the waves do not interact, they
can be handled separately.

�

z

x
z = 0

z = − d

� �

�

�

ki

K

kr

kt

µ1,�1

µ2,

∋�

2

µ ∋�

∋�

,

Figure 1. Incident, reflected and transmitted plane waves at a slab
of uniaxial anisotropic medium.

3.1. TE Wave

Assuming a TE wave incident and reflected in medium 1,

Ei(r) = Eie−jki·r, Hi(r) = Hie−jki·r, (14)

Er(r) = Ere−jkr·r, Hr(r) = Hre−jkr·r, (15)

with the wave vectors

ki = −k1zuz + K, kr = k1zuz + K, (16)

satisfying the condition

ki · ki = kr · kr = k2
1z + K · K = k2

1, k1 = ω
√

µ1ε1, (17)
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the waves in the slab and medium 2 also have TE polarization. The
wave transmitted through the slab into medium 2 is of the form

Et(r) = Ete−jkt·r, Ht(r) = Hte−jkt·r, (18)

kt = −k2zuz + K, (19)

kt · kt = k2
2z + K · K = k2

2, k2 = ω
√

µ2ε2. (20)

The wave components in the slab are

E+(r) = E+e−jk+·r, H+(r) = H+e−jk+·r, (21)

E−(r) = E−e−jk−·r, H−(r) = H−e−jk−·r, (22)
k+ = −βTEuz + K, k− = βTEuz + K. (23)

The propagation factor βTE can be obtained from the dispersion
Equation (11) for any given K vector of the incident wave.

Let us assume that K is the real vector

K = uxK, (24)

whence the electric fields are polarized along the y coordinate:

Ei = uyE
i
y, Er = uyE

r
y , (25)

E± = uyE
±
y , Et = uyE

t
y. (26)

From the Maxwell equations we can now write the x components of
the magnetic fields as

H i
x =

k1z

k1η1
Ei

y, Hr
x = − k1z

k1η1
Er

y , (27)

H+
x =

βTE

ktηt
E+

y , H−
x = −βTE

ktηt
E−, (28)

Ht
x =

k2z

k2η2
Et

y. (29)

Since the total fields tangential to the interfaces are continuous, we
obtain conditions for the wave amplitudes at z = 0,

Ei
y + Er

y = E+
y + E−

y , (30)
k1z

k1η1

(
Ei

y − Er
y

)
=

βTE

ktηt

(
E+

y − E−
y

)
, (31)
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and at z = −d,

E+
y e−jβTEd + E−

y ejβTEd = Et
ye

−jk2zd, (32)
βTE

ktηt

(
E+

y e−jβTEd − E−
y ejβTEd

)
=

k2z

k2η2
Et

ye
−jk2zd. (33)

Expressing
E−

y = R2E
+
y , Er

y = RTEEi
y, (34)

from (32), (33) we obtain

R2 =
βTEk2η2 − k2zktηt

βTEk2η2 + k2zktηt
e−2jβTEd. (35)

while (30) and (31) yield the relation

βTEk1η1(1 + RTE)
k1zktηt(1 − RTE)

=
1 + R2

1 − R2
. (36)

Substituting (35), the reflection coefficient at the interface z = 0 can
be solved as

RTE =

βTEktηt (k1zk2η2 − k2zk1η1) cos βTEd
− j

(
β2

TEk1k2η1η2 − k1zk2zk
2
t η

2
t

)
sinβTEd

βTEktηt (k1zk2η2 + k2zk1η1) cos βTEd
+ j

(
β2

TEk1k2η1η2 + k1zk2zk
2
t η

2
t

)
sinβTEd

. (37)

As a simple check, for d = 0 this reduces to the familiar expression
corresponding to the reflection from the interface of two isotropic half
spaces.

The field transmitted through the slab can be expressed as

Et
y = TTEEi

y, (38)

in terms of the transmission coeffient TTE . From (30)–(33) we obtain

TTE =
2βTEktηtk1zk2η2e

jk2zd

βTEktηt (k1zk2η2 + k2zk1η1) cos βTEd
+ j

(
β2

TEk1k2η1η2 + k1zk2zk
2
t η

2
t

)
sinβTEd

. (39)

From (37) and (39) one can show that, for η1 = η2 = ηt and k1 = k2

the slab acts as a spatial filter for small values of the relative axial
permeability m allowing transmission of TE waves in a narrow cone
around normal direction and with almost total reflection (RTE ≈ −1)
outside this cone. This can be seen from Figures 2 and 3. One can
easily show that the property

|RTE |2 + |TTE |2 = 1 (40)

is valid in this case.
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Figure 2. Magnitude of the reflection coefficient for a plane wave
incident with TE polarization to a slab of uniaxial medium for angles
of incidence θi = 0, . . . , π/2. The parameters satisfy µt = µ1 = µ2,
εt = ε1 = ε2 and k1d = 0.1. The relative axial parameter m = µz/µt

is varied as 0.1, 0.01, 0.001 and 0.0001. For m → 0 the slab acts as a
PEC plane with RTE = −1 except for almost normally incident waves.
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Figure 3. Magnitude of the transmission coefficient for a plane wave
incident with TE polarization to a slab of uniaxial medium for angles
of incidence θi = 0, . . . , π/2. The parameters satisfy µt = µ1 = µ2,
εt = ε1 = ε2 and k1d = 0.1. The relative axial parameter m = µz/µt is
varied as 0.1, 0.01, 0.001 and 0.0001. The slab acts as a narrow-beam
spatial filter for small m.

3.2. TM Wave

Applying the duality substitution for the fields

E → H, H → E, (41)
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and for the media
ε → −µ, µ → −ε, (42)

the pair of Maxwell equations remains invariant. The substitutions
imply

m → e, k → k, η → −1/η, βTE → βTM , (43)

which inserted in the reflection and transmission coefficient expres-
sions (37), (39) yields the reflection and transmission coefficients for
the magnetic field of the TM wave. Because the transmission coeffi-
cient for the electric field is the same as for the magnetic field while
the reflection coefficient for the electric field is the negative of that of
the magnetic field. Thus the coefficients for the electric field of the TM
wave can be expressed as

RTM = −

βTMktη
−1
t

(
k1zk2η

−1
2 − k2zk1η

−1
1

)
cos βTMd

− j
(
β2

TMk1k2η
−1
1 η−1

2 − k1zk2zk
2
t η

−2
t

)
sinβTMd

βTMktη
−1
t

(
k1zk2η

−1
2 + k2zk1η

−1
1

)
cos βTMd

+ j
(
β2

TMk1k2η
−1
1 η−1

2 + k1zk2zk
2
t η

−2
t

)
sinβTMd

, (44)

TTM =
2βTMktη

−1
t k1zk2η

−1
2 ejk2zd

βTMktη
−1
t

(
k1zk2η

−1
2 + k2zk1η

−1
1

)
cos βTMd

+ j
(
β2

TMk1k2η
−1
1 η−1

2 + k1zk2zk
2
t η

−2
t

)
sinβTMd

. (45)

Because of the simple analogy between the TM and TE cases, we will
mainly concentrate on the TE case in the sequel.

4. SHEET OF ZAP MEDIUM

By letting the thickness of the uniaxial slab vanish, d → 0,
simultaneously with vanishing axial parameters, m → 0 and e → 0, the
uniaxial slab becomes a ZAP sheet. Let us assume that the limiting
processes are related by

ktd = ce

√
e = cm

√
m, (46)

with some finite dimensionless thickness parameters ce and cm. For
K · K = k2

1 sin2 θi �= 0, we then have the finite limits

βTEd → cm

√
m −

(
k2

1/k2
t

)
sin2 θi → −jcm (k1/kt) sin θi, (47)

βTMd → ce

√
e −

(
k2

1/k2
t

)
sin2 θi → −jce (k1/kt) sin θi, (48)

k2zd → 0. (49)
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As an example, let us consider the special case when medium 2 equals
medium 1, whence

η2 = η1, k2 = k1, k2z = k1z = k1 cos θi. (50)

Also, let us also assume that the uniaxial anisotropic medium is
restricted by the condition (9) implying

ce = cm = c, m = e = (ktd/c)2, ηt = η1, (51)

whence the anisotropic medium is actually affine isotropic. In such a
symmetric case we have βTE = βTM and, for θi �= 0,

RTE = −RTM = −1, (52)
TTE = TTM = 0. (53)

Thus, the ZAP sheet appears as a PEC sheet for the TE wave and
PMC sheet for the TM wave. In the case θi = 0 the wave is TEM and
the coefficients are

RTE = RTM = 0, (54)

TTE = TTM = 1, (55)

or the wave does not see the ZAP sheet at all. As a mental picture we
can think that there is a hole in the ZAP sheet for normal incidence.
Because only waves with exactly normal incidence will leak through
the hole, for a continuous spectrum of waves the leakage corresponds
to zero energy and can be neglected. Thus, the ideal ZAP sheet acts
as a strange combination of PEC and PMC boundaries.

In practice, m = 0 and e = 0 can only achieved approximately. In
the approximate case, the ZAP sheet is penetrable in a cone around the
normal incidence. Considering the TE case, the penetration depends
on two parameters, the (small) relative axial parameter m and the
parameter c = cm defined by (46). In particular, the beamwidth of the
transmission filter depends not only on the relative axial parameter m
but also on the thickness parameter cm. Obviously, for a given value
of m the beamwidth becomes smaller the larger the parameter cm. For
d infinite we have the half space and the beamwidth is defined by the
angle θi = θTE satisfying

sin θTE =
√

m, (56)

whence θTE ≈ √
m for small m. An example of the effect of the

thickness parameter is given in Figure 4. For cm = 30 the thickness
equals d ≈ 0.15λ1.

If a source in the half space z > 0 radiates towards the nonideal
(approximate) ZAP sheet, the radiation is filtered by the transmission
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factor of the sheet. Thus, the ZAP sheet can be used to remove
sidelobes and reduce the beamwidth of the main lobe. In optical
frequencies such a sheet could be used as a privacy filter for a laptop
computer, for example. Because the ideal ZAP sheet satisfies the
DB boundary conditions (1), the Poynting vector does not have a
tangential component at the surface. Because electromagnetic power
cannot propagate along such a surface, it can also be called an
isotropic soft surface (“stop surface”) [9] which has been applied as
a mathematical model for certain band-gap surfaces [10].
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− 0.4
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Figure 4. Polar plot depicting the magnitude of the transmission
coefficient for a plane wave incident onto a ZAP sheet for angles of
incidence θi = −90, . . . , 90◦. The z axis is vertical and the parameters
are µt = µ1 = µ2, εt = ε1 = ε2. The relative axial parameter is
m = µz/µt = 0.001 and the thickness parameter cm = 1, 3, 10 and 30.
For large cm the ZAP sheet acts as a narrow-beam spatial filter.

In the Introduction it was assumed that the relative axial
permeability parameter m approaces zero from the positive side. Let
us briefly consider the case when m is real and negative. It turns out
that, in such a case, in addition to the normal incidence, the ZAP sheet
appears penetrable for a certain set of discrete angles of incidence as
well. For example, in Figure 5 for m = −0.001 there are five distinct
conic penetration zones around the main lobe normal to the boundary.

This phenomenon can be verified from the reflection coefficent
expression (37). In fact, requiring RTE = 0 and assuming k1 = k2,
η1 = η2 = ηt this reduces to

(k2
t − k2

1/m) sin2 θi sinβTEd = 0. (57)

Omitting the case k2
t = k2

1/m we have in addition to θi = 0 the
solutions θi satisfying

sinβTEd = 0, ⇒ sin2 θi = m(1 − (nπ/k1d)2), (58)
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where n > 0 is an integer. For a thin ZAP sheet we have k1d < π,
whence there are no real solutions for positive values of m while for
negative values of m there exist real solutions

θi
n = sin−1

(
|m|

(
(nπ/k1d)2 − 1

))
(59)

for all integers n satisfying

n <
k1d

π

√
(1 + |m|)/|m|. (60)

For example, the parameter values of Figure 5 yield n < 5.03, whence
there are five filtering lobes in addition to the axial lobe.
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Figure 5. Same as Figure 4 except that m has the negative value
m = −0.001 and the thickness parameter is k1d = 0.5. The ZAP sheet
appears totally penetrable for a set of certain angles of incidence.

One may note that the angles of the transmission lobes are so
distributed that the sines of the adjacent lobe angles are equidistant
from one another. This kind of comb-filtering property of the ZAP
sheet with negative relative axial parameters may have application in
separating discrete wave components from a mixture of plane waves.

5. CONCLUSION

The concept of ZAP (Zero-Axial-Parameter) medium sheet was defined
as the limiting case when the axial parameters and the thickness of a
slab of uniaxial anisotropic medium vanish simultaneously. The ideal
ZAP sheet has the property of reflecting waves incident with TE or TM
polarization as from PEC or PMC boundaries, respectively. A nonideal
ZAP sheet with small but finite axial parameters and thickness may act
as a spatial filter for the incident waves with transmission in a narrow
cone around normal direction. Such a sheet may have application
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in narrowing radiation beams and reducing sidelobes of antennas.
Also, because there is no energy propagation along the surface of the
ideal ZAP sheet, coupling between radiating elements at the sheet is
reduced. There may also be potential application offered by a ZAP
sheet with negative axial parameters due to its multi-lobed filtering
property
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5. Alù, A., M. G. Silveirinha, A. Saladrino, and N. Engheta,
“Epsilon-near-zero metamaterials and electromagnetic sources:
Tailoring the radiation phase pattern,” Phys. Rev., Vol. B75,
155410, 2007.

6. Ziolkowski, R. W., “Electrically small resonators: A path of
efficient, electrically small antennas,” Proc. Metamaterials 2008,
Pamplona, Italy, September 2008.

7. Kong, J. A., Electromagnetic Wave Theory, EMW Publishing,
Cambridge, MA, 2005.

8. Lindell, I. V., Methods for Electromagnetic Field Analysis, 2nd
edition, University Press, Oxford, 1995.

9. Kildal, P. S. and A. Kishk, “EM modeling of surfaces with stop or
go characteristics — Artificial magnetic conductors and soft and
hard surfaces,” ACES Journal, Vol. 18, No. 1, 32–40, 2003.

10. Sievenpiper, D., et al., “High-impedance electromagnetic surfaces
with a forbidden frequency band,” IEEE Trans. Microwave
Theory Tech., Vol. 47, No. 11, 2059–2074, 1999.


