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Abstract—The adjoint variable method is applied for the first time to
perform sensitivity analysis with transmission line modeling exploiting
rubber cells. Rubber cells allow for the conformal modeling of
off-grid boundaries in the transmission line modeling computational
domain using modified tensor properties. The scattering matrix of
the rubber cell is analytically dependent on the dimensions of the
modeled discontinuities. Using this property, an exact adjoint system
is derived. The original and adjoint systems supply the necessary
field information for the rubber cell based sensitivity calculations.
Our technique is illustrated through sensitivity analysis of waveguide
filters. The estimated sensitivities are used for fast gradient-based
optimization and tolerance analysis.

1. INTRODUCTION

Sensitivity analysis plays an important role in the design of microwave
circuits. During the optimization procedure, a gradient-based
optimizer drives the electromagnetic (EM) simulator. At every
iteration, the optimizer requests both the EM response and its gradient
with respect to the different design parameters for the current set
of parameter values. The response sensitivities are traditionally
calculated by perturbing the design parameters one at a time and
then using finite difference approximations at the response level. This
requires repeated EM simulations of all perturbed EM structures. This
process can be time intensive even for a small number of parameters.

The adjoint variable method (AVM) presents a more efficient
approach to sensitivity analysis of high frequency structures. AVM
† The first author is now with CIRFE (Center for Integrated RF Engineering), University
of Waterloo, Waterloo, ON N2L 3G1, Canada.
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was utilized with different numerical EM techniques including the
Method of Moments [1], the frequency-domain Transmission Line
Modeling (TLM) [2], the Finite Difference Time Domain (FDTD)
with unstructured grids [3], and the Beam Propagation Method in
photonics [4]. In [5], the AVM technique was used for sensitivity
analysis using FDTD with structured grids and for full wave sensitivity
analysis of guided wave structures [6]. In [7], it was applied to
2D time-domain TLM problems with structured grids involving non-
dispersive boundaries and perfect conducting objects. In all these
approaches, using only two full wave EM simulations, the sensitivities
of a real objective function, with respect to all design parameters,
are estimated regardless of the number of these parameters. This
represents significant computational saving as compared to the finite
difference approximations.

AVM for time-domain TLM was then developed and extended to
handle a variety of practical EM design problems. In [8], and [9], the
AVM was adapted to handle problems with dispersive boundaries using
the wideband Johns matrix boundaries and the one-way wave-equation
absorbing boundaries, respectively. The AVM was also extended to
solve a variety of EM structures involving dielectric discontinuities [10],
lossy media [11] and full 3D problems [12] using Johns symmetrical
condensed node [13]. The approach was further developed for
complex responses to calculate network parameters sensitivities e.g.
S-parameters [14]. Self-adjoint S-parameters sensitivities were then
introduced in [15] for lossless isotropic homogenous media. The self-
adjoint technique uses only the original simulation to calculate the
sensitivities over a wide frequency band. No adjoint simulations
are needed in this case. The original simulations supply both the
S-parameters and their sensitivities with respect to all the design
parameters over the desired frequency band. In [16], the adjoint-free
AVM was applied to lossless isotropic nonhomogenous media as well.

All the above mentioned approaches treat problems with dielectric
and metallic discontinuities in a different way. Analytical adjoint
systems are derived for the dielectric case, while an approximate
adjoint system is utilized for metallic discontinuities. This is
mainly because the system matrices are analytical functions of only
the material properties. Also, these approaches handle problems
with uniform structured grids. Discontinuities are approximated by
snapping them to the grid dimensions. However, when optimizing an
EM structure, it is important to be able to represent off-grid object
boundaries and provide accurate response sensitivities. Different
modifications of the symmetric condensed node based TLM were
proposed to model non-uniform TLM grids: the hybrid symmetric
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condensed node [17] and the multigrid TLM [18]. These techniques
accurately model on-grid geometries only. Other efforts to model off-
grid objects and boundaries include modifying the scattering matrix
of the symmetric condensed node [19], loading it with extra reactive
elements [20], and adding extra stubs and/or arms to the boundary
TLM nodes [21]. Recently, Huilian et al. introduced in [22] a simple
robust approach to model boundaries at arbitrary locations in the
TLM symmetric condensed node scheme. This approach depends
on modifying the constitutive parameters of the irregular boundary
cells. This modification accounts for the irregular boundary positions
without changing the cell dimensions. Hence, the computational
burden remains low.

In [23], we exploited this recent development. We proposed an
AVM approach that exploits the rubber cell concept. Using the
modified tensor properties of these cells, we are able to derive an exact
adjoint system for both metallic and dielectric discontinuities. Both
types of discontinuities are treated in the same way. Utilizing exact
adjoint systems improves the accuracy of the algorithm and makes
the implementation process easier for any type of discontinuity. In
this paper, we further discuss the proposed approach, explaining its
implementation and illustrate it with more examples.

We start by giving a brief review of the use of the modified tensor
properties to model irregular boundaries in TLM. In Section 3, we
develop the necessary modifications in AVM to perform sensitivity
analysis of such structures. Section IV discusses the implementational
details of the AVM technique exploiting the rubber cell. Section 5
illustrates the efficiency of our algorithm through three examples
of different microwave filters. Finally, Section 6 shows how the
adjoint sensitivities are used to efficiently optimize a microwave filter
and perform tolerance analysis without simulating any perturbed
structures.

2. TLM USING RUBBER CELLS

In TLM, both space and time are discretized. The computational
domain is modeled through a network of interconnecting transmission
lines. The symmetric condensed node is the most common TLM node
used for full 3D analysis [13]. Using the symmetric condensed node, all
boundaries can only be placed half-way between nodes. Global or local
mesh refinements can be used to model arbitrarily shaped boundaries.
However, this usually leads to increased computational requirements.

In [22] an efficient method to model boundaries of arbitrary
position and shape in TLM was introduced. The method is based on
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representing the changes in the dimensions of a TLM cell through an
equivalent change of the cell’s constitutive parameters. The scattering
matrix of a TLM cell of size ∆x×∆y×∆z and with material properties
characterized by the diagonal permittivity and permeability tensors

←→ε =

∣∣∣∣∣
εxx 0 0
0 εyy 0
0 0 εzz

∣∣∣∣∣ ; ←→µ =

∣∣∣∣∣
µxx 0 0
0 µyy 0
0 0 µzz

∣∣∣∣∣ (1)

is determined using the general formula given in [22]. For the TLM cell
shown in Fig. 1 with scaled dimensions u∆x× v∆y×w∆z, we modify
the tensor permittivities and permeabilities associated with the cell to
account for the effect of the size change while preserving its original
dimensions.

Figure 1. A TLM cell stretched by factors u, v, and w.

The new tensor permittivities and permeabilities are calculated as
follows [22]:

ε′xx =
vw

u
εxx, ε′yy =

uw

v
εyy, ε′zz =

uv

w
εzz

µ′
xx =

vw

u
µxx, µ′

yy =
uw

v
µyy, µ′

zz =
uv

w
µzz

(2)

where u, v, and w are the scaling coefficients in the x, y, and z
directions, respectively. After the new tensors are calculated for each
deformed cell, the overall scattering matrix is calculated using the
general formulae in [22].

Utilizing the rubber cell approach, the TLM simulation carries
out a sequence of scattering and connection steps. The complete TLM
step for nondispersive boundaries is given by

Vk+1 = CSVk + V s
k (3)
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where Vk is the vector of incident impulses for all nodes at the kth
time step. S and C are the global scattering and connection matrices,
respectively. The vector V s

k is the vector of source excitation at the
kth time step.

3. AVM THEORY

Following the discussion in Section 2, we conclude that any off-
grid discontinuity, whether it is a perfectly conductive obstacle or
a dielectric insert, can be modeled by an on-grid discontinuity
surrounded by rubber cells with modified tensors. Accordingly, a
slight perturbation of a discontinuity results in a perturbation in
the surrounding cells tensors. This directly leads to an explicit
perturbation in the nodal scattering matrix of those cells. Hence,
the perturbation can be modeled as an analytical perturbation in the
overall scattering matrix in a way similar to the case of perturbing a
dielectric discontinuity [10].

To calculate the sensitivity of a real objective function F with
respect to a design parameter xi, we follow the derivation presented
in [10]. We make use of the analytical derivative of the system matrix
A with respect to the tensor properties of the perturbed TLM cells
surrounding the discontinuity. The sensitivity is calculating using the
sensitivity expression [10]

∂F

∂xi
≈ ∂eF

∂xi
−∆t

Nt∑
k=0

λT
k

∂A

∂xi
Vk, i = 1, 2, . . . , n (4)

where Nt is the total number of simulation time steps and λk is the
vector of adjoint impulses. λk is calculated using the exact adjoint
system [10]:

λk−1 = ST CT λk − V s, λ
k (5)

where V s, λ
k is the vector of adjoint excitation calculated during the

original simulation.
To calculate the derivative of the system matrix with respect to

the design parameter of interest, we consider a case of a general 3D
perturbation. For such a perturbation, it is possible that a cell is
perturbed in any of the three directions. Using the chain rule:

∂A

∂xi
=

∂A

∂u
· ∆u

∆xi
+

∂A

∂v
· ∆v

∆xi
+

∂A

∂w
· ∆w

∆xi
. (6)
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Then using the chain rule again we have:
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Since the matrix A is an analytical function of the tensors, its
derivatives with respect to the tensors can be analytically calculated.
Using (2), (6), and (7), the analytic derivatives of A with respect to xi,
i = 1, 2, . . . , n, are calculated. They are then used in the sensitivity
expressions (4).

There are many advantages of this technique. First is the
ability to model any discontinuity without the need to snap it to
the grid. Second, the use of analytical derivatives of the system
matrices to model the perturbations increases the algorithm accuracy
and simplifies the implementation.

Finally no mapping approximation [8] is needed and an exact
adjoint system is used for both metallic and dielectric discontinuities.

4. IMPLEMENTATION DETAILS

In [12], the implementation process of the AVM technique in 3D
problems using the symmetric condensed node was explained. Figs. 2
and 3 show the nodes affected and the links to be stored when
perturbing a perfectly conducting and a dielectric discontinuity,
respectively.

Using Johns symmetric condensed node, a perturbation in a
metallic discontinuity changes the way impulses are connected around
it. This affects only the global connection matrix. On the other
hand, when a dielectric discontinuity is perturbed, the perturbation
causes a local change of the dielectric constant. This translates into
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(a) (b)

(c) (d)

Figure 2. A perturbation of a perfectly conducting discontinuity:
(a) impulses stored in original system (top view), (b) impulses stored
in original system (side view), (c) impulses stored in exact perturbed
adjoint system, and (d) impulses stored in approximate unperturbed
adjoint system [12].

a perturbation of the scattering matrix of the surrounding nodes. In
the rubber cell, the perturbation of a design parameter of either a
metallic or a dielectric discontinuity perturbs the nodal scattering
matrix of the nodes affected by this particular design parameter. The
implementation details are explained in more detail in this section for
both types of discontinuities.

4.1. Metallic Discontinuities

To illustrate the actual implementation of AVM for rubber cells,
consider the off-grid metallic discontinuity shown in Fig. 4(a). For
simplicity, we illustrate a 2D case. Using the rubber cells, the
discontinuity is snapped to the symmetric condensed node grid and
then it is surrounded by cells with modified tensor properties as shown
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(a) (b)

(c) (d)

Figure 3. A perturbation of a dielectric discontinuity: (a) impulses
stored in original system, (b) impulses stored in exact perturbed
adjoint system, (c) impulses stored in approximate unperturbed
adjoint system, and (d) impulses stored in exact unperturbed adjoint
system [12] (each group of similar arrows represent impulses to be
stored for a particular node).

in Fig. 4(b). The stretching and shrinkage factors of the rubber cells
are also shown. The sensitivity expression (4) requires storing voltage
impulses in both the original and adjoint simulations. In the original
simulation, we store the impulses reflected from the nodes whose
scattering matrices are affected by the perturbation of the particular
discontinuity.

In the adjoint simulation, we store the reflected impulses on the
links connected to those links used in the original simulation. Figs. 4(c)
and 4(d) show the cells affected by a perturbation in the positive x-
and z-directions, respectively. We store the incident voltages on those
cells in the original simulation and their respective reflected impulses
in the adjoint simulation.
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1-u1 u1
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(a) (b) 

(d) (c)

Figure 4. Rubber cell implementation for a metallic discontinuity; (a)
the off-grid discontinuity, (b) the snapped to grid discontinuity showing
the sizing factors of the rubber cells, (c) the nodes to be stored due
to a perturbation in the positive x direction, and (d) the nodes to be
stored due to a perturbation in the positive z direction.

4.2. Dielectric Discontinuities

An off-grid dielectric discontinuity can be also modeled using the
rubber cell. The geometry is approximated by a snapped-to-the-grid
object surrounded by rubber cells to account for the scaling of the
nodes. In addition, the boundary nodes of the dielectric discontinuity



232 Basl, Bakr, and Nikolova

need to be replaced by rubber cells as well. This is the main difference
between this case and that of metallic discontinuities. Fig. 5(a) shows
an off-grid 2D dielectric object and Fig. 5(b) shows how it is modeled
using rubber cells. Rubber cells are marked with dots in their centers.

When the dielectric object is perturbed in a certain direction, the
scaling factors of both the external and internal boundary nodes are

w
1

w
2

1-
w

1
1-w

2
1-u1 u1

x
z

1-u1 u1

x
z

(a) (b) 

(d) (c)

Figure 5. Rubber cell implementation for a dielectric discontinuity;
(a) the offgrid discontinuity, (b) the snapped to grid discontinuity
showing the sizing factors of the rubber cells, (c) the nodes to be stored
due to a perturbation in the positive x direction, and (d) the nodes to
be stored due to a perturbation in the positive z direction.
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changed. Accordingly, we need to store impulses reflected for these
two types of nodes. Figs. 5(c) and 5(d) show the nodes affected
by perturbation in the positive x- and z-directions, respectively.
Accordingly, we store the incident voltages on those cells in the
original simulation and their respective reflected impulses in the adjoint
simulation.

5. EXAMPLES

The examples presented in this section are simulated using our in-house
TLM simulator coded in Matlab [24]. AVM sensitivities are compared
to central finite difference sensitivities calculated at the response level.
The response of interest is the absolute value of the S-parameters. Our
algorithm provides sensitivities of the real and imaginary parts of the
S-parameters. Accordingly, we can also calculate the sensitivities of
the magnitude and phase of the S-parameters. The sensitivities of the
magnitude are obtained using the formula:

∂ |Spq|
∂xi

=
Re {Spq}

(
∂Re{Spq}

∂xi

)
+ Im {Spq}

(
∂Im{Spq}

∂xi

)
|Spq|

(8)

where p and q represent the ports number; p, q = 1, 2, . . . , N .

5.1. Three-Resonator Waveguide Filter [15]

The filter is shown in Fig. 6. The waveguide width is a =
60.0 mm and its length is 180.0 mm. The cell size is ∆l = 1.5 mm.
Johns matrix boundaries are used to model the dispersive waveguide
ports. Symmetry is used to simulate only half of the structure.

Figure 6. A three-resonator waveguide filter.
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Figure 7. Return and insertion losses for the three-resonator
waveguide filter.

The design parameters are the iris widths w1 and w2, and the
resonator lengths l1 and l2. The nominal values are [w1 w2 l1 l2]

T =
[14.0 17.0 40.0 45.0]T mm and the irises have zero thickness. Fig. 7
shows the S-parameters calculated using our in-house TLM simulator
employing the rubber cell implementation in comparison with the
S-parameters calculated using HFSS [25].Very good agreement is
obtained between the two simulators. Fig. 8 shows the S-parameters
sensitivities calculated with respect to all the design parameters. Good
agreement is obtained at most frequencies except at frequencies where
the response is highly nonlinear. Using central-difference calculations
at the response level requires 8 additional simulations. Using AVM only
2 full simulations are required. AVM simulations required 473 seconds
for the original system, 491 seconds for the adjoint system, and 289
seconds for the postprocessing calculations of the sensitivities. The
total is 1253 for 4 parameters and 29 frequencies. On the other hand
using HFSS and central differences required a total of 9× 172 = 1548
seconds for .1in TLM lies in the use of the rubber cell that requires
using a smaller time step to ensure stability.

5.2. Dielectric Resonator Filter [11]

The S-parameter sensitivities of the dielectric resonator filter shown
in Fig. 9 are also calculated using our AVM approach. The width
of the waveguide is 60.0 mm, with ∆l = 1.5 mm. The waveguide
length is 150.0 mm. The sensitivities are calculated with respect
to the width w and the thickness d of the dielectric posts. The
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Figure 8. Return loss and insertion loss sensitivities for the
three-resonator waveguide filter; |S11| sensitivities calculated using
central-differences (—); |S11| sensitivities calculated using AVM (◦);
|S21| sensitivities calculated using central-differences (- -); and |S21|
sensitivities calculated using AVM (�).

dielectric permittivity is εr = 4.0. The S-parameter sensitivities
are estimated over a range of frequencies where only the dominant
mode is propagating. The sensitivities are calculated at [w d s]T =
[18.86 11.32 37.0]T mm and compared to central-difference sensitivities
in Fig. 10. Central-difference calculations require 6 extra simulations,
while AVM calculations require only one extra TLM simulation.

5.3. An Evanescent Mode Waveguide Filter [26]

The evanescent mode filter is shown in Fig. 11(a). It consists of
alternating dielectric and air sections. The input and output sections
of the filter are dielectric-filled. The main advantage of this filter
is achieving a smaller structure, besides decreasing manufacturing
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Figure 9. The dielectric resonator filter.

Figure 10. Return loss and insertion loss sensitivities for the dielectric
resonator filter; |S11| sensitivities calculated using central-differences
(—); |S11| sensitivities calculated using AVM (◦); |S21| sensitivities
calculated using central-differences (- -); and |S21| sensitivities
calculated using AVM (�).

tolerances compared to metallic iris waveguides.
The waveguide width is 40.0 mm. The dielectric used has εr =

2.54. The cell size is 1.0 mm. The structure is symmetrical with
respect to its 2 ports. The lengths of the air sections are l1 = 13.0 mm
and l2 = 23.0 mm. The two dielectric sections are of equal lengths
l3 = 23.0 mm. The filter is designed and optimized using the mode
matching solver µWave Wizard [27]. A comparison between the filter
responses obtained using mode matching and using our in-house TLM
simulator is shown in Fig. 11(b). Fig. 12 compares the return and
insertion loss sensitivities calculated using AVM and using central
differences. Good agreement is obtained for the two approaches except
at some frequencies due to the high nonlinearity of the filter frequency
response. The results also agree with the published results in [16] for
the same example without using the rubber cell.
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(a)

(b)

Figure 11. Evanescent mode waveguide filter: (a) 3-D layout and,
(b) the reflection and insertion loss (MM: mode matching).

6. APPLICATIONS OF AVM

In the previous sections we showed how the AVM offers an efficient
approach for sensitivity analysis in EM numerical simulations. In this
section we present how the AVM sensitivities can be directly used
to significantly improve the efficiency of EM design optimization and
tolerance analysis.

6.1. Gradient Based Optimization

In this example we use the AVM sensitivities to optimize the three
resonator filter presented in Section 5. The design parameters are
the iris widths and the resonator lengths. In total we have four
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Figure 12. Return loss and insertion loss sensitivities for the
evanescent mode filter; |S11| sensitivities calculated using central-
differences (—); |S11| sensitivities calculated using AVM (◦); |S21|
sensitivities calculated using central-differences (- -); and |S21|
sensitivities calculated using AVM (�).
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optimization variables. The design specifications for this filter are:

|S11| ≥ 0.9 for 2.8 GHz ≤ f ≤ 3.27 GHz
|S11| ≤ 0.15 for 3.46 GHz ≤ f ≤ 3.95 GHz.
|S11| ≥ 0.9 for 4.34 GHz ≤ f ≤ 5.34 GHz

(9)

The initial values of the design parameters are [w1 w2 l1 l2]T =
[14.0 17.0 40.0 45.0]T mm. The filter response for these values is shown
in Fig. 13 together with the design requirements. Optimization is
done using the Matlab [23] minimax optimization algorithm. Gradients
calculated using the AVM are provided at every optimization iteration.
The optimizer reached the optimal set of parameters after 6 iterations
using only 14 function evaluations including those needed for the line
search performed per iteration. This means 6 AVM simulations in
addition to 8 function evaluations for line search. This is equivalent to
a total of 20 TLM simulations. If finite-difference approximations were
used, we would need 5 functions evaluations per iteration in addition
to the 8 function evaluations for line search resulting in a total of 38
EM simulations.

Figure 13. S-parameters for the three-resonator filter showing the
required design specifications.

It is clear that AVM achieves almost 50% computational savings
in the whole optimization process. These savings will be more
significant for a problem with larger number of design variables.
The optimal values for the design parameters are [w1 w2 l1 l2]T =
[13.0998 17.1969 40.2254 43.4182]T mm. The optimized filter response
is shown in Fig. 14.
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Figure 14. The optimized filter response.

Figure 15. The tolerance analysis curves for the three-resonators
filter.

6.2. Tolerance Analysis

Tolerance and yield analysis use the EM simulator to determine a
priori the percentage of defective products produced by the fabrication
process due to manufacturing tolerances. Tolerance analysis
involves performing hundreds of full-wave simulations employing small
perturbations in the optimized design.
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Since AVM provides response gradients in an efficient way, we
used them to predict the response of the optimal design with small
tolerances. Using Taylor’s expansion, the response of the slightly
perturbed design can be predicted to be

|S11 (x + ∆x)| = |S11 (x)|+
[
∂ |S11|

∂x

]T

·∆x (10)

where ∆x lies within the manufacturing tolerance of the process used.
Equation (10) is calculated hundreds of times using randomly chosen
values for ∆x to predict the response of the optimal design when
affected by the tolerances. This means only one full wave AVM
simulation is needed to perform a complete tolerance analysis. Fig. 15
shows tolerance analysis for the optimized three-resonator waveguide
filter example. The tolerance used is 10%.

7. CONCLUSION

The AVM is applied for the first time to TLM problems with conformal
boundary modeling. This conformal modeling is achieved using TLM
rubber cells with modified tensors to model irregular cells. Using
this novel technique, all perturbations can be modeled as analytical
perturbations of the global scattering matrix. The availability of the
analytical derivative of the system matrix with respect to any design
parameter enables us to derive an exact adjoint system, thus increasing
the algorithm accuracy, while simplifying its implementation. We
utilized the AVM sensitivities to illustrate efficient gradient-based
optimization and tolerance analysis.
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