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Abstract—In this paper, we study a class of modified incomplete
Cholesky factorization preconditioners LLT with two control parame-
ters including dropping rules. Before computing preconditioners, the
modified incomplete Cholesky factorization algorithm allows to decide
the sparsity of incomplete factorization preconditioners by two fill-
in control parameters: (1) p, the number of the largest number p of
nonzero entries in each row; (2) dropping tolerance. With RCM re-
ordering scheme as a crucial operation for incomplete factorization
preconditioners, our numerical results show that both the number of
PCOCG and PCG iterations and the total computing time are re-
duced evidently for appropriate fill-in control parameters. Numerical
tests on harmonic analysis for 2D and 3D scattering problems show
the efficiency of our method.

1. INTRODUCTION

The coefficient matrix of the linear equations which stem from
the finite-element analysis of high-frequency electromagnetic field
simulations such as scattering [1–9] is generally symmetric and
indefinite. At present, the incomplete Cholesky factorization [10–13]
(IC) preconditioners applied with preconditioned Conjugate Gradient
(PCG) method and preconditioned Conjugate Orthogonal Conjugate
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Gradient (PCOCG) method are rather popular [14–16]. Here
incomplete Cholesky factorization is studied in the case of finite
element (FEM) matrices arising from the discretization of the following
electromagnetic scattering problem:
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0E
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with some absorbing boundary conditions, where Esc is the scattering
field, Einc is the incident field and µr and εr are relative permeability
and permittivity, respectively.

The solution of Eq. (1) will result in a linear system

Ax = b, (2)

where A = (aij)n×n ∈ Cn×n is sparse complex symmetric (usually
indefinite), x, b ∈ Cn.

In order to solve (2) effectively, incomplete LU factorization
preconditioners are often associated with some preconditioned Krylov
subspace methods such as BICGSTAB, QMR, TFQMR, CG, COCG
[17–19]. To make full use of symmetry of the systems, incomplete
Cholesky factorization is normally utilized with some preconditioned
Krylov subspace methods such as PCG and PCOCG.

Incomplete Cholesky factorization was designed for solving
symmetric positive definite systems. The performance of the
incomplete Cholesky factorization often relies on drop tolerances
[13, 17] to reduce fill-ins. The properties of the incomplete Cholesky
factorization depend, in part, on the sparsity pattern S of the
incomplete Cholesky factor L = (lij)n×n, where L is a lower triangular
matrix such that [10]

A = LLT + R, lij = 0 if (i, j) /∈ S.

The aim of the presented numerical tests is to analyze the performance
of the studied incomplete Cholesky factorization algorithms. Our
consideration is to focus on the performance of the proposed modified
incomplete Cholesky factorization preconditioners with tuning of
sparsity with PCG and PCOCG as accelerators. And we intend to
find their impacts on these scattering problems discretized by FEM.

Many research papers about incomplete Cholesky factorization
can be found, such as Lin and More [10], Fang and Leary [11],
Margenov and Popov [12], the fixed fill factorization of Meijerink and
Vorst [20], the ILUT factorization of Saad [13, 17]. For additional
information on incomplete Cholesky factorizations, please refer to
Saad [17]. Reordering methods are very important for incomplete
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factorization; see more in [21–26]. In [10], a new incomplete Cholesky
factorization algorithm is proposed which is designed to limit the
memory requirement by specifying the amount of additional memory.
In contrast with drop tolerance strategies, the new approach in [10] is
more stable in terms of number of iterations and memory requirements.
In this paper, we intend to apply this approach as preconditioners for
solving scattering problems and get more effective incomplete Cholesky
factorization algorithm based on the work of Lin and More in [10].
Additionally, the reordering in the matrix plays an important role in
the application of preconditioning technologies because the ordering
of the matrix affects the fill in the matrix and thus the incomplete
Cholesky factorization [21]. In this paper, both the AMD and RCM
orderings [17, 21] are applied to reorder our linear system.

The rest of the paper is organized as follows: In section 2 we
survey some relative preconditioning algorithms and Krylov subspace
methods. The modified incomplete factorization algorithm is presented
in section 3 with detailed description of its implementation. In Section
4, a set of numerical experiments are presented and short concluding
remarks are given in Section 5.

2. PRECONDITIONERS AND ITERATIVE METHODS

Our implementation of the incomplete Cholesky factorization is based
on the jki version of the Cholesky factorization shown below in
Algorithm 1 [10]. Note that diagonal elements are updated as the
factorization proceeds. Obviously, Algorithm 1 is based on the column-
oriented Cholesky factorization for sparse matrices.

Algorithm 1: Column-oriented Cholesky Factoriza-
tion [10, Algorithm 2.1]
1. for j = 1 : n
2. ajj = √

ajj

3. for k = 1 : j − 1
4. for i = j + 1 : n
5. aij = aij − aikajk

6. endfor
7. endfor
8. for i = j + 1 : n
9. aij = aij/ajj

10. aii = aii − a2
ij

11. endfor
12. endfor
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For a symmetric coefficient matrix A, we only need to store the
lower or the upper triangular parts of A. In Algorithm 1, only the lower
triangular part of A including the diagonal entries is needed. And the
access to A is column by column. Therefore, in order to compute the
IC-type preconditioner by Algorithm 1, we only need to store the lower
triangular part L as the incomplete Cholesky factor. In order to show
the detailed computation process of L, we transform Algorithm 1 into
a comprehensible version with explicit computation of L:

Algorithm 2: Column-oriented Cholesky Factorization
with Explicit Expression of L
1. for j = 1 : n
2. ljj = √

ajj

3. for k = 1 : j − 1
4. for i = j + 1 : n
5. lij = lij − likljk
6. endfor
7. endfor
8. for i = j + 1 : n
9. lij = lij/ljj

10. aii = aii − l2ij
11. endfor
12. endfor

In [10], the following Algorithm 3 has been discussed in details.

Algorithm 3. Column-oriented Cholesky Factoriza-
tion [10, Algorithm 2.2]
1. for j = 1 : n
2. ajj = √

ajj

3. Lcol len = size(i > j : aij �= 0)
4. for k = 1 : j − 1 and ajk �= 0
5. for i = j + 1 : n and aik �= 0
6. aij = aij − aikajk

7. endfor
8. endfor
9. for i = j + 1 : n and aij �= 0

10. aij = aij/ajj

11. aii = aii − a2
ij

12. endfor
13. Retain the largest Lcol len + p elements in aj+1:n,j

14. endfor
Notice the symbol aj+1:n,j means these entries of the j-th column

from row j+1 to row n of coefficient matrix A. For iterative solution of
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the symmetric linear system (2), we choose the precondtioned COCG
and precondtioned CG methods (See more in [14–16]).

3. MODIFIED INCOMPLETE CHOLESKY
FACTORIZATION ALGORITHM WITH ITS
IMPLEMENTATION

In the light of ILUT algorithm in [17, p.287] and Algorithm 3 in [10,
p.29], we present the following column-oriented MIC(p, τ) algorithm
for obtaining the incomplete Cholesky factor L.

Algorithm 4. Modified Incomplete Cholesky factorization
(MIC(p, τ))
1. for j = 1 : n
2. ljj = √

ajj

3. w = aj+1:n,j

4. for k = 1 : j − 1
5. for i = j + 1 : n and when ljk �= 0
6. wi = wi − likljk
7. endfor
8. endfor
9. for i = j + 1 : n

10. wij = wij/ljj
11. endfor
12. τj = τ ‖w‖
13. for i = j + 1 : n
14. wi = 0 when |wi| < τj

15. endfor
16. An integer array I = (ik)k=1,···,p contains indices of the first

largest p entries of |wi| , i = j + 1 : n.
17. for k = 1 : p
18. likj = wikj

19. endfor
20. for i = j + 1 : n
21. aii = aii − l2ij
22. endfor
23. endfor

In the case that the lower triangular matrix L keeps the same
nonzero pattern as that of the lower triangular part of A, Algorithm
1 leads to IC(0) algorithm (i.e., incomplete Cholesky factorization
preconditioners with the same nonzero pattern as that of coefficient
matrix A).
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In order to implement Algorithm 4, we store the upper triangular
part of the coefficient matrix A in compressed sparse row (CSR) format.
However, for convenience, Algorithm 4 needs to access lower triangular
part of A in compressed sparse column (CSC) format. Observed from
the data structures of CSR and CSC, the upper triangular part of
the coefficient matrix A stored in CSR is exactly the lower triangular
part of A stored in CSC. So, we don’t need to perform the transform
operation from the input matrix (the upper triangular part of the
coefficient matrix A) into the CSC format of the lower triangular part
of the coefficient matrix A. For simplicity, variable “L” here denotes
the CSC format of L.

From Line 6 in Algorithm 4, in order to compute the linear
combination vector w, we need to access the j-th row and k-th column
of L. The access of k−th column of L is convenient because L is just
stored in CSC. The difficulty in Line 6 is how to access the j-th row
of L which is stored in CSC format. In order to get high efficiency of
accessing rows of L, we introduce a temporary CSR variable “U” to
store the CSR format of L.

In iterative methods, we need to solve the preconditioning system
LLT x = y. Normally, L and LT are stored in CSR format, respectively.
In fact, the transformation from the CSC format of L to the CSR
foramt of L is unnecessary because variable “U” in CSR format is just
the CSR format of L and variable “L” in CSC format is just the CSR
format of LT .

4. NUMERICAL TESTS

All numerical tests are performed on Linux operating system. All codes
are programmed in C language and implemented on a PC, with 2 GB
memory and a 2.66 GHz Intel(R) Core(TM)2 Duo CPU. In order to
operate the complex type elements in computation, we declare “double
complex” type variables which are supported directly by gcc compiler.
The maximal iteration number is 1000. The iteration stops when
‖r(k)‖/‖r(0)‖ < 10−8.

Since ordering is crucial to a good factorized preconditioner, the
reverse Cuthill-McKee (RCM) reordering and Approximate Minimum
Degree (AMD) reordering are applied before computing L. Denote the
number of nonzero elements of a matrix as nnz (matrix name), the
iteration number as its, the incomplete factorization CPU time as P-t
and iteration CPU time as I-t, total computation time (preconditioning
time plus iteration time) as T-t. All consuming time is measured in
seconds. Denote sparse ratio of a preconditioner i.e., nnz(L+LT )−n

nnz(A) as
sp-r.
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Problem 1 (Harmonic Analysis for Plane Wave Scattering from a
Metallic Plate): In this problem, we use edge-based FEM to calculate
the RCS of a PEC plate (1λo × 1λo) where λo stands for the free
space wavelength of the incident plane wave. Applying PEC boundary
condition, we need to solve a system of linear equations of size 5381
with a complex coefficient matrix containing 79721 nonzero elements
in the upper triangular.

Problem 2 (Harmonic Analysis for Scattering of a Dielectric
Sphere): In this problem, perfectly matched layers (PML) are used to
truncate the finite element analysis domain in order to determine the
radar cross section (RCS) from the scattering of a dielectric sphere.
The relative permittivity of the dielectric sphere is εr = 2.56. To
calculate the bistatic RCS of the dielectric sphere, the incident plane
wave is taken as x-polarized with incident angles φ = 0◦ and θ = 0◦,
which leads to a system of linear equations of size 130733 with a
complex coefficient matrix containing 1105104 nonzero elements in the
upper triangular.

(a) Original (b) RCM

Figure 1. Nonzero pattern of the coefficient matrix from Problem 1
with Original ordering and RCM reordering.

For Problems 1 and 2, without RCM reordering, PCOCG and
PCG methods do not converge within 5000 iterations. In order
to evaluate the performance of the proposed algorithm, the IC(0)
preconditioner (i.e. L + LT has the same nonzero pattern with that
of A) and the diagonal preconditioner are exploited (see Table 1 for
details). Numerical results of the solution of Problem 1 and Problem 2
with PCOCG and PCG methods associated with RCM reordering are
presented in Tables 2-7. For Problem 1, AMD reordering nearly failed
in all cases with the same parameters of RCM reordering, except in
two cases. For Problem 2, AMD reordering failed in all cases. So the
results with AMD reordering are all ignored in this section.
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Table 1. PCOCG with IC(0) and diagonal preconditioners for
Problem 1.

Preconditioner IC(0) Diagonal preconditioner
ordering NO RCM NO RCM

Its 5000 2997 755 760

By comparing Table 1 with Table 2, it is obvious that our MIC
(p, τ) preconditioner is much more efficient than IC(0) and diagonal
preconditioners. Observed from Tables 2 and 3, the number of
iterations and total computation time of the two kinds of iterative
methods of PCOCG and PCG are almost the same in all cases with
the same parameters in MIC(p, τ).

From Tables 2–4 and Fig. 1, it is noticed that the effect of dropping
tolerance τ in such a wide range for Problem 1 is not prominent.
Observed from Fig. 1, there is a jump of computation time with
parameters p = 30 and τ = 10−3. From a general view, it is a specific
case. However, from Tables 5-7 and Fig. 2 of the test of Problem 2,
it is possible for us to draw the conclusion that the effect of dropping
tolerance τ is obvious in the solution of larger scale problems. And the
reasonable range for τ should arrange from 10−4 to 10−6. In addition,
the parameter τ has minor effect on memory requirement of our MIC
preconditioner.

What affects remarkably is the parameter p which also decides
both fill-ins and efficiency of MIC preconditioner. The larger p is,

(a) Original (b) RCM

Figure 2. Nonzero pattern of the coefficient matrix from Problem 2
with Original ordering and RCM reordering.
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Table 2. PCOCG with RCM reordering and Algorithm 6 for
Problem 1.

τ p nnz(L) sp-r its P-t I-t T-t

10−3

30 171563 2.19 143 0.39 0.77 1.16
40 224771 2.88 54 0.57 0.35 0.92
50 277754 3.57 47 0.77 0.36 1.13
60 330495 4.26 39 0.97 0.33 1.30
70 382817 4.93 31 1.16 0.29 1.45
80 434926 5.61 28 1.38 0.29 1.67
90 486670 6.28 25 1.57 0.30 1.87
100 538009 6.95 23 1.78 0.27 2.05

10−4

30 171563 2.19 323 0.38 1.74 2.12
40 224774 2.88 57 0.58 0.37 0.95
50 277756 3.57 42 0.76 0.32 1.08
60 330467 4.26 38 0.96 0.32 1.28
70 382843 4.94 30 1.18 0.27 1.45
80 434934 5.61 27 1.38 0.27 1.65
90 486670 6.28 25 1.58 0.27 1.85
100 538017 6.95 22 1.77 0.26 2.03

10−5

30 171563 2.19 304 0.38 1.63 2.01
40 224774 2.88 56 0.57 0.36 0.93
50 277756 3.57 41 0.78 0.30 1.08
60 330467 4.26 38 0.98 0.32 1.30
70 382821 4.93 29 1.16 0.27 1.43
80 434934 5.61 27 1.37 0.27 1.64
90 486658 6.28 24 1.59 0.26 1.85
100 538017 6.95 22 1.78 0.27 2.05

10−6

30 171563 2.19 309 0.39 1.65 2.04
40 224774 2.88 56 0.57 0.36 0.93
50 277756 3.57 44 0.77 0.33 1.10
60 330467 4.26 38 0.98 0.31 1.29
70 382821 4.93 30 1.17 0.28 1.45
80 434934 5.61 26 1.36 0.26 1.62
90 486658 6.28 24 1.56 0.27 1.83
100 538017 6.95 22 1.77 0.26 2.03
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Table 3. PCG with RCM reordering and Algorithm 6 for Problem 1.

τ p nnz(L) sp-r its P-t I-t T-t

10−3

30 171563 2.19 143 0.39 0.76 1.15
40 224771 2.88 54 0.57 0.34 0.91
50 277754 3.57 47 0.77 0.34 1.11
60 330495 4.26 39 0.96 0.32 1.28
70 382817 4.93 31 1.17 0.28 1.45
80 434926 5.61 28 1.38 0.28 1.66
90 486670 6.28 25 1.58 0.27 1.85
100 538009 6.95 23 1.77 0.26 2.03

10−4

30 171563 2.19 323 0.39 1.73 2.12
40 224774 2.88 57 0.57 0.37 0.94
50 277756 3.57 42 0.78 0.31 1.09
60 330467 4.26 38 0.98 0.32 1.30
70 382843 4.94 30 1.17 0.27 1.44
80 434934 5.61 27 1.37 0.27 1.64
90 486670 6.28 25 1.58 0.27 1.85
100 538017 6.95 22 1.78 0.26 2.04

10−5

30 171563 2.19 304 0.39 1.63 2.02
40 224774 2.88 56 0.58 0.36 0.94
50 277756 3.57 41 0.77 0.31 1.08
60 330467 4.26 38 0.97 0.31 1.28
70 382821 4.93 29 1.16 0.27 1.43
80 434934 5.61 27 1.36 0.27 1.63
90 486658 6.28 24 1.57 0.27 1.84
100 538017 6.95 22 1.78 0.27 2.05

10−6

30 171563 2.19 309 0.39 1.66 2.05
40 224774 2.88 56 0.57 0.37 0.94
50 277756 3.57 44 0.77 0.32 1.09
60 330467 4.26 38 0.97 0.31 1.28
70 382821 4.93 30 1.18 0.28 1.46
80 434934 5.61 26 1.37 0.26 1.63
90 486658 6.28 24 1.58 0.26 1.84
100 538017 6.95 22 1.77 0.26 2.03
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Table 4. PCOCG with RCM reordering and Algorithm 6(τ = 0) for
Problem 1.

p nnz(L) sp-r its P-t I-t T-t
30 171563 2.19 310 0.39 1.67 2.06
40 224774 2.88 57 0.57 0.38 0.95
50 277756 3.57 44 0.77 0.33 1.10
60 330467 4.26 38 0.97 0.32 1.29
70 382821 4.93 29 1.18 0.27 1.45
80 434934 5.61 26 1.37 0.28 1.65
90 486658 6.28 24 1.58 0.27 1.85
100 538017 6.95 22 1.78 0.27 2.05

the less the iteration number becomes while the more the fill-ins are
required. However, the total computation time is not necessarily
decreasing with the growth of p, which implies that it is crucial to
select an appropriate parameter p. Generally, parameter p can be
evaluated by setting the number of nonzero entries of incomplete
Cholesky preconditioners, i.e., p = nnz(L)

n where L is the incomplete
Cholesky preconditioner and n is the dimension of coefficient matrix
A. However, the number of nonzero entries of incomplete Cholesky
preconditioners L is determined by the coefficient matrix A of linear
system. For small-scale linear system such as Problem 1, proper set of
the number of nonzero entries of L is about 2 times (or more) of that
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Figure 3. Comparisons using fill-in and total computation time for
Problem 1.
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Table 5. PCOCG with RCM reordering and Algorithm 6 for
Problem 2.

τ p nnz(L) sp-r its P-t I-t T-t

10−3

180 23540520 22.58 1000 148.09 454.47 602.56
190 24825650 23.81 1000 159.85 476.29 636.14
200 26099574 25.04 1000 174.97 496.12 671.09
210 27389064 26.28 1000 198.96 517.83 716.79
220 28657799 27.5 1000 219.74 537.71 757.45
230 29944507 28.74 1000 256.23 560.05 816.28
240 31219668 29.96 1000 276.74 579.14 855.88
250 32489468 31.18 1000 290.12 601.16 891.28

10−4

180 23547572 22.58 1000 121.8 455.21 577.01
190 24838383 23.83 1000 130.8 476.97 607.77
200 26112689 25.05 1000 139.76 497.00 636.76
210 27447965 26.34 278 140.69 143.99 284.68
220 28678478 27.52 1000 158.86 539.23 698.09
230 30015314 28.81 84 160.26 47.07 207.33
240 31297382 30.04 63 171.29 36.74 208.03
250 32578277 31.27 56 181.64 33.65 215.29

10−5

180 23548029 22.59 1000 120.82 455.7 576.52
190 24875794 23.86 783 122.89 372.6 495.49
200 26162532 25.1 532 131.71 264.42 396.13
210 27447791 26.34 210 141.15 108.78 249.93
220 28731952 27.57 306 151.61 164.79 316.40
230 30015228 28.81 80 160.69 44.81 205.50
240 31297303 30.04 62 171.54 36.0 207.54
250 32578207 31.27 56 182.7 33.72 216.42

10−6

180 23574297 22.61 1000 118.37 456.53 574.90
190 24826475 23.81 1000 131.18 477.2 608.38
200 26121534 25.06 1000 140.29 497.7 637.99
210 27447483 26.34 431 141.31 223.18 364.49
220 28731705 27.57 508 152.5 273.6 426.10
230 30014971 28.8 82 160.85 45.92 206.77
240 31297074 30.04 62 171.61 35.99 207.60
250 32577915 31.27 56 182.48 33.69 216.17
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Table 6. PCG with RCM reordering and Algorithm 6 for Problem 2.

τ p nnz(L) sp-r its P-t I-t T-t

10−3

180 23540520 22.58 1000 145.29 454.33 599.62
190 24825650 23.81 1000 161.02 479.51 640.53
200 26099574 25.04 1000 175.92 498.69 674.61
210 27389064 26.28 1000 198.87 519.67 718.54
220 28657799 27.5 1000 219.67 537.06 756.73
230 29944507 28.74 1000 255.94 559.45 815.39
240 31219668 29.96 1000 276.37 579.78 856.15
250 32489468 31.18 1000 300.56 600.82 901.38

10−4

180 23547572 22.58 1000 121.97 455.65 577.62
190 24838383 23.83 1000 130.31 476.83 607.14
200 26112689 25.05 1000 139.8 497.33 637.13
210 27447965 26.34 278 140.63 143.95 284.58
220 28678478 27.52 1000 158.91 539.05 697.96
230 30015314 28.81 84 160.3 47.27 207.57
240 31297382 30.04 63 170.82 36.61 207.43
250 32578277 31.27 56 181.45 33.67 215.12

10−5

180 23548029 22.59 1000 120.75 456.19 576.94
190 24875794 23.86 783 123.56 372.87 496.43
200 26162532 25.1 532 131.93 264.7 396.63
210 27447791 26.34 210 141.12 108.89 250.01
220 28731952 27.57 306 151.26 164.62 315.88
230 30015228 28.81 80 160.9 44.87 205.77
240 31297303 30.04 62 171.42 36.0 207.42
250 32578207 31.27 56 182.14 33.7 215.84

10−6

180 23574297 22.61 1000 118.27 456.01 574.28
190 24826475 23.81 1000 131.36 476.82 608.18
200 26121534 25.06 1000 140.1 496.84 636.94
210 27447483 26.34 431 141.34 223.45 364.79
220 28731705 27.57 508 151.66 273.48 425.14
230 30014971 28.8 82 160.88 45.91 206.79
240 31297074 30.04 62 171.3 35.99 207.29
250 32577915 31.27 56 182.26 33.66 215.92
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Table 7. PCOCG with RCM reordering and Algorithm 6(τ=0) for
Problem 2.

p nnz(L) sp-r its P-t I-t T-t

180 23588711 22.62 1000 114.830 457.230 572.06

190 24875808 23.86 1000 123.070 476.120 599.19

200 26161974 25.09 428 131.940 214.42 346.36

210 27447316 26.33 1000 144.280 518.570 662.85

220 28731527 27.57 212 151.670 114.240 265.91

230 30014648 28.80 81 160.750 45.350 206.10

240 31296689 30.03 63 172.080 36.700 208.78

250 32577809 31.26 56 184.360 33.680 218.04

of A. For middle-scale linear system such as Problem 2, the select of
the number of nonzero entries of L could be 5 (or more) times of that
of A.

In order to compare the performance of Algorithm 4 (MIC(p,τ)
with that of Algorithm 3, numerical experiments with Algorithm 3
are also performed. Note that parameter p in Algorithms 3 and 4
has different meanings. Observed from Tables 8 and 9, Algorithm 3
needs more memory than Algorithm 4 under the requirement of the
same total computation time. Take Problem 2 for example. The
minimum computation time with Algorithm 3 is 211.92(s) and the
fill-ins of L is 31098172. Nevertheless, using Algorithm 4, it consumes
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Figure 4. Comparisons using fill-in and total computation time for
Problem 2.
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Table 8. PCOCG with RCM reordering and Algorithm 3 for
Problem 1.

p nnz(L) sp-r its P-t I-t T-t
10 143492 1.83 1000 0.13 4.66 4.79
15 170548 2.18 985 0.19 5.12 5.31
20 197289 2.53 355 0.25 2.04 2.29
25 223975 2.87 213 0.33 1.34 1.67
30 250578 3.22 146 0.42 0.97 1.39
40 303620 3.91 55 0.61 0.42 1.03
50 356219 4.59 43 0.81 0.37 1.18
60 408503 5.27 38 1.00 0.36 1.36
70 460516 5.94 30 1.20 0.32 1.52
80 512103 6.61 26 1.40 0.30 1.70
90 563380 7.28 24 1.61 0.29 1.90
100 614174 7.94 23 1.82 0.31 2.13

Table 9. PCOCG with RCM reordering and Algorithm 3 for
Problem 2.

p nnz(L) sp-r its P-t I-t T-t
180 24628860 23.62 1000 150.39 762.92 913.31
190 25913314 24.86 1000 156.25 767.82 924.07
200 27185244 26.08 1000 169.99 792.04 962.03
210 28532806 27.38 468 147.59 256.29 403.88
220 29752241 28.55 1000 184.54 799.48 984.02
230 31098172 29.85 78 166.37 45.55 211.92
240 32379376 31.08 61 177.49 36.88 214.37
250 33659524 32.31 56 189.05 35.10 224.15

205.5(s) with parameters p = 230 and τ = 10−5 and the fill-ins of L
is 30015228. Additionally, as illustrated in Table 10 for Problem 1,
Algorithm 4 is dramatically superior to Algorithm 3 in both aspects of
total computation time and memory requirement.
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Table 10. Comparison results with respect to the minimum of total
computation time and the corresponding memory between Algorithms
3 and 6 for Problem 1.

min(T-t) nnz(L)

Alg. 3 Alg. 6
Reduction
ratio(%)

Alg. 3 Alg. 6
Reduction
ratio(%)

1.03 0.92 10.68 303620 224771 25.97

5. CONCLUSIONS

A column-oriented modified incomplete Cholesky factorization MIC
(p, τ) with two controlling parameters for solution of systems of
linear equations with sparse complex symmetric coefficient matrices
resulted from finite-element analysis of the electromagnetic scattering
problem (1) is presented in this paper. Proper choices of the controlling
parameters in Algorithm 6 can evidently reduce the total computation
time and memory requirements compared with Algorithm 3. It
is worthwhile to emphasize that the involved parameter p, which
prescribes the maximal fill-ins in each row of preconditioners, makes
Algorithm 6 evidently superior to Algorithm 3 in the number of fill-ins,
and helps to reduce total computation time of Algorithm 6. As shown
in the numerical experiments, RCM ordering is obviously superior to
AMD ordering. Moreover, RCM ordering is significant to our modified
incomplete Cholesky factorization. Numerical experiments show
that further developments of more proper incomplete factorization
algorithms and reordering schemes for electromagnetic scattering
problems are deserved to be taken into consideration in the future.
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