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Abstract—The modal dispersion relation of electromagnetic waves in
a Bragg fiber having plasma in the cladding regions is investigated
analytically. The proposed Bragg fiber consists of a low index central
region having air surrounded by a large number of periodic cladding
layers of alternating high and low refractive indices of dielectric and
plasma respectively. The modal dispersion relation is obtained by
solving Maxwell wave equations using a simple boundary matching
method. The analysis shows that the normalized frequency parameter
(also called V -number) is frequency independent. This indicates that
the proposed Bragg fiber may be used for single mode operation
without high frequency limitation as well as with little loss of energy
compared to the conventional dielectric waveguide.

1. INTRODUCTION

It is now well established fact that in conventional lightguides, light
is confined and guided by total internal reflection, which requires
that the guiding region (core) has a slightly higher refractive index
than the non-guiding cladding region. In the case of total internal
reflection there is no loss other than intrinsic absorption and scattering
losses of the materials themselves. Such losses can be reduced much
in the case of a Bragg lightguide where guidance of photons takes
place via Bragg reflection and central region has lower refractive
index than that of surrounding periodic cladding layers of alternating
high and low refractive indices [1, 2]. In this way Bragg waveguides
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are superior to conventional optical waveguides and they offer many
possibilities, which are difficult to get in conventional optical fibers.
One example is the possibility of guiding light in air, which attracted
much recent interest [3, 4]. Similarly for Bragg fibers truly single
guided mode is possible but for conventional fibers the fundamental
double degenerated modes are always permitted. In this way Bragg
waveguides can be used as mode filters [2]. Further the periodic
cladding layers of alternating high and low refractive indices that
surround the central region of the Bragg waveguide give rise to photonic
band gap of recent interest [5–8]. Therefore, these waveguides may also
be referred to as photonic band gap-guided Bragg waveguides [8, 9, 17].

In recent years, the Bragg waveguides have attracted serious
attention of the researchers for their interesting and novel applica-
tions [9, 13]. For the first time a rigorous mathematical analysis was
given by Yeh et al. [2] using optimization method. Fink et al. [3] have
demonstrated the guidance of the mode in Bragg fibers. Since then
considerable progress has been made in the theory and application
of Bragg fibers. Recently A. Argyros [14] studied guided modes and
losses in Bragg fibers. More recently Pal et al. designed Bragg fibers for
transparent metro-networks and for dispersion compensation [15, 16].
Very recently Singh et al. [1] have studied the Bragg fiber using a very
simple matrix method and it was shown that by using only a small
number of cladding layers, a Bragg fiber is as almost as good as a con-
ventional standard fiber under weak guidance approximation with an
additional advantage that there is a very little loss in the central core
region which has a low refractive index.

In the present communication we have chosen a new seven-layered
Bragg fiber with a central core region filled with air and surrounding
by a large number of periodic cladding layers of alternating high and
low refractive indices of dielectric and plasma layer respectively shown
in Fig. 1. Using a simple boundary matching technique [1, 6, 17]
the modal eigen value equation known as characteristic equation
is obtained. Computed results are discussed in terms of plasma
frequency, plasma width and the number of layeres in cladding regions.
It is seen that some high frequency confined guided modes exist in
the proposed Bragg fiber. For comparing the predicted results with
experimental finding the experimental investigators will be prompted
and encouraged to study the actual characteristics of such Bragg fiber
in future when the essential fabrication technology becomes possible.
If the possibility of fabrication is not already there, it is not remote
in view of the present age of advanced nano-technology when the
researchers are sufficiently interested or encouraged to take up this
sort of work.
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The concept of proposed Bragg waveguide stems from some
recent papers on optical waveguides filled with plasma [18–23].
H. M. Shen [18, 19] investigated plasma waveguide having a cylindrical
vacuum core surrounded by a plasma cladding. Hojo and Mase [20]
studied the dispersion relation of EM waves in one dimensional
plasma photonic crystals. We thought it worthwhile to extend these
concepts more rigorously to study the change in modal characteristics
of a standard Bragg fiber [1] when some thin layers of plasma are
introduced in its claddings. Recently Bragg waveguides, helical
waveguides and fibers have been investigated with great attention and
interest especially due to their novel applications in communication
engineering, integrated optical electronics and sensor technology [24–
27]. The study of such a proposed Bragg fiber seems very urgent
because any application of the waveguide in engineering and technology
pre-assumes a thorough knowledge of the properties of its eigen modes.
The present study is organized in the following manner. Section 2
deals with the derivation of the characteristic equation and frequency
dependence of the eigen value and other parameters. Section 3 is
concerned with the solution of eigen value equation using some chosen
parameters. Dispersion characteristics for the proposed Bragg fiber
have been discussed with the help of figures for change in the plasma
frequency, plasma width and the change in number of cladding layers.
It is noted that as the plasma width as well as cladding layers decrease,
the number of guided modes also decreases. Also the variation of cutoff
frequency Vc for different guided modes as a function of ω

ωp
has been

shown graphically for five layered Bragg fiber keeping plasma width
d2 = 0.25 µm fixed. Finally, in Section 4 conclusions are presented.

2. THEORETICAL ANALYSIS

The dielectric Bragg waveguide filled with plasma layer in claddings
alternately is an interesting structure for electromagnetic wave guiding.
The cross-sectional view of the five-layered Bragg fiber filled with
plasma layer in the cladding regions is shown in Fig. 1. It has low air
refractive index (na) in central region and higher refractive indices n1

of a dielectric and n2 of a plasma layer in the periodic cladding regions
around it. The outer cladding region is filled with air having refractive
index (na). Plasma as a medium for propagating electromagnetic waves
is characterized by permittivity εp, permeability µp and conductivity
σp. For the case of an isotropic and low density plasma, i.e., ignoring
the effect of collision, µp is equal to that of neutral gas, σp is small, and
the following formula for the permittivity εp of the plasma is sufficiently
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accurate for a real propagating wave having ω > ωp

εp = ε

[
1 −

ω2
p

ω2

]
(1)

Here ωp is the angular frequency of plasma and ε is the permittivity
of free space. The index profile is then written as

n(r) =




na; 0 < r < r1
n1; r1 < r < r2

n2 =

√
1 −

ω2
p

ω2
; r2 < r < r3

n1; r3 < r < r4

n2 =

√
1 −

ω2
p

ω2
; r4 < r < r5

n1; r5 < r < r6
na; r > r6




(2)

where r1 = d0, r2 = d0 +d1, r3 = d0 +d1 +d2, r4 = d0 +2d1 +d2, r5 =
d0 + 2d1 + 2d2, r6 = d0 + 3d1 + 2d2 as shown in Fig. 1.

We choose the cylindrical polar coordinate system (r, θ, z) in
such a way that z-axis lies along the axis of the waveguide. We also
assume that as the electromagnetic wave propagates along the z-axis,
the electric and magnetic field vectors take the form

ψ(r, θ, z) = ψ(r)ejνθei(βz−ωt) (3)

where ψ(r) can be Ez, Hz, Er, Hr, Eθ, Hθ, ω is the angular frequency
and β is the propagation constant. This means that fields are harmonic
in the time t and the coordinate z. From the waveguide theory we know
that the transverse field components can be expressed in terms of Ez

and Hz as

Er =
iβ

ω2µε− β2

[
∂Ez
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β

1
r
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]
(4)
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(5)
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Here Ez(r, θ) and Hz(r, θ) satisfy the wave equation[
∇2

i +
(
ω2µε− β2

)] [
Ez

Hz

]
= 0 (8)
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where ∇2
i = ∇2 − ∂2

∂z2 is the transverse Laplacian operator.
The physically acceptable solutions for alternating cladding

regions are

Ez = [A1Jν(u1r) + B1Yν(u1r)] ejνθe
j(ωt−βz)
e

Hz = [C1Jν(u1r) + D1Yν(u1r)] ejνθe
j(ωt−βz)
e

}
(9a)

Ez = [A2Iν(u2r) + B2Kν(u2r)] ejνθe
j(ωt−βz)
e

Hz = [C2Iν(u2r) + D2Kν(u2r)] ejνθe
j(ωt−βz)
e

}
(9b)

where u1 =
√
k2n2

1 − β2, u2 =
√
β2 − k2n2

2 corresponding to refractive
indices n1 and n2 respectively, k = ω

c and c is the velocity of light in
free space. Also the solutions for central region is

Ez = FlIν(wlr)ejνθe
j(ωt−βz)
e

Hz = LlIν(wlr)ejνθe
j(ωt−βz)
e

}
(10a)

and outer most cladding region is

Ez = GlKν(wlr)ejνθe
j(ωt−βz)
e

Hz = MlKν(wlr)ejνθe
j(ωt−βz)
e

}
(10b)

where wl = (
√
β2 − k2n2

a ), corresponding to refractive indices na.
In the above equations Jν and Yν are the Bessel functions of

first and second kind while Iν and Kν are the modified Bessel
functions, respectively. Ai, Bi, Ci, Di, Fj , Gj , Ll and Ml all are
unknown constants.

The boundary conditions at all the boundaries are that Ez, Hz, Eθ

and Hθ are continuous at the interfaces. Now for ν = 0 we shall get
perturbed TE and TM modes due to presence of plasma in waveguide.
Thus we get a set of eight equations having eight unknown constants.
The nontrivial solution will exist only when the determinant formed
by the coefficients of the unknown constants is equal to zero. Calling
this 8 × 8 determinant Ar, we have

Ar = 0 (11)

known as eigen value equation. Here the matrix elements are as follows:

a11 = Iv(wlr1); a12 = −Jv(u1r1); a13 = −Yv(u1r1);
a14 = 0; a15 = 0; a16 = 0; a17 = 0; a18 = 0;
a21 = I ′v(wlr1); a22 = −J ′

v(u1r1); a23 = −Y ′
v(u1r1);
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a24 = 0; a25 = 0; a26 = 0; a27 = 0; a28 = 0; a31 = 0;
a32 = Jv(u1r2); a33 = Yv(u1r2); a34 = −Iv(u2r2);
a35 = −Kv(u2r2); a36 = 0; a37 = 0; a38 = 0; a41 = 0;
a42 = J ′

v(u1r2); a43 = Y ′
v(u1r2); a44 = −I ′v(u2r2);

a45 = −K ′
v(u2r2); a46 = 0; a47 = 0; a48 = 0; a51 = 0;

a52 = = 0; a53 = 0; a54 = Iv(u2r3); a55 = Kv(u2r3);
a56 = −Jv(u1r3); a57 = −Yv(u1r3); a58 = 0; a61 = 0;
a62 = 0; a63 = 0; a64 = I ′v(u2r3); a65 = K ′

v(u2r3);
a66 = −J ′

v(u1r3); a67 = −Y ′
v(u1r3); a68 = 0; a71 = 0;

a72 = 0; a73 = 0; a74 = 0; a75 = 0; a76 = Jv(u1r4);
a77 = Yv(u1r4); a78 = −Kv(wlr4); a81 = 0; a82 = 0;
a83 = 0; = Yv(u1r4); a86 = −Kv(wlr4);

The element in the rows and columns of this determinant can be
identified readily. This equation is very important equation of our
analysis and is known as the characteristic or eigen value equation.

It is very easy and convenient to draw dispersion curves in terms
of the normalized propagation constant b′ and normalized frequency
parameter V defined as:

V = k0d1

(
n2

1 − n2
a

) 1
2 (12)

Figure 1. The cross sectional view of the five layered Bragg fiber filled
with thin layer of plasma in the cladding regions.
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where k0 is vacuum wave number and d1 is the width of first dielectric
region having refractive index n1. We define the usual normalized
propagation parameter

b′ =
β2 − k2

0n
2
a

k2
0

(
n2

1 − n2
a

) (13)

where β is the z-component of the propagation vector and k0 is free
space wavenumber. In order to get the modal profile for proposed three
layered waveguide, the above set of eight equations can be written in
the form:

Arψ = 0 (14)

where ψ = (F1, A1, B1, A2, B2, A3, B3, G1).
The modal profile of a waveguide mode for a proposed waveguide

structure with a given width and the corresponding effective refractive
index, calculated from Eq. (11) can now be calculated from Eq. (14)
by assuming one of the field amplitude say A3 = 1.

3. NUMERICAL RESULTS AND DISCUSSION

The eigen value Equation (11) known as characteristic equation is the
most important equation of our analysis because it gives all information
regarding the dispersion relation of the proposed waveguide. It is
very convenient to plot normalized propagation constant b′ versus V -
number. In order to get dispersion relation between b′ and V for the
proposed Bragg fiber, we have to solve the characteristic Equation (11)
numerically. For this purpose at high frequency (ω > ωp) we have
chosen the following parameters: the refractive index of air is na =
1.00001, the refractive indices of cladding layers are n1 = 1.5,

n2 =
√

1 − ω2
p

ω2 ; which corresponds to d0 = 1µm, d2 = 0.0625 µm,
d2 = 0.125 µm and d2 = 0.25 µm for ωp/ω = 0.4 fixed.

Now for obtaining dispersion curves, the left hand side (L.H.S.)
of equation (11) is plotted against the admissible β values (k0n1 >
β > k0na) for a fixed value of d1 and the zero crossing is noted. Each
zero crossing corresponds to a particular sustained mode. Several such
curves are plotted for different values of d1 and from these graphs one
can find out how β vary with d1 for a given mode (zero crossing). From
β we can calculate the normalized propagation constant b′ by using
equation (13) and d1 is related to V in the manner given in equation
(12). Thus b′ versus V curve (dispersion curve) can be plotted for each
mode.

The computed results in the form of dispersion curves are shown
in Figs. 2, 3 and 4 for the change in number of layers in claddings
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Figure 2. Dispersion characteristics curves of the proposed Bragg
fiber for seven cladding layers with three different values of d2 keeping
ωp

ω = 0.4 fixed.

Figure 3. Dispersion characteristics curves of the proposed Bragg
fiber for five cladding layers with three different values of d2 keeping
ωp

ω = 0.4 fixed.

and also for the change in plasma width d2 keeping ωp/ω = 0.4 fixed.
Several interesting features can be seen in the dispersion curves. All the
curves have the standard expected shape. By examining all dispersion
curves it is seen that as the number of cladding layers decreases from
seven layers to three layers, the number of sustained guided modes also
decreases.

Next, we want to see the effect of plasma width d2 on the number
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of sustained guided modes. Considering Fig. 2, it is observed that as
d2 is increased from d2 = 0.0625 µm to d2 = 0.25 µm, the first mode
and third mode are bound to be loosely whereas second mode and
fourth mode seen to be bound closely. Similarly in the case of Fig. 3,
the first mode and fifth mode are found to be bound loosely whereas
the third mode is observed to be closely bound. But in this case the
second mode remains independent of variation of d2. The similar type
of behavior is also observed in Fig. 4. Here again the first, second, fifth
and sixth mode are seen to be bound loosely while the third, fourth and
seventh mode are found to be bound closely. In this way we note that
the considered Bragg fiber is expected to have potential applications
with d2 as a means for controlling the modal behavior of any particular
mode.

Figure 4. Dispersion characteristics curves of the proposed Bragg
fiber for three cladding layers with three different values of d2 keeping
ωp

ω = 0.4 fixed.

Now we consider Fig. 5 which shows the variation of ω/ωp versus
cutoff frequency Vc. It is seen that variation of LP11, LP12, LP13,
LP14 etc. remains constant. This indicates that if V number is chosen
smaller than the V = 0.64, only LP11 mode exists in the considered
Bragg fiber. Thus the proposed Bragg fiber may be used for single
mode operation without high frequency limitation and at the cost
of very low absorption loss. This is most interesting feature of the
present study. It is to be noted that the cutoff V -number is frequency
independent for the proposed waveguide, whereas for a conventional
dielectric waveguide cutoff V -number is frequency dependent and there
is high frequency limitation for single mode operation. We note further
that such interesting features are not observed in the case of the
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Figure 5. The variation of cutoff frequency Vc for different guided
modes as a function of ω

ωp
for five layered Bragg fiber at d2 = 0.25 µm.

standard Bragg fiber studied in our paper [1].
We come to Table 1 and Table 2. Table 1 shows the dependence

of cutoff frequencies on the width of plasma layer as well as on the
number of cladding layers used in the structure. This table shows that
as the width of the plasma layer is increased from d2 = 0.0625 µm to
d2 = 0.25 µm keeping the number of layers fixed, the first cutoff value
for LP11, LP12, LP13, LP14 etc. decreases considerably. Also when the
number of layers in cladding is decreased from seven layers to three
layers, the first cutoff values for LP11, LP12, LP13, LP14 etc. increases
in all considered cases of plasma width d2. Next we come to Table 2,
which depicts the interesting feature of the present study. Table 2
depicts that at the lower values of ω/ωp, Vc increase very slowly and at
higher ω/ωp, Vc become constant. That is our chosen Bragg fiber can
be used for a single mode operation below V = 0.64.

Further, we describe the modal field distribution of the proposed
Bragg fiber using a very simple approach as describe above in Section
2. The field distribution obtained by this approach is shown in Fig. 6
for proposed Bragg fiber mode with Ez component. We notice that
the curve has expected standard shape. We also observe that the field
decays considerably within a few pairs of cladding layers.

Basically, there are two sources that contribute to the propagation
loss in Bragg waveguides, the radiation loss and the material absorption
loss. The radiation loss mainly depends on the index contrast between
the cladding media and the number of cladding pairs. In principle,
the radiation loss can be reduced below any given number simply by
using a large enough number of cladding pairs. However, using too
many cladding pairs is generally undesirable or even impractical. On
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Table 1. Cutoff frequencies (Vc-values) for some modes in proposed
Bragg fiber for three different thicknesses of the plasma cladding strips.

Mode
No.

Cut off frequencies of 
various modes in Bragg 
fiber with thickness of 
plasma cladding strip 

d2=0.065μm.
0<V<5

Cut off frequencies of 
various modes in Bragg 
fiber with thickness of 
plasma cladding strip 

d2=0.125μm.
0<V<5

Cut off frequencies of 
various modes in Bragg 
fiber with thickness of 
plasma cladding strip 

d2=0.25μm.
0<V<5

LP1m Seven
layered

Five
layered

Three
layered

Seven
layered

Five
layered

Three
layered

Seven
layered

Five
layered

Three
layered

LP11 0.364 0.445 0.648 0.405 0.486 0.689 0.527 0.608 0.77 

LP12 1.013 1.33 1.94 1.013 1.33 1.90 1.05 1.29 1.82 

LP13 1.70 2.22 3.48 1.66 2.18 3.52 1.62 2.06 3.60 

LP14 2.35 3.24 4.74 2.31 3.32 4.70 2.189 3.44 4.26 

LP15 3.16 4.17 - 3.24 4.17 - 3.40 4.13 - 

LP16 3.85 - - 3.85 - - 3.85 - -

LP17 4.54 - - 4.45 - - 4.45 - -

Table 2. Variation of Cutoff V values with ω/ωp for five layered
waveguide keeping d2 = 0.25 µm.

ω/ωp Cutoff V values (Vc)
LP11 LP12 LP13 LP14

1 0.8107 1.309 1.824 3.608
1.25 0.77 1.29 1089 3.56
1.66 0.689 1.29 1.97 3.48
2.5 0.608 1.29 2.06 3.44
5 0.527 1.33 2.13 3.32
10 0.486 1.33 2.16 3.28
100 0.459 1.33 2.18 3.24
1000 0.459 1.33 2.18 3.24
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Figure 6. The E.M. field distribution of the proposed Bragg fiber
mode with Ez component at ωp

ω = 0.4 fixed.

the other hand, the material absorption loss depends mainly on the
choice of cladding media (i.e., on plasma and dielectric) and is not
considered in this paper and we hope to present this aspect in a future
communication.

4. CONCLUSION

In this article an analysis of the eigen modes of a Bragg waveguide
filled with plasma in the cladding regions is presented for the first time
in our knowledge. This is a new idea for a new waveguide and the
paper contains some new research contributions that are important in
the field of plasma physics. The modal eigen value Equation (11)
is obtained by solving Maxwell’s wave equation using a boundary
matching technique. This eigen value equation is the main result of this
article that can be used for all configurations of the proposed Bragg
waveguide. Our analysis shows that the introduction of thin plasma
layers in Bragg fiber gives two advantages:

1) We can have single mode operation below V = 0.64 without
high frequency limitation and at the cost of very low loss due
to absorption.

2) We can control any particular mode of interest by adjusting the
width of plasma layer. This is the novelty of the proposed Bragg
waveguide.
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