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Abstract—To efficiently solve large dense complex linear system
arising from electric field integral equations (EFIE) formulation of
electromagnetic scattering problems, the multilevel fast multipole
method (MLFMM) is used to accelerate the matrix-vector product
operations. The inner-outer flexible generalized minimum residual
method (FGMRES) is combined with the symmetric successive over-
relaxation (SSOR) preconditioner based on the near-part matrix
of the EFIE in the inner iteration of FGMRES to speed up the
convergence rate of iterative methods. Numerical experiments with a
few electromagnetic scattering problems for open structures are given
to demonstrate the efficiency of the proposed method.

1. INTRODUCTION

Electromagnetic integral equations are often discretized with the
method of moments (MoM) [1–7], one of the most widespread and
generally accepted techniques for electromagnetic problems. The
formulation considered in this paper is the electric field integral
equation (EFIE) as it is the most general and does not require any
assumption about the geometry of the object. It is convenient to
model objects with arbitrary shape using triangular patches; hence,
RWG functions [8] are widely used to represent unknown current
distributions. When iterative solvers are used to solve the MoM
matrix equation, the fast multipole method (FMM) or multilevel fast
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multipole method (MLFMM) [9–15] can be used to accelerate the
calculation of matrix–vector multiplications.

The system matrix resulted from EFIE is often an ill-conditioned
matrix and results in the low convergence of the Krylov iterative
method [16]. Iterative methods for solving linear systems are usually
combined with a preconditioner that can be easily solved. For
some practical problems, however, a natural and efficient choice of
preconditioner may be one that cannot be easily solved by a direct
method and thus may require an iterative method (called inner
iteration) itself to solve the preconditioned equations. There also
exist cases where the matrix operator contains inverses of some other
matrices, an explicit form of which is not available. Then the matrix-
vector multiplication can be obtained approximately through an inner
iteration. The domain decomposition preconditioners [17], and some
positive definite non-symmetric linear systems preconditioned by their
symmetric parts are such examples. For these types of problems, the
original iterative method will be called the outer iteration and the
iterative method used for solving the preconditioner or forming the
matrix-vector multiplication will be called the inner iteration.

In order to be able to enhance robustness of iterative solvers, we
should be able to determine whether or not a given preconditioner is
suitable for the problem at hand. If not, one can attempt another
possible iterative method/preconditioner and switch periodically if
necessary. It is desirable to be able to switch within the outer iteration
instead of restarting. For the generalized minimum residual method
(GMRES) algorithm, this can be easily accomplished with the help of
a rather simple modification of the standard algorithm, referred to as
the flexible GMRES (FGMRES) [18–21]. An important property of
FGMRES is that it satisfies the residual norm minimization property
over the preconditioned Krylov subspace just as in the standard
GMRES algorithm. The FGMRES method with FFT technique is
applied for the analysis of electromagnetic wave scattering from three-
dimensional dielectric bodies with the large permittivity [19].

Moreover, the inner-outer flexible GMRES method can be
combined with a preconditioner to further improve convergence as the
conventional GMRES [18]. Simple preconditioners like the diagonal or
diagonal blocks of the coefficient matrix can be effective only when the
matrix has some degree of diagonal dominance [22]. Incomplete LU
(ILU) factorizations have been successfully used for nonsysmmetric
dense systems [23]. But the factorization is often very ill-conditioned
that makes the triangular solvers highly unstable and the use of the
ILU preconditioner may be totally ineffective [24]. Sparse approximate
inverse (SAI) preconditioning techniques have been successfully used
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with the MLFMM [25, 26], however, the construction cost is usually
very high. The symmetric successive over-relaxation (SSOR) [18, 27]
preconditioner has the advantage of very small construction cost,
which makes it preferable over general-purpose preconditioners such
as ILU and SAI preconditioner techniques. Furthermore, SSOR
preconditioning technique contains more information of the coefficient
matrix when compared with a diagonal/block diagonal matrix, which
is perhaps efficient only for very long and narrow structures. In this
investigation, the SSOR preconditioning scheme is used to accelerate
the inner-outer FGMRES method, which is proposed to speed up the
convergence of GMRES algorithm [18]. The symmetric successive over-
relaxation (SSOR) preconditioner is constructed based on the near-
part matrix of the EFIE impedance matrix in the inner iteration of
FGMRES. Numerical examples are given to demonstrate the accuracy
and efficiency of the SSOR preconditioned inner-outer FGMRES
algorithm in radar cross section (RCS) calculations

This paper is outlined as follows. Section 2 gives an introduction
of EFIE formulation combined with MLFMM. Section 3 describes the
details to construct the SSOR preconditioned inner-outer FGMRES
algorithm based on the near-field matrix in MLFMM implementation.
Numerical experiments with a few electromagnetic wave scattering
problems are presented to demonstrate the efficiency of the SSOR
preconditioned FGMRES algorithm in Section 4. Section 5 gives some
conclusions and comments.

2. EFIE FORMULATION AND MLFMM

The EFIE formulation of electromagnetic wave scattering problems
using planar Rao-Wilton-Glisson (RWG) basis functions for surface
modeling is presented in [1]. The resulting linear systems from EFIE
formulation after Galerkin’s testing are briefly outlined as follows:

N∑
n=1

AmnIn = bm, m = 1, 2, . . . , N (1)

where

Zmn = jk

∫
s
fm(r)·

∫
s′

(
Ī +

1
k2

∇∇·
)

[G(r, r′)fn(r′)]dsds′ (2)

and

bm =
1
η

∫
s
fm(r)·Ei(r)ds, G(r, r′) =

e−jk|r−r′|

4π|r − r′| (3)



342 Ding, Chen, and Fan

where G(r, r′) refers to the Green’s function in free space and {In} is
the column vector containing the unknown coefficients of the surface
current expansion with RWG basis functions fm. Also, as usual, r
and r′ denote the observation and source point locations. Ei(r) is
the incident excitation plane wave, and η and k denote the free space
impendence and wave number, respectively. Once the matrix equation
(1) is solved by numerical matrix equation solvers, the expansion
coefficients {In} can be used to calculate the scattered field and RCS.
In the following, we use A to denote the coefficient matrix in equation
(1), x = {In}, and b = {bm} for simplicity. Then, the EFIE matrix
equation (1) can be symbolically rewritten as:

Ax = b (4)

The basic idea of the fast multipole method (FMM) is to convert
the interaction of element-to-element to the interaction of group-to-
group. Here a group includes the elements residing in a spatial box.
The mathematical foundation of the FMM is the addition theorem for
the scalar Green’s function in free space. Using the FMM, the matrix-
vector product Ax can be written as:

Ax = ANx+AFx (5)

where AN is the near part of A and AF is the far part of A.
In the FMM, the calculation of matrix elements in AN remains the

same as in the method of moments (MoM) procedure. However, those
elements in AF are not explicitly computed and stored. Hence they
are not numerically available in the FMM. It has been shown that the
operation complexity of FMM to perform Ax is O(N1.5). If the FMM
is implemented in multilevel, the total cost can be reduced further to
O(N logN) [9].

3. SSOR PRECONDITIONED INNER-OUTER FGMRES

Consider the iterative solution of large linear systems of equations
as shown in (4). Let x0 ∈ Cn be an initial guess for this linear
system, r0 = b − Ax0 be its corresponding residual and M−1 the
right preconditioner. The Krylov subspace algorithm with right
preconditioning solves the modified system:

AM−1(Mx) = b (6)

Clearly the matrix AM−1 need not be formed explicitly: we only need
to solve Mz = v whenever such an operation is required. In some
cases, solving a linear system with the matrix M consists of forming an



Progress In Electromagnetics Research, PIER 89, 2009 343

approximate solution by performing one or a few steps of a relaxation
type method, or a few Chebyshev iterations. It is natural that the
preconditioners is used not only a single step during an outer iteration,
but as many as are needed to solve a linear system within a given
tolerance. The preconditioner may be no longer constant but is allowed
to vary from one step to another in the outer iteration. A similar
situation in which the preconditioner is not constant is when another
Krylov subspace method is used as a preconditioner. These lead us
to raise the question of whether or not it is possible to accommodate
such variations in the preconditioners and still obtain an algorithm
that satisfies an optimality property similar to the one satisfied by the
original iterative method. This question has been avoided in the past
because in the Hermitian case there does not seem to have a version
of the usual preconditioned conjugate gradient algorithm that satisfies
a short vector recurrence and that allows the preconditioner to vary
at each step. In the non-Hermitian case and for methods that do not
rely on short vector recurrences, such as GMRES, variations in the
preconditioner can be handled without difficulty. The preconditioner
M is constant in conventional preconditioned GMRES algorithm [18].
However, in Flexible GMRES (FGMRES) [18], the preconditioner is
no longer constant but is allowed to vary from one step to another in
the outer iteration.

The FGMRES algorithm is classically described by
(1) Start: Choose x0 and a dimention m of the Krylov subspaces.
Define an (m + 1) ×m matrix Hm and initialize all its entries hi,j to
zero.
(2) Arnoldi process:

(a) compute r0 = b−Ax0, β = ‖r0‖2 and v1 = r0/β.
(b) for j = 1, . . . ,m do

• compute zj := M−1
j vj ;

• compute w := Azj ;
• For i = 1, . . . , j, do

hi,j := (w, vj)
w := w − hi,jvi

Enddo
• compute hj+1,j = ‖w‖2 and vj+1 = w/hj+1,j

Enddo
(c) Define Zm := [z1, . . . , zm] .

(3) Form the approximate solution: Compute xm = x0 + Zmym

where ym = arg miny

∥∥∥βe1 −Hmy
∥∥∥
2

and e1 = [1, 0, . . . , 0]T .
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(4) Restart: If satisfied stop, else set xm → x0 and go to 2.
As can be observed, the only difference from the standard GMRES

version is that we now save the preconditioned vector zj and update
the solution using these vectors. Note that we can define zj in step
(2) without reference to any preconditioner, i.e., we can simply pick
a given new vector zj . In FGMRES algorithm, the preconditioning
operation zj := M−1

j vj can be thought of as a means of approximately
solving the matrix system

Mjzj = vj (7)

where M−1
j is the preconditioner. This is referred to as an inner

iteration. In this investigation, the preconditioner M is taken to be
the near part impedance matrix AN .

For the inner iteration any method can be used, though for
practical purposes it should be a fast approximate solve. In
conventional FGMRES algorithm, the GMRES algorithm is used for
the preconditioning, or inner iterations. In this paper, we have SSOR
preconditioned GMRES for the inner iterations, and FGMRES as the
(outer) flexible method, denoted as SSOR-FGMRES. In the SSOR
preconditioning scheme [27], the SSOR preconditioned inner iteration
matrix system is as the following form

MSSORANzj = vj (8)

The SSOR preconditionerMSSOR is constructed based on the near part
impedance matrix AN as the following form

MSSOR =
(
D̃ + L

) (
D̃

)−1 (
D̃ + U

)
(9)

where AN = L +D + U in (9), L is the lower triangular matrix AN ,
D is the diagonal matrix of AN , U is the upper triangular matrix AN ,
and D̃ = (1/ω)D, 0 < ω < 2 (ω is the relaxation parameter).

The additional cost needed by the SSOR-FGMRES algorithm over
the conventional FGMRES algorithm is only in the extra memory
required to save the SSOR preconditionerMSSOR in the inner iteration.
On the other hand, the added advantage of faster convergence may
certainly be worth this extra cost. There are a few applications in
which this flexibility can be quite helpful, especially in the context of
developing robust iterative methods or for developing preconditiomers
for massively parallel computers.

In the next section, the convergence of the SSOR-FGMRES
algorithm combined with MLFMM technique is discussed in detail for
electromagnetic scattering by open conducting conductors.
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4. NUMERICAL EXPERIMENTS

In this section, we show some numerical results for open conducting
structures that illustrate the effectiveness of the proposed SSOR
preconditioned inner-outer FGMRES (SSOR-FGMRES) for the
solution of the EFIE linear systems in electromagnetic scattering
problems. The EFIE linear systems based on the RWG basis functions
are solved with MLFMM accelerated Krylov iterative methods. All
numerical experiments are performed on a Pentium 4 with 2.9 GHz
CPU and 2 GB RAM in single precision. The restarted version of
GMRES(m) algorithm is used as iterative method, where m is the
dimension size of Krylov subspace for GMRES. Additional details and
comments on the implementation are given as follows:

• Zero vector is taken as initial approximate solution for all examples
and all systems in each example

• The iteration process is terminated when the normalized backward
error is reduced by 10−3 for all the examples.

• m = 30 is used as the dimension of the Krylov subspace for the
restarted GMRES algorithms.

• The inner stop precision is taken to be 10−1 in both the FGMRES
and SSOR-FGMRES algorithms.

We investigated the performance of the presented SSOR-
FGMRES algorithm on three open conducting structures and one
closed structures. The first example is a metallic open-cone, which
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Figure 1. The monostatic RCS for vertical polarization at 3.0 GHz
for an open cone.
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has a height of 20 cm and a base whose diameter is also 20 cm. The
open cone is discretized with 1922 planar triangular patches for RWG
basis functions with 2851 unknowns at 3 GHz. The second example
is a closed missile structure, which is discretized with 5212 planar
triangular patches for RWG basis functions with 7818 unknowns with
7818 unknowns at 200 MHz. The three example is a 2.5λ×2.5λ×3.75λ
open-cavity with 10568 unknowns for RWG basis functions at 300 MHz
(λ is wavelength in free space). The last example is a box-plate
perfectly electrically conducting (PEC) scatterer consisting of a plate
of size (1 m × 1 m) placed on an 2 m × 1 m large plate having a
thickness of 0.3 m. The box-plate is discretized with 232032 planar
triangular patches for RWG basis functions with 347804 unknowns
at 5 GHz. The MLFMM was employed for the computation of the
matrix/vector products involving non-near zone interaction elements
in the computation. As shown in Figure 1, the monostatic vertical
polarized RCS curve of the cone at 3.0 GHz is compared with that
of a BOR (Body of Revolution) analysis. The size dimension of the
group on the finest level is 0.2 wavelength (0.2λ) and the MLFMM
with two levels was employed for the cone. It can be found that the
results using the MLFMM are in good agreement with that of the
BOR analysis [28]. The monostatic vertical polarized RCS curves of
the missile example at 200 MHz and the cavity example at 300 MHz
are given in Figure 2 and Figure 3, respectively. The size dimension of
the group on the finest level is quarter of the wavelength (0.25λ) and
the MLFMM with three levels was employed for both the missile and
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Figure 2. The monostatic RCS for vertical polarization at 200 MHz
for a missile.
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Figure 3. The monostatic RCS for vertical polarization at 300 MHz
for an open cavity.
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Figure 4. The bistatic RCS at 5 GHz for a box-plate example.

the cavity examples. Figure 4 gives the numerical results of Bistatic
RCS for box-plate example. For this example, the size dimension of
the group on the finest level is 0.5 wavelength (0.5λ) and the MLFMM
with 5 levels was employed. To verify the accuracy of the method,
a closed scatterer consisting of a plate of size (1 m × 1 m) having a
thickness of 0.01 m placed on the above plate is considered in Figure 4.
It can be obseverd that our results agree well with those in [29, 30].

As shown in Figures 5–7, the convergence histories of proposed
SSOR-FGMRES algorithm for system 1 are given for the first three
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Figure 5. Convergence history of GMRES algorithms for system 1 on
the open-cone example.
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Figure 6. Convergence history of GMRES algorithms for system 1 on
the missile example.

examples in monostatic RCS computation. The convergence curves of
the GMRES, SSOR preconditioned GMRES (SSOR-GMRES), inner-
outer FGMRES algorithms are included for comparison. For the
box-plate examples in bistatic RCS computation with single right-
hand side, the convergence histories are given in Figure 8. In
these computations, the MLFMM was employed for accelerating the
computation of the matrix/vector products. The value of relaxation
parameter in SSOR-GMRES and SSOR-FGMRES algorithms is 0.6,
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Figure 7. Convergence history of GMRES algorithms for system 1 on
the open-cavity example.
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Figure 8. Convergence history of GMRES algorithms on the box-
plate example.

inner iteration number in FGMRES and SSOR-FGMRES algorithms
is taken to be 10. It can be found that the proposed SSOR-FGMRES
algorithm converges fastest than the other algorithms for all the four
examples.

As shown in Table 1, the number of matrix-vector multiplication
and solution time with the above preconditioned algorithms for are
given for system 1 in monostatic RCS computation on open-cavity,
missile and open-cone examples, where * refers to no convergence
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Table 1. Number of matrix-vector multiplications and solution time
(in seconds) for open structures.

Number of matrix-vector multiplications  Solution time  

Example GMRES 
SSOR- 

GMRES 
FGMRES 

SSOR- 

FGMRES 
GMRES 

SSOR- 

GMRES 
FGMRES 

SSOR- 

FGMRES

Open- 
cone 

215 4  550 187 104s * 30s 10s

Missile 3738 >6000 1268 378 1358s * 484s 128s

Open-  
cavity 

550  869 451 410s 617s 342s  

Box- 
plate 

>104  >104  7678 2298 * * 183781s 46392s 

>10

603 224s

after maximum iterations. The number of matrix-vector multiplication
and solution time for the box-plate in bistatic RCS computation are
also given in Table 1. It is noted that the number of matrix-vector
multiplications (MVM) includes both the number of MVM in the
inner iteration and the one in the outer iteration in the FGMRES
and SSOR-FGMRES algorithms. It can be found that the proposed
SSOR-FGMRES algorithm can save much time than other algorithms.
For both open-cavity example and open-cone one, the solution time
of the FMGRES algorithm is less than the GMRES. However, the
number of matrix-vector multiplications for FGMRES is more than
that of GMRES. This is mainly due to the use of the near-part
impedance matrix on the inner iteration of the FGMRES algorithm.
Furthermore, small size of the near-part impedance matrix AN results
in the low cost for implementation of matrix-vector multiplications in
the inner iteration. When compared with FGMRES, the improved
SSOR-FGMRES save the solution time by a factor of 3.0 for the open
cone example, 3.8 for the missile, 1.5 for the open cavity and 4.0 for
the box-plate. This demonstrates the efficiency of the newly proposed
SSOR preconditioned FGMRES algorithm for the open structures.

A critical question in the use of the SSOR preconditioned inner-
outer FGMRES algorithm is to what precision the preconditioner
should be solved, i.e., what stopping threshold should be used in the
inner iteration. In other words, we wish to balance the inner and
outer iterations so that the total number of operations is minimized.
In order to answer this question, we vary the inner iteration number
from 5 to 75 and the total number of matrix-vector multiplications and
CPU time of SSOR-FGMRES are given in Figure 9 for the open cone
example. In these computations, the value of relaxation parameter in
the SSOR-FGMRES algorithms is taken to be 0.6. It can be observed
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that the number of matrix-vector multiplications and solution time is
almost increased with the increasing of the inner iteration. When the
inner iteration number is taken to be 10, the minimal solution time is
10.1 seconds and the number of matrix-vector multiplications is 187.

Another important factor of the convergence rate for the proposed
SSOR-FGMRES algorithm is the relaxation parameter. We vary the
relaxation parameter from 0.1 to 1.2 and the total number of matrix-
vector multiplications (MVM) and solution time of SSOR-FGMRES
are given in Figure 10. In these computations, the inner iteration
number in the SSOR-FGMRES algorithms is taken to be 10. It can
be observed that the number of MVM and solution time of SSOR-
FGMRES decrease rapidly when the value of the relaxation parameter
is increased from 0.1 to 0.3. The total MVM number and solution time
is nearly invariant with the value of the relaxation parameter varying
from 0.4–1.0. When the value of the relaxation parameter is increased
from 1.1 to 1.2, the total MVM number and solution time increases
rapidly. When the relaxation parameter is taken to be 0.8, the minimal
number of MVM and the minimal solution time is 176 and 9.9 seconds,
respectively.

In order to further investigate the performance of the proposed
SSOR-FGMRES algorithm, the number of matrix-vector multiplica-
tions (MVM) with FGMRES and SSOR-FGMRES algorithms is given
for the different incident angles in monostatic RCS computation for
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Figure 13. Number of matrix-vector multiplications with FGMRES
and SSOR-FGMRES algorithms for the different incident angles (or
systems) on the missile.

open-cone, open-cavity and missile examples in Figures 11–13. The
sets of angles of interest for the monstatic RCS of the missile example
vary from 0 to 180 degree in ϕ direction when θ is fixed at 90 degree.
For both open cavity and open cone examples, the sets of angles of
interest for the monstatic RCS vary from 0 to 180 degree in θ direction
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when ϕ is fixed at 0 degree. The increasing step is one degree and the
total number of right-hand sides to be solved for the complete monos-
tatic RCS calculation is 181 for each example. In these computations,
the inner iteration number in both FGMRES and SSOR-FGMRES
algorithms is taken to be 10. The value of relaxation parameter in
SSOR-FGMRES is 0.6. It can be observed that the SSOR-FGMRES
algorithm can greatly improve the convergence. It can also be found
that the number of MVM for FGMRES varies largely from one sys-
tem to another for each example. The number of MVM for SSOR-
FGMRES varies slowly on open-cavity example and is almost constant
on open-cone example. As shown in Table 2, the cumulated number of
matrix-vector multiplications and the total elapsed solution time for a
complete monostatic RCS calculation are summarized for each exam-
ple using FGMRES and SSOR-FGMRES algorithms. Depending on
the geometry, the overall gain ranges from a factor of 1.6 to 2.7 for both
computational time and total number of matrix-vector multiplications.

Table 2. Total number of matrix-vector multiplications and solution
time (in seconds) for a complete monostatic RCS calculation.

Number of matrix-vector multiplications Solution time

Geometry FGMRES
SSOR-

FGMRES
FGMRES

SSOR-

FGMRES

Open

cavity
186626 122958 84785 s 54860 s

Open

-cone
73788 33220 8968 s 3404 s

Missile 79410 195539 72813 s 30098 s

5. CONCLUSIONS AND COMMENTS

In this paper, the SSOR-preconditioned inner-outer FGMRES
algorithm is presented for solving EFIE with single and multiple
right-hand sides in both bistatic and monostatic RCS calculation for
open structures. The symmetric successive over-relaxation (SSOR)
preconditioner is constructed based on the near-part matrix of the
EFIE in the inner iteration of FGMRES. The combined effect of the
prescribed SSOR preconditioner coupled with inner-outer FGMRES
algorithm is very beneficial for the convergence of the iterative
methods. It can be found that the proposed method can reduce both
the number of matrix-vector multiplications and the computational
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time significantly with low cost for construction and implementation
of preconditioner.
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