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Abstract—The plane wave diffraction by a terminated, semi-infinite
parallel-plate waveguide with four-layer material loading is rigorously
analyzed using the Wiener-Hopf technique. Introducing the Fourier
transform for the unknown scattered field and applying boundary
conditions in the transform domain, the problem is formulated in
terms of the simultaneous Wiener-Hopf equations satisfied by the
unknown spectral functions. The Wiener-Hopf equations are solved
via the factorization and decomposition procedure leading to the exact
solution. The scattered field in the real space is evaluated by taking
the inverse Fourier transform and using the saddle point method.
Representative numerical examples of the radar cross section (RCS) are
presented, and the far-field scattering characteristics of the waveguide
are investigated in detail.

1. INTRODUCTION

Analysis of the scattering from open-ended metallic waveguide cavities
has received much attention recently in connection with the prediction
and reduction of the radar cross section (RCS) of a target [1–6].
This problem serves as a simple model of duct structures such as
jet engine intakes of aircrafts and cracks occurring on surfaces of
general complicated bodies. Therefore, investigation of the scattering
mechanism in case of the presence of open cavities is an important
subject in the area of the RCS prediction and reduction. In addition,
it is often desirable to reduce the backscattering from such cavities for
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applications to the aircraft scattering studies. Two typical methods
employed for this purpose are, (i) loading the interior of the cavity
with a lossy material, and (ii) shaping the cavity. From the viewpoint
of these engineering applications, a number of scientists have thus far
analyzed the diffraction problems involving various two- and three-
dimensional (2-D and 3-D) cavities by means of high-frequency ray
techniques and numerical methods [7–13]. It appears, however, that
the solutions obtained by these approaches are not uniformly valid for
arbitrary cavity dimensions. There are also important contributions
to studies on the cavity RCS based on a rigorous function-theoretic
approach based on the Wiener-Hopf technique [14, 15].

The Wiener-Hopf technique [16–18] is one of the powerful
approaches for analyzing wave scattering and diffraction problems
associated with canonical geometries, which is mathematically rigorous
in the sense that the edge condition, required for the uniqueness of the
solution, is explicitly incorporated into the analysis. In the previous
papers, we have carried out a rigorous RCS analysis of 2-D cavities
of various shapes formed by a finite parallel-plate waveguide [19–
26] and by a semi-infinite parallel-plate waveguide [27, 28] using
the Wiener-Hopf technique. It has been clarified that our final
solutions are valid over a broad frequency range and can be used
for validating commonly used numerical methods and high-frequency
ray techniques. This paper serves as an important generalization to
our previous analysis [27, 28] for the terminated, semi-infinite parallel-
plate waveguide with three-layer material loading. We shall consider
in this paper a terminated, semi-infinite parallel-plate waveguide with
four-layer material loading, and analyze the E-polarized plane wave
diffraction by means of the Wiener-Hopf technique. Our final solution
is shown to be uniformly valid for arbitrary waveguide dimensions.
The cavity structure considered in this paper can be regarded as a
simple model of cracks occurring on surfaces of complicated bodies.
Therefore by loading interior regions of the cracks with multi-layer
materials, unnecessary backscattering waves can be reduced. The
results presented in this paper may contribute to the progress in the
area of research on the RCS prediction and reduction.

Introducing the Fourier transform for the unknown scattered field
and applying boundary conditions appropriately in the transform
domain, the problem is formulated in terms of the simultaneous
Wiener-Hopf equations. The Wiener-Hopf equations are then solved
exactly in a formal sense via the factorization and decomposition
procedure. It should be noted that the formal solution involves infinite
series terms with unknown coefficients. Using the edge condition,
we shall further derive approximate expressions of the infinite series,
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which are then led to efficient approximate solutions of the Wiener-
Hopf equations. It is to be noted that that our final solution is
uniformly valid for arbitrary waveguide dimensions. The scattered field
is evaluated explicitly by taking the inverse Fourier transform together
with the use of the saddle point method. The field inside the waveguide
is expressed in terms of the TE modes, whereas for the field outside
the waveguide, an asymptotic expression of the scattered far field is
derived in two difference forms. We shall present illustrative numerical
examples of the RCS for various physical parameters to discuss the
backscattering characteristics in detail. In particular, it is shown that
significant RCS reduction can be achieved by loading the interior of
the cavity with a four-layer lossy material.

The time factor is assumed to be e−iωt, and suppressed throughout
this paper.

2. FORMULATION OF THE PROBLEM

We consider the diffraction of an E-polarized plane wave by a
terminated, semi-infinite parallel-plate waveguide with four-layer
material loading, as shown in Fig. 1, where the waveguide plates are
infinitely thin, perfectly conducting, and uniform in the y-direction.
The material layers I (−d1 < z < −d2), II (−d2 < z < −d3),
III (−d3 < z < −d4), and IV (−d4 < z < −d5) are characterized by
the relative permittivity/permeability (εm, µm) for m = 1, 2, 3, and 4,
respectively.

Figure 1. Geometry of the problem.

Let the total electric field φt(x, z) [≡ Et
y(x, z)] be

φt(x, z) = φi(x, z) + φ(x, z), (1)

where φi(x, z) is the incident field of E polarization defined by

φi(x, z) = e−ik(x sin θ0+z cos θ0), 0 < θ0 < π/2 (2)
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with k[≡ ω(ε0µ0)1/2] being the free-space wavenumber. We shall
assume that the vacuum is slightly lossy as in k = k1 + ik2 with
0 < k2 � k1, and take the limit k2 → +0 at the end of analysis.

The total field φt(x, z) satisfies the 2-D Helmholtz equation[
∂2/∂x2 + ∂2/∂z2 + µ(x, z)ε(x, z)k2

]
φt(x, z) = 0, (3)

where

µ(x, z) =




µ1(layer I)
µ2(layer II)
µ3(layer III)
µ4(layer IV)
1(otherwise)

, ε(x, z) =




ε1(layer I)
ε2(layer II)
ε3(layer III)
ε4(layer IV)
1(otherwise)

. (4)

Nonzero components of the total electromagnetic fields are derived
from

(
Et

y, H
t
x, H

t
z

)
=

[
φt,

i

ωµ0µ(x, z)
∂φt

∂z
,

1
iωµ0µ(x, z)

∂φt

∂x

]
. (5)

It follows from the radiation condition that

φ (x, z) =
{

O
(
ek2z cos θ0

)
as z → −∞,

O
(
e−k2z

)
as z → ∞.

(6)

We now define the Fourier transform of the scattered field as

Φ(x, α)=(2π)−1/2

∫ ∞

−∞
φ(x, z)eiαzdz, α = Reα+iImα(≡ σ+iτ). (7)

In the view of the radiation condition, it is found that Φ(x, α) is regular
in the strip −k2 < τ < k2 cos θ0 of the complex α-plane. Introducing
the Fourier integrals as

Φ+(x, α) = (2π)−1/2

∫ ∞

0
φ(x, z)eiαzdz, (8)

Φ−(x, α) = (2π)−1/2

∫ 0

−∞
φt(x, z)eiαzdz, (9)

Φ(m)
1 (x, α) = (2π)−1/2

∫ −dm+1

−dm

φt(x, z)eiαzdz, for m = 1, 2, 3, 4, (10)

Φ(5)
1 (x, α) = (2π)−1/2

∫ 0

−d5

φt(x, z)eiαzdz, (11)
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it is found that Φ+(x, α) and Φ−(x, α) are regular in τ > −k2 and
τ < k2 cos θ0, respectively, whereas Φ(m)

1 (x, α) for m = 1, 2, 3, 4, and
5 are entire functions. In the following, we shall use the subscript ‘1’
for entire functions as well as the subscripts ‘+’ and ‘−’ for functions
regular in τ > −k2 and τ < k2 cos θ0, respectively. Using (7)–(11), we
can express Φ(x, α) as

Φ(x, α) =
{

Ψ(+)(x, α) + Φ−(x, α) for |x| > b,

Ψ(+)(x, α) + Φ1(x, α) for |x| < b,
(12)

where

Φ1(x, α) =
5∑

m=1

Φ(m)
1 (x, α), (13)

Ψ(+)(x, α) = Φ+(x, α) − e−ikx sin θ0

(2π)1/2i(α− k cos θ0)
. (14)

It is seen from (14) that Ψ(+)(x, α) is regular in τ > −k2 except for a
simple pole at α = k cos θ0. The subscript ‘(+)’ will be used hereafter
for functions with this property.

In order to derive transformed wave equations, we note that(
∂2/∂x2 + ∂2/∂z2 + k2

)
φ(x, z) = 0 (15)

holds except for the material-loaded regions, and that(
∂2/∂x2 + ∂2/∂z2 + k2

m

)
φt(x, z) = 0 (16)

for m = 1, 2, 3, and 4 hold for the regions I, II, III, and IV, respectively,
where km = (µmεm)1/2k. For the region |x| > b, we can show by taking
the Fourier transform of (15) and using (6) that(

d2/dx2 − γ2
)
Φ(x, α) = 0 (17)

holds in the strip −k2 < τ < k2 cos θ0, where

γ = (α2 − k2)1/2, Reγ > 0. (18)

Equation (17) is the transformed wave equation for |x| > b.
The derivation of transformed wave equations for the region

|x| < b is involved, since there are medium discontinuities across the
surfaces at z = −dm for m =1, 2, 3, 4, and 5. We now multiply
both sides of (15) by (2π)−1/2eiαz and integrate with respect to z over
the range −d5 < z < ∞. Then by taking into account (6) and the
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boundary condition for tangential electromagnetic fields at z = −d5,
we derive that(
d2/dx2−γ2

)[
Φ(5)

1 (x, α)+Ψ(+)(x, α)
]
=e−iαd5 [(1/µ4)f4(x)−iαg4(x)]

(19)

for τ > −k2 with α �= k cos θ0, where

f4(x) = (2π)1/2 ∂φ
t(x,−d4 − 0)

∂z
, (20)

g4(x) = (2π)1/2 φt(x,−d4). (21)

Next we multiply both sides of (16) by (2π)−1/2eiαz and integrate
with respect to z over the ranges −d1 < z < −d2, −d2 < z < −d3,
−d3 < z < −d4, and −d4 < z < −d5. Using the boundary conditions
for tangential electromagnetic fields at z = −dm for m =1, 2, 3, 4,
and 5, we obtain that(
d2/dx2−Γ2

1

)
Φ(1)

1 (x, α) = e−iαd1f+(x)−e−iαd2 [f1(x)−iαg1(x)] ,(22)(
d2/dx2 − Γ2

2

)
Φ(2)

1 (x, α) = e−iαd2 [(µ2/µ1) f1(x) − iαg1(x)]

−e−iαd3 [f2(x) − iαg2(x)] , (23)(
d2/dx2 − Γ2

3

)
Φ(3)

1 (x, α) = e−iαd3 [(µ3/µ2) f2(x) − iαg2(x)]

−e−iαd4 [f3(x) − iαg3(x)] , (24)(
d2/dx2 − Γ4

)
Φ(4)

1 (x, α) = e−iαd4 [(µ4/µ3) f3(x) − iαg3(x)]

−e−iαd5 [f4(x) − iαg4(x)] (25)

for all α, where Γm = (α2 − k2
m)1/2 with ReΓm > 0 for m = 1, 2, 3, 4,

and

f+(x) = (2π)−1/2 ∂φ
t (x,−d1 + 0)

∂z
, (26)

fm(x) = (2π)−1/2 ∂φ
t (x,−dm+1 − 0)

∂z
m = 1, 2, 3, (27)

gm(x) = (2π)−1/2 φt(x,−dm+1) m = 1, 2, 3. (28)

Equations (19) and (22)–(25) are the desired transformed equations
for |x| < b.

In view of (6) and (7), it follows that Φ(x, α) is bounded for
|x| → ∞, and hence, the solution of (17) is expressed as

Φ(x, α) =
{

Ψ(+)(b, α)e−γ(x−b) for x > b,

Ψ(+)(−b, α)eγ(x+b) for x < −b, (29)
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where we have used (12) and the following boundary conditions for
tangential electric fields across x = ±b:

Φ−(±b± 0, α) = 0, Φ1(±b∓ 0, α) = 0, (30)
Φ+(±b+ 0, α) = Φ+(±b− 0, α)[≡ Φ+(±b, α)]. (31)

Equation (29) gives the scattered field representation for |x| > b.
For region |x| < b, the transformed wave equations involve the

unknown inhomogeneous terms f+(x) and fm(x), gm(x) for m =
1, 2, 3, 4 due to the medium discontinuities (see (19) and (22)–(25)).
In view of the edge condition [17], it follows that f+(x), fm(x), and
gm(x) behave like O[(x ∓ b)−1+ν ] as x → ±b, where ν is a constant
satisfying 0 < ν < 1 which depends on the relative permeability µm

for m = 1, 2, 3, 4. Therefore we can expand these functions into the
convergent Fourier sine series as in

f+ (x) =
1
b

∞∑
n=1

f+
n sin

nπ

2b
(x+ b) , (32)

fm(x)
gm(x)

}
=

1
b

∞∑
n=1

{
fmn

gmn

}
sin

nπ

2b
(x+ b) (33)

for |x| < b. Solving the transformed wave equations with the aid of (30)
and (31) and carrying out some manipulations, we derive the solutions
of (19) and (22)–(25) with the result that

Φ(5)
1 (x, α) + Ψ(+)(x, α)

= Ψ(+)(b, α)
sinh γ(x+ b)

sinh 2γb
− Ψ(+)(−b, α)

sinh γ(x− b)
sinh 2γb

−1
b

∞∑
n=1

c5n(α)
α2 + γ2

n

sin
nπ

2b
(x+ b), (34)

Φ(m)
1 (x, α) = −1

b

∞∑
n=1

cmn(α)
α2 + Γ2

mn

sin
nπ

2b
(x+ b), m = 1, 2, 3, 4, (35)

where

γn =
[
(nπ/2b)2 − k2

]1/2
, Γmn = [(nπ/2b)2 − k2

m]1/2, (36)

c5n(α) = e−iαd5c−5n(α), (37)

cmn(α) = e−iαdmc+mn(α) − e−iαdm+1c−(m+1)n(α) for m = 1, 2, 3, 4 (38)
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with

c+1n(α) = f+
n , c−2n(α) = f1n − iαg1n, (39)

c+2n(α) = (µ2/µ1)f1n − iαg1n, c−3n(α) = f2n − iαg2n, (40)
c+3n(α) = (µ3/µ2)f2n − iαg2n, c−4n(α) = f3n − iαg3n, (41)
c+4n(α) = (µ4/µ3)f3n − iαg3n, c−5n(α) = f4n − iαg4n. (42)

Here the Fourier coefficients f+
n and fmn, gmn for m = 1, 2, 3, 4 are

defined by (A5)–(A7) in Appendix A. Substituting (32) and (33)
into (12), the scattered field representation for region |x| < b is derived.

Summarizing the above results, we derive that

Φ(x, α) = Ψ(+)(±b, α)e∓γ(x∓b) for x >
< ± b,

= Ψ(+)(b, α)
sinh γ(x+ b)

sinh 2γb
− Ψ(+)(−b, α)

sinh γ(x− b)
sinh 2γb

−1
b

∞∑
n=1

c5n(α)
α2 + γ2

n

sin
nπ

2b
(x+ b)

−1
b

4∑
m=1

∞∑
n=1

cmn(α)
α2 + Γ2

mn

sin
nπ

2b
(x+ b) for |x| < b, (43)

Equation (43) is the scattered field representation in the Fourier
transform domain and holds the strip −k2 < τ < k2 cos θ0.

We now differentiate (43) with respect to x and set x = ±b ±
0,±b∓ 0 in the results. Carrying out some manipulations with the aid
of boundary conditions, we obtain that

Jd
−(α) = −

U(+)(α)
M(α)

−
∞∑

n=1,odd

nπ

b2

[
c5n(α)
α2 + γ2

n

+
4∑

m=1

cmn(α)
α2 + Γ2

mn

]
, (44)

Js
−(α) = −

V(+)(α)
N(α)

+
∞∑

n=2,even

nπ

b2

[
c5n(α)
α2 + γ2

n

+
4∑

m=1

cmn(α)
α2 + Γ2

mn

]
, (45)

where

U(+)(α) = Ψ(+)(b, α) + Ψ(+)(−b, α), (46)
V(+)(α) = Ψ(+)(b, α) − Ψ(+)(−b, α), (47)

Jd,s
− (α) = J−(b, α) ∓ J−(−b, α), (48)

J−(±b, α) = Φ′
−(±b± 0, α) − Φ′

1(±b∓ 0, α), (49)

M(α) =
e−γb cosh γb

γ
, N(α) =

e−γb sinh γb
γ

. (50)
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In (49), the prime denotes differentiation with respect to x.
Equations (44) and (45) are the desired simultaneous Wiener-Hopf
equations satisfied by the unknown functions. In the next section,
we will solve the Wiener-Hopf equations, and derive exact and
approximate solutions.

3. SOLUTION OF THE WIENER-HOPF EQUATIONS

The kernel functions M(α) and N(α) given by (50) are factorized
as [16, 17]

M(α) = M+(α)M−(α), N(α) = N+(α)N−(α), (51)

where

M+(α)[= M−(−α)]

= (cos kb)1/2eiπ/4(k + α)−1/2 · exp {(iγb/π) ln [(α− γ) /k]}
· exp {(iαb/π) [1 − C + ln(π/2kb) + iπ/2]}

·
∞∏

n=1,odd

(1 + α/iγn)e2iαb/nπ, (52)

N+(α)[= N−(−α)]

= (sin kb/k)1/2 exp {(iγb/k) ln[(α− γ)/k]}
· exp {(iαb/π) [1 − C + ln(2π/kb) + iπ/2]}

·
∞∏

n=2,even

(1 + α/iγn)e2iαb/nπ (53)

with C (= 0.57721566 · · · ) being Euler’s constant. It is seem from (50)
and (51) that M±(α) and N±(α) are regular and nonzero in τ >

< ∓k2,

and show the asymptotic behavior

M±(α) ∼ (∓2iα)−1/2 , N±(α) ∼ (∓2iα)−1/2 (54)

as α → ∞ with τ >
< ∓ k2.

We multiply both sides of (42) by M−(α) and decompose the
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resultant equation. This leads to

M−(α)Jd
−(α) +

(
2
π

)1/2 i cos(kb sin θ0)
M+(k cos θ0)(α− k cos θ0)

+
∞∑

n=1,odd

nπ

b2
1

α+ iγn

{[
M−(α)c5n(α)

α− iγn
+
M+(iγn)c5n(−iγn)

2iγn

]

+
4∑

m=1

1
α+ iΓmn

[
M−(α)cmn(α)
α− iΓmn

+
M+(iΓmn)cmn(−iΓmn)

2iΓmn

]}

=−
U(+)(α)
M+(α)

+
(

2
π

)1/2 i cos(kb sin θ0)
M+(k cos θ0)(α− k cos θ0)

+
∞∑

n=1,odd

nπ

2b

[
M+(iγn)c5n(−iγn)
biγn(α+ iγn)

+
4∑

m=1

M+(iΓmn)cmn(−iΓmn)
biΓmn(α+ iΓmn)

]
.(55)

It is seen that the left-hand and right-hand sides of (53) are regular in
the lower (τ < k2 cos θ0) and upper (τ > −k2) half-planes, respectively,
and both sides have a common strip of regularity −k2 < τ < k2 cos θ0.
Hence, the argument of analytic continuation shows that both sides
of (53) must be equal to an entire function, which is found to
be identically zero by taking into account the edge condition and
Liouville’s theorem. Therefore, it follows that

U(+)(α)
M+(α)

−
(

2
π

)1/2 i cos(kb sin θ0)
M+(k cos θ0)(α− k cos θ0)

−
∞∑

n=1,odd

nπ

2b

[
M+(iγn)c5n(−iγn)
biγn(α+ iγn)

+
4∑

m=1

M+(iΓmn)cmn(−iΓmn)
biΓmn(α+ iΓmn)

]
= 0.

(56)

A similar procedure can be applied for decomposition of the
Wiener-Hopf equation (43). Multiplying both sides of (43) by N−(α)
and decomposing the resultant equation, we arrive at

V(+)(α)
N+(α)

−
(

2
π

)1/2 sin(kb sin θ0)
N+(k cos θ0)(α− k cos θ0)

+
∞∑

n=2,even

nπ

2b

[
N+(iγn)c5n(−iγn)
biγn(α+ iγn)

+
4∑

m=1

N+(iΓmn)cmn(−iΓmn)
biΓmn(α+ iΓmn)

]
= 0.

(57)
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It should be noted that the unknown coefficients c5n(−iγn) and
cmn(−iΓmn) are involved in (54) and (55). In Appendix A, we have
investigated the relationship between the unknown functions and the
unknown coefficients. Substituting (A4) and (A23) into (54) and (55)
and arranging the results, we obtain that

U(+)(α)
b

=
M+(α)
b1/2

[
− A

b (α− k cos θ0)
+

∞∑
n=1

δ2n−1anpnu
+
n

b (α+ iγ2n−1)

]
, (58)

V(+)(α)
b

=
N+(α)
b1/2

[
B

b (α− k cos θ0)
+

∞∑
n=1

δ2nbnqnv
+
n

b (α+ iγ2n)

]
, (59)

where

an =
[(n− 1/2)π]2

biγ2n−1
, bn =

(nπ)2

biγ2n
, (60)

pn =
M+ (iγ2n−1)

b1/2
, qn =

N+ (iγ2n)
b1/2

, (61)

u+
n =

U(+) (iγ2n−1)
b

, v+
n =

U(+) (iγ2n)
b

, (62)

A = −
(

2b
π

)1/2 i cos(kb sin θ0)
M+(k cos θ0)

, (63)

B =
(

2b
π

)1/2 sin(kb sin θ0)
N+(k cos θ0)

. (64)

Equations (58) and (59) are the exact solutions to the Wiener-
Hopf equations (44) and (45), respectively, but they are formal
since the infinite series with the unknown coefficients u+

n and v+
n for

n = 1, 2, 3, . . . are involved. Therefore, it is necessary to develop
approximation procedures for the explicit solution.

Taking into account the edge condition, we find that

U(+)(α), V(+)(α) = O(α−3/2) for τ > −k2 (65)

as α → ∞. Therefore, it follows by using (60) and (63) that

u+
n ∼ 21/2Ku(bγ2n−1)−3/2, v+

n ∼ 21/2Kv(bγ2n)−3/2 (66)

as n → ∞, where Ku and Ku are unknown constants. Taking a
large positive integer N, the unknowns u+

n and v+
n for n ≥ N of the

infinite series in (58) and (59) may be approximated by the asymptotic
behavior given by (66) with reasonable accuracy. Then we replace each
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infinite series in (58) and (59) by the sum of the finite series containing
N − 1 unknowns and the residual infinite series with one unknown
constant. This procedure yields an accurate approximate expression of
the original infinite series since the edge condition is taken into account
explicitly. Thus we arrive at the approximate expressions of (58) and
(59) with the result that

U(+)(α)
b

≈ M+(α)
b1/2

[
− A

b (α− k cos θ0)
+

N−1∑
n=1

δ2n−1anpnu
+
n

b (α+iγ2n−1)
+KuSu(α)

]
,

(67)

V(+)(α)
b

≈ N+(α)
b1/2

[
B

b (α− k cos θ0)
+

N−1∑
n=1

δ2nbnqnv
+
n

b (α+ iγ2n)
+KvSv(α)

]
,

(68)

where

Su(α) =
∞∑

n=N

δ2n−1an(bγ2n−1)−2

b(α+ iγ2n−1)
, (69)

Sv(α) =
∞∑

n=N

δ2nbn(bγ2n)−2

b(α+ iγ2n)
. (70)

Equations (67) and (68) are approximate expressions of (58) and (59),
respectively, where the unknowns u+

n and v+
n for n = 1, 2, 3, . . . , N −1

as well as Ku and Kv are contained. In order to determine these
unknowns, we set α = iγ2n−1 and iγ2n for n = 1, 2, 3, . . . , N in (67)
and (68), respectively. This procedure yields the two sets of N
equations, where u+

N and v+
N are involved. Since N is a large positive

integer, we can employ (66) to replace u+
N and v+

N by their asymptotic
behavior containing Ku and Kv. Thus, the two sets of N ×N matrix
equations are derived, which can be solved numerically with high
accuracy. It is to be noted that (67) and (68) are uniformly valid
for arbitrary cavity dimensions.

4. SCATTERED FIELD

The scattered field in the real space can be derived by taking the inverse
Fourier transform of (43) according to the formula

φ(x, z) = (2π)−1/2

∫ ∞+ic

−∞+ic
Φ(x, α)e−iαzdα, − k2 < c < k2 cos θ0.

(71)
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Substituting (43) into (71), we obtain an integral representation for
the scattered field valid for the entire space. In the following, we shall
derive explicit expressions of the field inside and outside the waveguide
analytically. For the region inside the waveguide, the scattered field can
be expressed in terms of the TE modes by evaluating (71) with the aid
of the residue theorem, whereas for the region outside the waveguide,
a far field asymptotic expression will be derived using the saddle point
method. For the field outside the waveguide, however, we shall restrict
ourselves to the derivation of the scattered field only for |x| > b since
the contributions to the far field from the region |x| < b with z > 0 are
negligibly small.

First we shall consider the field inside the waveguide. Substituting
the scattered field expression for |x| < b in (43) into (71) and evaluating
the resultant integral for z < 0 with the aid of (58) and (59), it is found
that the scattered field inside the waveguide takes the form

φ(x, z) = −φi(x, z) +
∞∑

n=1

T1n sinh Γ1n(z + d1) sin
nπ

2b
(x+ b)

for − d1 < z < −d2

= −φi(x, z) +
∞∑

n=1

[
T−

mne
Γmn(z+dm+1) − T+

mne
−Γmn(z+dm)

]

· sin nπ
2b

(x+ b) for − dm < z < −dm+1 (m = 2, 3, 4),

= −φi(x, z) +
∞∑

n=1

[
T−

n e
γn(z+d5) − T+

n e
−γn(z+d5)

]

· sin nπ
2b

(x+ b) for − d5 < z < 0, (72)

where

T1n=
(π/2)1/2 nπe−γnd5e−Γ1n(d1−d2)P1nU(+) (iγn)

2b2Γ1n
for odd n,

=
(π/2)1/2 nπe−γnd5e−Γ1n(d1−d2)P1nV(+) (iγn)

2b2Γ1n
for even n, (73)

T−
mn=

(π/2)1/2 nπe−γnd5PmnU(+) (iγn)
2b2Γmn

for odd n (m = 2, 3, 4),

=−
(π/2)1/2 nπe−γnd5PmnV(+) (iγn)

2b2Γmn
for even n (m=2, 3, 4), (74)
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T+
mn=

(π/2)1/2 nπe−γnd5QmnU(+) (iγn)
2b2Γmn

for odd n (m = 2, 3, 4),

=−
(π/2)1/2 nπe−γnd5QmnV(+) (iγn)

2b2Γmn
for even n (m=2, 3, 4), (75)

T−
n =

(π/2)1/2 nπe−γnd5U(+) (iγn)
2b2γn

for odd n,

=−
(π/2)1/2 nπe−γnd5V(+) (iγn)

2b2γn
for even n, (76)

T+
n =

(π/2)1/2 nπe−γnd5Q4nU(+) (iγn)
2b2γn

for odd n,

=−
(π/2)1/2 nπe−γnd5Q4nV(+) (iγn)

2b2γn
for even n. (77)

In (73)–(77), Pmn andQmn form = 1, 2, 3, 4 are defined in Appendix A.
Next we shall consider the field outside the waveguide and derive a

scattered far field. The region outside the waveguide consists of region
|x| < b with z > 0 and region |x| > b. However, the contribution
from region |x| < b outside the waveguide is negligibly small at large
distances from the origin. Therefore, the derivation of the scattered far
field for |x| < b will not be discussed in the following. In view of (43)
and (71), the integral representation of the scattered field for x >

< ± b

is given by

φ(x, z) = (2π)−1/2

∫ ∞+ic

−∞+ic
Ψ(+)(±b, α)e∓γ(x∓b)−iαzdα, (78)

where Ψ(+)(±b, α) is expressed using (46) and (47) as

Ψ(+)(±b, α) =
U(+)(α) ± V(+)(α)

2
. (79)

It is noted from (58), (59), and (79) that Ψ(+)(±b, α) have a simple
pole at α = k cos θ0. In order to evaluate (78) properly, we apply the
pole-singularity extraction method. To this end, we express φ(x, z) as
in

φ(x, z) = φ1(x, z) + φ2(x, z), (80)

where

φ1(x, z)=(2π)−1/2

∫ ∞+ic

−∞+ic

[
Ψ(+)(±b, α)−Φ̃(±b, α)

]
e∓γ(x∓b)−iαzdα, (81)
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φ2(x, z)=(2π)−1/2

∫ ∞+ic

−∞+ic
Φ̃(±b, α)e∓γ(x∓b)−iαzdα (82)

for x>< ± b with

Φ̃(±b, α) =
e∓ikb sin θ0i(k + k cos θ0)1/2

(2π)1/2(α+ k)1/2(α− k cos θ0)
. (83)

It can be verified by (58), (59), (63), (64), and (79) that Ψ(+)(±b, α)
show the asymptotic behavior

Ψ(+)(±b, α) ∼ ie∓ikb sin θ0

(2π)1/2(α− k cos θ0)
(84)

as α → k cos θ0. Therefore we see from (83) and (84) that the pole
singularity of Ψ(+)(±b, α) in (81) at α = k cos θ0 is canceled due to
the presence of the auxiliary function Φ̃(±b, α) and eventually the
integrand of (81) is regular in the neighborhood of α = k cos θ0.
Let us introduce the cylindrical coordinates (ρ1,2, θ1,2) centered at the
waveguide edges (x, z) = (±b, 0) as follows:

x− b = ρ1 sin θ1, z = ρ1 cos θ1 for 0 < θ1 < π, (85)
x+ b = ρ2 sin θ2, z = ρ2 cos θ2 for − π < θ2 < 0, (86)

Applying Theorem B.2 in Appendix B, φ1(x, z) defined by (81) can be
expanded asymptotically as

φ1(ρ1,2, θ1,2) ∼ ±
[
Ψ(+)(±b,−k cos θ1,2)−Φ̃(±b,−k cos θ1,2)

]
·k sin θ1,2

ei(kρ1,2−π/4)

(kρ1,2)1/2
(87)

for x >< ±b as kρ1,2 → ∞. The term φ2(x, z) given by (82) is evaluated
exactly using (C2) in Appendix C with the result that

φ2(ρ1,2, θ1,2)=−e∓ikb sin θ0

{
e−ikρ1,2 cos(θ1,2−θ0)F

[
(2kρ1,2)1/2 cos

θ1,2−θ0
2

]

+ e−ikρ1,2 cos(θ1,2+θ0)F

[
(2kρ1,2)1/2 cos

θ1,2 + θ0
2

]}
(88)

for x>< ± b, where F (·) is the Fresnel integral defined by (C4) in
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Appendix C. Therefore, substituting (87) and (88) into (80) leads to

φ(ρ1,2, θ1,2) ∼ ±
[
Ψ(+)(±b,−k cos θ1,2) − Φ̃(±b,−k cos θ1,2)

]
·k sin θ1,2

ei(kρ1,2−π/4)

(kρ1,2)1/2
− e∓ikb sin θ0

{
e−ikρ1,2 cos(θ1,2−θ0)

·F
[
(2kρ1,2)1/2 cos

θ1,2 + θ0
2

]
+ e−ikρ1,2 cos(θ1,2+θ0)

·F
[
(2kρ1,2)1/2 cos

θ1,2 + θ0
2

]}
(89)

for x >
< ±b as kρ1,2 → ∞, which gives the scattered far field expression

uniformly valid in observation angles θ1,2.
Introducing the cylindrical coordinate (ρ, θ) centered at the origin

as

x = ρ sin θ, z = ρ cos θ for − π < θ < π, (90)

it is seen that the following approximate relationship holds in the far
field:

cos θ1 ≈ cos θ ≈ cos θ2, (91)
ρ1 ≈ ρ− b sin θ for 0 < θ < π, (92)
ρ2 ≈ ρ+ b sin θ for − π < θ < 0. (93)

Applying (C9) in Appendix C for asymptotic evaluation of (78) and
using (89)–(91), an alternative expression for the scattered far field is
derived as

φ(ρ, θ) ∼ φg(ρ, θ) + φd(ρ, θ), θ1,2 �≈ ± π ∓ θ0 (94)

for kρ → ∞, where φg(ρ, θ) and φd(ρ, θ) denote the geometrical optics
field and the diffracted field, respectively, given by

φg(ρ, θ) = −e−ikρ cos(θ−θ0) for − π < θ2 < −π + θ0,

= 0 for − π + θ0 < θ2 < 0, 0 < θ1 < π − θ0,

= −e−2ikb sin θ0e−ikρ cos(θ+θ0) for π − θ0 < θ1 < π, (95)

φd(ρ, θ) = ±Ψ(+)(±b,−k cos θ)k sin θe∓ikb sin θ e
i(kρ−π/4)

(kρ)1/2
, θ >

< 0 (96)

Equations (87) and (92) are the uniform and non-uniform asymptotic
expressions for the scattered far field, respectively.
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5. NUMERICAL RESULTS AND DISCUSSION

In this section, we shall present illustrative numerical examples of the
RCS to investigate the far field backscattering characteristics in detail.
Since the problem considered here is of the two-dimensional scattering,
the RCS per nit length is defined by

σ = lim
ρ→∞

(
2πρ

|φd|2
|φi|2

)
, (97)

where φd is the diffracted field given by (94). For real k, (95) is
simplified using (2), (77), and (94) as

σ = λ

∣∣∣∣k sin θ
2

[
U(+)(−k cos θ) ± V(+)(−k cos θ)

]∣∣∣∣
2

(98)

for θ >
< 0 with λ being the free-space wavelength. As has been

mentioned at the end of Section 3, we require numerical inversion of
the two sets of N ×N matrix equations for obtaining all the physical
quantities. We have verified by careful numerical experimentation that
sufficiently accurate results can be obtained by choosing N ≥ 2kb/π
in (65) and (66).

Figures 2–5 show the normalized monostatic RCS σ/λ as a
function of incident angle θ0, where the values of σ/λ are plotted in
decibels [dB] by computing 10 log10 σ/λ. In order to investigate the
scattering mechanism over a broad frequency range, we have carried
out numerical computation for three typical values of the normalized
waveguide aperture width kb = 3.14, 15.7, and 31.4, which correspond
to low, medium, and high frequencies, respectively. For a fixed kb,
the ratio of the cavity depth d1 to the waveguide aperture width 2b
has been chosen as d1/2b = 1.0 (Figs. 2 and 4) and 3.0 (Figs. 3 and
5). In numerical computation, we have chosen ferrite (single-layer
material) [2] for region IV and Emerson & Cuming AN-73 (three-
layer material) [2] for regions I–III to form the existing four-layer
material loaded on the planar termination inside the waveguide (see
Fig. 1). The material constants for ferrite (region IV) and Emerson &
Cuming AN-73 (regions I–III) are ε4 = 2.4+ i1.25, µ4 = 1.6+ i0.9 and
ε1 = 3.14 + i10.0, µ1 = 1.0, ε2 = 1.6 + i0.9, µ2 = 1.0, ε3 = 1.4 + i0.35,
µ3 = 1.0, respectively. The thickness of the three-layer material
(Emerson & Cuming AN-73) is such that d1 − d2 = d2 − d3 = d3 − d4.
The thickness of ferrite is taken to be the same as the thickness of each
layer of Emerson & Cuming AN-73 so that d1−d2 = d2−d3 = d3−d4 =
d4−d5 (= ∆). The normalized layer thickness is chosen as k∆ = 0.628
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Figure 2(a). Monostatic RCS σ/λ [dB] for d1/2b = 1.0, kb = 3.14,
k∆ = 0.628. : cavity with no loading (regions I–IV: vacuum).

: cavity with single-layer loading (region I: ferrite, regions II–
IV: vacuum). : cavity with three-layer loading (regions I–III:
Emerson & Cuming AN-73, region IV: vacuum). : cavity with
four-layer loading (regions I–III: Emerson & Cuming AN-73, region
IV: ferrite).

Figure 2(b). Monostatic RCS σ/λ [dB] for d1/2b = 1.0, kb = 15.7,
k∆ = 0.628. Other particulars are the same as in Fig. 2(a).
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Figure 2(c). Monostatic RCS σ/λ [dB] for d1/2b = 1.0, kb = 31.4,
k∆ = 0.628. Other particulars are the same as in Fig. 2(a).

Figure 3(a). Monostatic RCS σ/λ [dB] for d1/2b = 3.0, kb = 3.14,
k∆ = 0.628. Other particulars are the same as in Fig. 2(a).
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Figure 3(b). Monostatic RCS σ/λ [dB] for d1/2b = 3.0, kb = 15.7,
k∆ = 0.628. Other particulars are the same as in Fig. 2(a).

Figure 3(c). Monostatic RCS σ/λ [dB] for d1/2b = 3.0, kb = 31.4,
k∆ = 0.628. Other particulars are the same as in Fig. 2(a).
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Figure 4(a). Monostatic RCS σ/λ [dB] for d1/2b = 1.0, kb = 3.14,
k∆ = 1.255. : cavity with no loading (regions I–IV: vacuum).

: cavity with single-layer loading (region I: ferrite, regions II–
IV: vacuum). : cavity with three-layer loading (regions I–III:
Emerson & Cuming AN-73, region IV: vacuum). : cavity with
four-layer loading (regions I–III: Emerson & Cuming AN-73, region
IV: ferrite).

Figure 4(b). Monostatic RCS σ/λ [dB] for d1/2b = 1.0, kb = 15.7,
k∆ = 1.255. Other particulars are the same as in Fig. 4(a).
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Figure 4(c). Monostatic RCS σ/λ [dB] for d1/2b = 1.0, kb = 31.4,
k∆ = 1.255. Other particulars are the same as in Fig. 4(a).

Figure 5(a). Monostatic RCS σ/λ [dB] for d1/2b = 3.0, kb = 3.14,
k∆ = 1.255. Other particulars are the same as in Fig. 4(a).
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Figure 5(b). Monostatic RCS σ/λ [dB] for d1/2b = 3.0, kb = 15.7,
k∆ = 1.255. Other particulars are the same as in Fig. 4(a).

Figure 5(c). Monostatic RCS σ/λ [dB] for d1/2b = 3.0, kb = 31.4,
k∆ = 1.255. Other particulars are the same as in Fig. 4(a).

(Figs. 2 and 3) and 1.255 (Figs. 4 and 5). In order to investigate the
effect of four-layer loading in detail, we have also computed the RCS for
the single-layer case (region I: ferrite, regions II–IV: vacuum) and the
three-layer case (regions I–III: Emerson & Cuming AN-73, region IV:
vacuum). The results for no material loading (regions I–IV: vacuum)
have also been added to enable comparison.
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It is seen from all figures that the RCS for empty cavities (no
material loading) exhibits large values due to the interior irradiation,
whereas the RCS is reduced for the case of material loading. This
RCS reduction is noticeable over the range 0◦ < θ0 < 60◦. The
other common feature in all examples is that, with an increase of
the waveguide aperture opening kb and the ratio d1/2b, the RCS
oscillates rapidly since the waveguide dimension moves towards the
high-frequency range. By comparing the RCS results for material-
loaded cavities between the single-layer case and the four-layer case, we
see better RCS reduction in the case of cavities with four-layer loading
for all chosen parameters d1/2b (= 1.0, 3.0), kb (= 3.14, 15.7, 31.4), and
k∆(= 0.628, 1.255). Next we shall compare the RCS between the
three-layer case and four-layer case. Similarly we see that the case
of four-layer loading leads to better RCS reduction than the three-
layer case especially for large cavities (kb = 15.7, 31.4). From these
characteristics, it is inferred that the multi-layer material loading gives
rise to better RCS reduction over a broad frequency range. Let us now
make comparisons of the monostatic RCS between two different values
of the material layer thickness k∆. Comparing the RCS characteristics
in Figs. 2 and 3 (k∆ = 0.628) with those in Figs. 4 and 5 (k∆ = 1.255),
it is seen that the RCS reduction becomes noticeable with an increase
of the material thickness as expected.

In the numerical examples presented in this section, we have
chosen ferrite (single-layer material) and Emerson & Cuming AN-73
(three-layer material) to form a realistic four-layer material. From a
practical point of view, it is desirable to investigate optimum selection
of the material parameters leading to best RCS reduction for the
waveguide geometry considered in this paper. However, existing
materials are important in numerical investigation. The purpose of
this section is to investigate how the existing four-layer material formed
by the existing single- and three-layer materials results in better RCS
reduction characteristics than the two independent cases of single- and
three-layer materials loaded solely inside the waveguide. The selection
of optimum material parameters is important but is beyond the scope
of this paper. This may be considered as a future issue.

6. CONCLUSIONS

In this paper, we have considered a terminated, semi-infinite parallel-
plate waveguide with four-layer material loading as a generalization to
the geometry treated in our previous papers [27, 28], and analyzed
rigorously the E-polarized plane wave diffraction by means of
the Wiener-Hopf technique. It is to be noted that our final
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solution obtained in this paper is uniformly valid for arbitrary
waveguide dimensions. We have presented numerical examples of the
monostatic RCS for various physical parameters to discuss the far-
field backscattering characteristics in detail. In particular, it has been
clarified that the multilayer material loading inside the cavity plays
an important role in the RCS reduction over a broad frequency range.
We have also verified that the four-layer material loading gives rise
to a better RCS reduction compared with the three-layer case. The
results obtained in this paper serve as a reference solution and can be
used for investigating the range of applicability of other commonly used
approximate methods such as high-frequency techniques and numerical
methods.

We have restricted the problem geometry to the case where
the planar termination inside the waveguide is loaded with a four-
layer material. We would like to emphasize that generalization of
the method based on the Wiener-Hopf technique from the three-
layer case in our previous paper [27] to the four-layer case requires
lots of modifications. This is because, in the Wiener-Hopf analysis
presented in this paper, we have rigorously taken into account multiple
reflections between the material interfaces inside the waveguide as well
as all kinds of wave interactions due to the presence of edges of the
waveguide aperture and right-angled corners at the planar termination
and material wedges inside the waveguide. With an increase of the
number of material layers, the analysis procedure due to the Wiener-
Hopf technique becomes very complicated. Generalization to the case
of N layers is important from the engineering viewpoint, but the
solution method requires considerable modifications. The rigorous
Wiener-Hopf analysis of the N -layer case is therefore an open problem
to the best of our knowledge. The N -layer case can be considered as
a future problem to be solved by the Wiener-Hopf technique.

The diffraction problem involving the same waveguide geometry
for the H-polarized plane wave incidence is now under investigation.
It is to be noted that the analysis procedure is different between
E and H polarizations in the sense that various scattering and
diffraction effects should be incorporated into the analysis in a different
manner. In addition, the method of solution for the H-polarized case
is more complicated than the E polarization. The results for the H
polarization will be presented as a separate paper.
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APPENDIX A. SOME USEFUL FORMULAS FOR THE
FOURIER COEFFICIENTS

In this appendix, we shall investigate important properties of the
unknown Fourier coefficients f+

n and fmn, gmn for m = 1, 2, 3, 4
appearing in (30) and (31). According to the definition, Ψ(+)(x, α)
is regular in τ > −k2 except for a simple pole at α = k cos θ0, whereas
Φ(m)

1 (x, α) with m = 1, 2, 3, 4, 5 are entire functions. Hence, it follows
that

lim
α→iγn

(α− iγn)
[
Φ(5)

1 (x, α) + Ψ(+)(x, α)
]

= 0, (A1)

lim
α→±iΓmn

(α∓ iΓmn)Φ(m)
1 (x, α) = 0, m = 1, 2, 3, 4. (A2)

Substituting (32) and (33) into (A1) and (A2), respectively, we derive,
after some manipulations, that

c+5n(iγn) =
nπ

2b
U(+)(iγn) for odd n,

= −nπ

2b
V(+)(iγn) for even n, (A3)

and

cmn(±iΓmn) = 0, n = 1, 2, 3, . . . (A4)

with m = 1, 2, 3, 4, where U(+)(α) and V(+)(α) are defined by (44)
and (45). Equations (A3) and (A4) constitute a system of simultaneous
algebraic equations, which relates the Fourier coefficients f+

n and
fmn, gmn for m = 1, 2, 3, 4 with the functions U(+)(α) and V(+)(α).
Solving these equations for f+

n , fmn, and gmn, we derive that

f+
n =

nπ

2b
e−Γ1n(d1−d2)e−γnd5P1nU(+) (iγn) for oddn,

= −nπ

2b
e−Γ1n(d1−d2)e−γnd5P1nV(+) (iγn) for evenn, (A5)

fmn =
nπ

2b
PmnU(+) (iγn) for oddn,

= −nπ

2b
PmnV(+) (iγn) for evenn, (A6)

gmn =
nπ

2b
QmnU(+) (iγn) for oddn,

= −nπ

2b
QmnV(+) (iγn) for evenn, (A7)
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where

P4n =
(1 + ρ4n)

[
1 − e−2Γ4n(d4−d5)ρ3n

]
ρ4n

[
1 − e2Γ4n(d4−d5)ρ3nρ4n

] Γ4nµ4

γnµ4 + Γ4n
, (A8)

Q4n =
e−2Γ4n(d4−d5)ρ3n − ρ4n

1 − e−2Γ4n(d4−d5)ρ3nρ4n
, (A9)

P3n =
(1 − ρ4n) e−Γ4n(d4−d5)

1 − e−2Γ4n(d4−d5)ρ3nρ4n

(1 + δ2n) Γ3nµ4

(µ4/µ3)Γ3n + δ2nΓ4n
, (A10)

Q3n =
e−Γ4n(d4−d5)ρ3n (1 − ρ4n)µ4Γ3n

1 − e−2Γ4n(d4−d5)ρ3nρ4n
, (A11)

P2n =
(1 + δ1n) Γ2ne

−Γ3n(d3−d4)

(µ3/µ2)Γ2n + δ1nΓ3n

· (1 − ρ4n) e−Γ4n(d4−d5)

1 − e−2Γ4n(d4−d5)ρ3nρ4n

(1 + δ2n) Γ3nµ4

(µ4/µ3)Γ3n + δ2nΓ4n
, (A12)

Q2n =
e−Γ3n(d3−d4)ρ2ne

−Γ4n(d4−d5) (1 − ρ4n)
1 − e−2Γ4n(d4−d5)ρ3nρ4n

µ4Γ3n

(µ4/µ3)Γ3n + δ2nΓ4n
,

(A13)

P1n =
(Kn + Γ1n) e−Γ2n(d2−d3)

(µ2/µ1)Kn + Γ2n

·(1 + δ1n) Γ2ne
−Γ3n(d3−d4)

(µ3/µ2)Γ2n + δ1nΓ3n

(1 − ρ4n) e−Γ4n(d4−d5)

1 − e−2Γ4n(d4−d5)ρ3nρ4n

· (1 + δ2n) Γ3nµ4

(µ4/µ3)Γ3n + δ2nΓ4n
, (A14)

Q1n =
e−Γ2n(d2−d3)ρ1n (1 + δ1n) Γ2n

(µ2/µ1)Γ2n + δ1nΓ3n

·e
−Γ3n(d3−d4)e−Γ4n(d4−d5) (1−ρ4n)

1 − e−2Γ4n(d4−d5)ρ3nρ4n

µ4Γ3n

(µ4/µ3)Γ3n+δ2nΓ4n
(A15)

with

Kn =
Γ1n + e−2Γ1n(d1−d2)

1 − e−2Γ1n(d1−d2)
, (A16)

ρ1n =
(µ2/µ1)Kn − Γ2n

(µ2/µ1)Kn + Γ2n
, (A17)

δ1n =
1 − ρ1ne

−2Γ2n(d2−d3)

1 + ρ1ne−2Γ2n(d2−d3)
, (A18)
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ρ2n =
(µ3/µ2)Γ2n − δ1nΓ3n

(µ3/µ2)Γ2n + δ1nΓ3n
, (A19)

δ2n =
1 − ρ2ne

−2Γ3n(d3−d4)

1 + ρ2ne−2Γ3n(d3−d4)
, (A20)

ρ3n =
(µ4/µ3)Γ3n − δ2nΓ4n

(µ4/µ3)Γ3n + δ2nΓ4n
, (A21)

ρ4n =
µ4γn − Γ4n

µ4γn + Γ4n
. (A22)

Substituting (A6) and (A7) withm = 4 into (35) and setting α = −iγn,
we also find that

c5n(−iγn) =
nπ

2b
δnU(+) (iγn) for oddn,

= −nπ

2b
δnV(+) (iγn) for evenn, (A23)

where

δn =

[
ρ3ne

−2Γ4n(d4−d5) − ρ4n

]
e−2γnd5

1 − ρ3nρ4ne−2Γ4n(d4−d5)
. (A24)

APPENDIX B. SADDLE POINT METHOD

There are a number of asymptotic methods for evaluation of branch-
cut integrals. The saddle point method is known as a powerful tool
for deriving asymptotic expansions of such integrals. In this appendix,
we shall introduce a typical infinite branch-cut integral arising in the
Wiener-Hopf technique, and discuss the derivation of its asymptotic
expansion based on the saddle point method.

We introduce a double-valued function γ = (α2 − k2)1/2, where
α (≡ σ+ iτ) is a complex variable and k = k1 + ik2 with k1 > 0, k2 > 0.
Let Φ(α) be regular in the strip τ− < τ < τ+ of the complex α-plane,
where τ± are some constants such that −k2 ≤ τ− < τ+ ≤ k2. We now
define the integral

φ(x, z) = (2π)−1/2

∫ ∞+ic

−∞+ic
Φ(α)e−γ|x|−iαzdα (B1)

for real x and z, where c is an arbitrary constant satisfying τ− < c < τ+.
Since the integrand possesses branch points at α = ±k due to the
presence of γ, it is generally difficult to evaluate (B1) in closed form.
However, we can derive an asymptotic representation based on the
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saddle point method as k(x2 + z2)1/2 → ∞ if the integrand has no
singularities other than the branch points at α = ±k.

Let (ρ, θ) be the cylindrical coordinate as defined by x = ρ sin θ,
z = ρ cos θ for 0 < |θ| < π. The fundamental theorem for the
asymptotic expansion is stated as follows [18]:

Theorem B.1. Let Φ(α) be regular except for possible
singularities at α = ±k, where these singularities are branch points
due to the presence of γ in Φ(α). Then the function φ(x, z) defined
by (B1) has the asymptotic expansion

φ(ρ, θ) ∼ eikρ

(2kρ)1/2

∞∑
n=0

G(2n)(0)
n!22n

(kρ)−n, kρ → ∞, (B2)

where

G(2n)(0) =
d2n

dt2n
G(t)

∣∣∣∣
t=0

, (B3)

G(t) =
21/2e−iπ/4

(1 + it2/2)1/2
Φ(−k cosw)k sinw

∣∣∣∣∣
w=g(t)

, (B4)

g(t) = |θ| + cos−1(1 + it2). (B5)

In (B5), the arc cosine function is interpreted as the principal value.
This theorem gives a complete, asymptotic series expansion of

φ(x, z) as k(x2 + z2)1/2 → ∞. Extracting out the leading term from
the asymptotic series, we have the following theorem:

Theorem B.2. Let Φ(α) satisfy the hypotheses stated in Theorem
B.1. Then φ(x, z) defined by (B1) has the asymptotic expansion

φ(ρ, θ) ∼ Φ(−k cos θ)k sin |θ|e
i(kρ−π/4)

(kρ)1/2
, kρ → ∞. (B6)

We have so far treated the case of complex k, but Theorems B.1 and
B.2 hold as well for real k by taking the limit k2 → +0.

APPENDIX C. EVALUATION OF SOME CANONICAL
INTEGRALS IN TERMS OF THE FRESNEL INTEGRAL

This appendix is concerned with the evaluation of some canonical
integrals in terms of the Fresnel integral. Let us define the integrals
I± as

I± =
∫ ∞+ic

−∞+ic

e−γ|x|−iαz

(α± k)1/2(α− k cos θ0)
dα (C1)
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for real x, z with γ, k being defined in Appendix B, where 0 < θ0 < π/2
and |c| < k2 cos θ0. Using the cylindrical coordinate x = ρ sin θ,
z = ρ cos θ for 0 < |θ| < π, (C1) can be evaluated exactly as [18]

I+ =
(

2
k

)1/2

πi sec
θ0
2

{
e−ikρ cos(θ−θ0)F

[
(2kρ)1/2 cos

θ − θ0
2

]

+e−ikρ cos(θ+θ0)F

[
(2kρ)1/2 cos

θ + θ0
2

]}
, (C2)

I− =
(

2
k

)1/2

π cosec
θ0
2

sgn(θ)
{
e−ikρ cos(θ−θ0)F

[
(2kρ)1/2 cos

θ − θ0
2

]

−e −ikρ cos(θ+θ0)F

[
(2kρ)1/2 cos

θ + θ0
2

]}
, (C3)

where F (·) is the Fresnel integral defined by

F (x) =
e−iπ/4

π1/2

∫ ∞

x
eit2dt, (C4)

and

sgn(ξ) =
{

1 for ξ > 0,
−1 for ξ < 0. (C5)

It is easily verified by the integration-by-parts procedure that the
Fresnel integral F (x) has the asymptotic expansion

F (x) ∼ H(−x) − ei(x2−π/4)

2π1/2ix

∞∑
n=0

(2n− 1)!!
(2ix2)n

(C6)

as |x| → ∞, where

(2n− 1)!! =
{

1 · 3 · 5 · . . . · (2n− 1) for n = 2, 3, 4, . . . ,
1 for n = 0, 1, (C7)

H(x) =
{

1 for x > 0,
0 for x < 0. (C8)

Applying (C6) to (C2) and (C3) and extracting out the leading terms
from the asymptotic series, we derive that

I+ ∼
(

2
k

)1/2

πi sec
θ0
2

[
φi(ρ, θ) − φd

+(ρ, θ)
]

for − π < θ < −π + θ0,
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∼ −
(

2
k

)1/2

πi sec
θ0
2
φd

+(ρ, θ) for − π + θ0 < θ < π − θ0,

∼
(

2
k

)1/2

πi sec
θ0
2

[
φr(ρ, θ) − φd

+(ρ, θ)
]

for π − θ0 < θ < π,

(C9)

I− ∼ −
(

2
k

)1/2

π cosec
θ0
2

[
φi(ρ, θ) + φd

+(ρ, θ)
]

for − π < θ < −π + θ0,

∼ −
(

2
k

)1/2

π cosec
θ0
2
φd
−(ρ, θ) for − π + θ0 < θ < π − θ0,

∼ −
(

2
k

)1/2

π cosec
θ0
2

[
φr(ρ, θ) + φd

+(ρ, θ)
]

for π − θ0 < θ < π,

(C10)

as kρ → ∞, where

φi(ρ, θ)=e−ikρ cos(θ−θ0), φr(ρ, θ) = e−ikρ cos(θ+θ0), (C11)

φd
±(ρ, θ)=∓ i

2

(
2
πkρ

)1/2

ei(kρ−π/4) · (1±cos θ)1/2(1±cos θ0)1/2

cos θ + cos θ0
. (C12)

Equations (C9) and (C10) provide non-uniform asymptotic expansions
of I± defined by (C1) as kρ → ∞, and hold for |θ| �≈π − θ0.
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