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Abstract—A new set of higher order hierarchical basis functions
based on curvilinear triangular patch is proposed for expansion of
the current in electrical field integral equations (EFIE) solved by
method of moments (MoM). The multilevel fast multipole method
(MLFMM) is used to accelerate matrix-vector product. An improved
sparse approximate inverse (SAI) preconditioner in the higher order
hierarchical MLFMM context is constructed based on the near-
field matrix of the EFIE. The quality of the SAI preconditioner
can be greatly improved by use of information from higher order
hierarchical MLFMM implementation. Numerical experiments with a
few electromagnetic scattering problems for open structures are given
to show the validity and efficiency of the proposed SAI preconditioner.

1. INTRODUCTION

Electromagnetic integral equations are often discretized with the
method of moments (MoM) [1–7], one of the most widespread and
generally accepted techniques for electromagnetic problems. The
formulation considered in this paper is the electric field integral
equation (EFIE) as it is the most general and does not require any
assumption about the geometry of the object. It is convenient to
model objects with arbitrary shape using triangular patches; hence,
RWG functions [8] are widely used for representing unknown current
distributions. When iterative solvers are used to solve the MoM
matrix equation, the fast multipole method (FMM) or multilevel fast
multipole method (MLFMM) [9–15] can be used to accelerate the
calculation of matrix-vector multiplies. However, the RWG functions
have a poor convergence and need a large number of unknowns for
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a desired accuracy. To circumvent this disadvantage, a remedy is to
employ higher order basis functions.

In this paper, a new set of higher order hierarchical basis
functions [16, 17] based on curvilinear triangular patch is constructed
in MoM, which is derived from the TVFE’s for finite element method
(FEM) discretization proposed by Andersen and Volakis [16]. The
new proposed basis set is convenient to model objects with arbitrary
shape using curve triangular patches compared with the hierarchical
Legendre basis functions for a quadrilaterals element proposed by
Jorgensen et al. in [17]. Hierarchical functions allow for much greater
flexibility. The basis of order M is a subset of the basis of order
M + 1, which allows mixing of different order bases in the same mesh.
Thus, hierarchical bases combine the advantages of both low-order
and higher order bases into a single flexible basis. This desirable
property allows for selective field expansion using different order bases
in different regions of the computational domain. Lowest order bases
can be employed in regions where the field is expected to vary slowly
whereas higher order bases can be employed in regions where rapid
field variation is anticipated.

The system matrix resulted from EFIE with the higher order
hierarchical basis functions is often an ill-conditioned matrix and
results in the low convergence of the Krylov iterative method
[18]. Simple preconditioners like the diagonal or diagonal blocks
of the coefficient matrix can be effective only when the matrix has
some degree of diagonal dominance [19]. Incomplete LU (ILU)
preconditioners have been successfully used on nonsymmetric dense
systems in [20], but the factors of the ILU preconditioner may become
very ill-conditioned and consequently the performance is very poor
[21]. As an attempt for a possible remedy, the new perturbed ILU
preconditioner is proposed [22]. The key idea is to perturb the near-
field impedance matrix of EFIE with the principle value term of the
magnetic field integral equation (MFIE) operator before constructing
ILU preconditioners. The perturbed ILU preconditioner is just applied
for electromagnetic scattering problems of closed objects in [22]. An
effective sparse approximate inverse (SAI) preconditioner suitable for
implementation in the FMM context has also been proposed [23],
which is based on a Frobenius-norm minimization with a priori sparsity
pattern selection strategy. The performance of SAI preconditioner
is greatly influenced by the way of choosing nonzero pattern and
the way of solving the least-squares problems in the minimization
process. In this paper, information from higher order hierarchical
MLFMM implementation is employed to develop a high quality SAI
preconditioner, resulting in a faster convergence rate [24].
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This paper is outlined as follows. Section 2 gives an introduction
of EFIE formulation combined with the higher order hierarchical
basis function. Section 3 describes the details to construct the SAI
preconditioner by use of information from higher order hierarchical
MLFMM implementation based on the near-field matrix. Numerical
examples are given to demonstrate the accuracy and efficiency of the
proposed method in radar cross section (RCS) calculations in Section 4.
Section 5 gives some conclusions and comments.

2. HIGH ORDER HIERARCHICAL BASIS FUNCTION

Consider an arbitrarily-shaped 3-D conducting object illuminated by
an incident field Ei, the EFIE is given by (an e−iωt time convention
has been assumed and suppressed)

−kηi

4π
t̂ ·

∫
S
Ḡ (r, r’) · J (r’) dS′ = t̂ · Ei(r) (1)

where k is wavenumber, η is impedance, t̂ is the unit tangential vector,
r’ and r are source point and observation point on S, respectively. J(r)
denotes the unknown surface current density, and Ḡ(r, r’) is defined
by

Ḡ(r, r’) =
[
Ī − 1

k2
∇∇′

]
eik|r−r’|

|r − r’| (2)

The EFIE can be solved by MoM. The conducting surface is subdivided
into small triangular patches and the unknown current J(r) is first
expanded as

J(r) =
N∑

i=1

Inf(r) (3)

where N is the number of unknowns, f(r) denote the vector basis
functions and In is the unknown expansion coefficients. Applying
Galerkin’s method results in a matrix equation

N∑
n=1

AmnIn = bm, m = 1, 2, . . . , N (4)

where

Amn =
−kηi
4π

∫
s
fm(r) ·

∫
s′

Ḡ(r, r’) · fn(r’)dsds′ (5)

bm =
∫

s
fm(r) · Ei(r)ds (6)
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The factor that most limits the capability of the MoM is the
number of unknowns. As pointed out in the introduction, this
limitation can be relaxed by using higher order basis functions. For a
given accuracy, the use of higher order basis functions allows us to use
larger triangular patches to discrete the objects. A new set of higher
order hierarchical basis functions is developed for MoM. The proposed
class of hierarchical basis function is based on the hierarchical TVFE’s
introduced in [16].

Divergence-conforming bases f̄e
β on 2-D elements can be obtained

by forming the cross product of the associated curl-conforming bases
W̄ e

β with the unit vector n̂ normal to the element [25] and defined as
follows:

f̄e
β = W̄ e

β × n̂ (7)

Thus, the divergence-conforming bases of order 0.5 on the above
Lars S. Andersen’s curl-conforming basis functions are

f̄e
1 = (ξ2∇ξ3 − ξ3∇ξ2) × n̂ (8)
f̄e
2 = (ξ3∇ξ1 − ξ1∇ξ3) × n̂ (9)
f̄e
3 = (ξ1∇ξ2 − ξ2∇ξ1) × n̂ (10)

with

∇ξ2 =
n̂× Ī1
J

, ∇ξ3 =
n̂×

(
Ī2 − Ī1

)
J

(11)

where J is the Jacobian, ξ1, ξ2, ξ3 are the simplex coordinates, Īi (i =
1, 2, 3) represents the edge vector opposite to the nodes 1, 2, and
3, respectively. The divergence-conforming bases of order 0.5 based
on curvilinear triangular patch are shown in Figure 1. Taking (11)
into (8)–(10), we obtain the divergence -conforming bases of order 0.5

f̄e
1 =

1
J

(
ξ2Ī3 − ξ3Ī2

)
(12)

f̄e
2 =

1
J

(
ξ3Ī1 − ξ1Ī3

)
(13)

f̄e
3 =

1
J

(
ξ1Ī2 − ξ2Ī1

)
(14)

As described in the above, the hierarchical basis functions of order
1.5 can be obtained by forming the cross product of the curl-conforming
bases W̄ e

β with the unit vector n̂ and defined as

f̄e
1 =

1
J

(
ξ2Ī3 − ξ3Ī2

)
(15)
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Figure 1. Example of divergence-conforming bases of order 0.5
based on curvilinear triangular patch: (a) a cell of curvilinear
triangular patch in the xyz coordinate system, (b) the projection of
the curvilinear triangular patch in the simplex coordinate system.

f̄e
2 =

1
J

(
ξ3Ī1 − ξ1Ī3

)
(16)

f̄e
3 =

1
J

(
ξ1Ī2 − ξ2Ī1

)
(17)

f̄e
4 =

1
J

(ξ2 − ξ3)
(
ξ2Ī3 − ξ3Ī2

)
(18)

f̄e
5 =

1
J

(ξ3 − ξ1)
(
ξ3Ī1 − ξ1Ī3

)
(19)

f̄e
6 =

1
J

(ξ1 − ξ2)
(
ξ1Ī2 − ξ2Ī1

)
(20)

f̄e
7 =

1
J
ξ1

(
ξ2Ī3 − ξ3Ī2

)
(21)

f̄e
8 =

1
J
ξ2

(
ξ3Ī1 − ξ1Ī3

)
(22)

The hierarchical basis functions are ideally suited for employing an
efficient selective field expansion where different order basis functions
are employed in different regions of the computational domain. Hence,
for a uniform mesh, the lowest order basis functions can be employed
in regions where the field is expected to experience smooth variation
(regions where the relative material parameters are (nearly) unity,
away from edges, etc.) whereas a higher order basis functions can be
employed in regions where the field is expected to vary rapidly (near
edges close to material boundaries, in dense materials. etc.).

A generalization of the hierarchical basis functions of order 2.5 and
even higher order ones can be obtained in a similar way. Finally, the



260 Ding, Chen, and Fan

element of the impedance matrix Amn is evaluated with the presented
hierarchical basis functions. The linear system of equations in (4) can
be solved by the restart GMRES iterative method using MLFMM to
accelerate the matrix-vector multiplication. Note that in MLFMM,
Amn is evaluated only when fm and fn are inside the same or nearby
groups.

3. THE IMPROVED SAI PRECONDITIONER

It is well known that the convergence rate of an iterative solution is
dependent upon the spectral radius of the matrix equation system. The
use of higher order hierarchical basis functions increases the condition
number of the system. In order to speed up the convergence rate of
Krylov methods, preconditioning techniques are employed to transform
the EFIE matrix equations into an equivalent form

MhAhx = Mhb (23)

where Ah is the EFIE impedance matrix associated with the higher
order hierarchical basis functions and Mh is the corresponding
preconditioner. The purpose of preconditioning is to make the
preconditioned matrix MhAh better conditioned than the original
matrix Ah.

A SAI preconditioner is considered based on a Frobenius-norm
minimization procedure. SAI computes a SAI for the coefficient matrix
A as the matrix Mh = {mij}, which minimizes ‖I − MhAh‖F subject
to certain sparsity constraints. Owing to the rapid decay of the discrete
Green’s function, most of large entries in the impedance matrix Ah are
located in its near-part matrix Ahn. Ahn is the symmetric near-field
matrix of the EFIE impedance matrix Ah associated with the higher
order hierarchical basis functions. Therefore, in the MLFMM context,
the near-part matrix Ahn is widely used as the basis for constructing
preconditioners. The Frobenius-norm is usually chosen because it
allows the decoupling of the constrained minimization problem into N
independent linear least-squares problems for each row of Mh (when
preconditioning from the left).

‖I − MhAhn‖2
F =

∥∥∥I − MhAT
hn

∥∥∥2

F
=

N∑
j=1

‖ej −Ahnmj‖2
2 (24)

where ej is the j-th unit vector and mj is the column vector
representing the j-th row of Mh. The main issue for the computation
of SAI preconditioner is the selection of the nonzero pattern for Mh,
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that is, the set of indices

S =
{
(i, j) ∈ [1, N ]2 s · t ·mij 
= 0

}
If the sparsity of Mh is known, the nonzero structure for the j-th
column of Mh is automatically determined and defined as

J = {i ∈ [1, N ]s · t · i, j 
= 0}
Then, the solution of the least-squares problems (24) involves only the
columns of Ahn indexed by J , which can be denoted by Ahn(:, J).
Because Ahn is sparse, many rows in Ahn(:, J) are usually null, not
affecting the solution of the least-squares problems. I is the set of
indices corresponding to the nonzero rows in Ahn(:, J). We defined
Âhn = Ahn(I, J) as the “reduced” form corresponding to the nonzero
pattern for Mh. And then we defined the column vector of Mh

corresponding to the nonzero rows in Ahn(:, J) by m̂j = mj(J), and
the j-th unit vector corresponding to the nonzero rows in Ahn(:, J) by
êj = ej(J). Thus, the least-squares problems can be transformed into
the “reduced” form

min
∥∥∥êj − Âhnm̂j

∥∥∥2

2
, j = 1, . . . , N (25)

Usually the “reduced” least-squares problems (25) have much smaller
size than that of least-squares problems (24). In MLFMM, N higher
order hierarchical basis fuctions are divided into R groups, denoted
by Gp(p = 1, 2, . . . , R). Make a close look at the higher order
hierarchical MLFMM implementation, we can find that each higher
order hierarchical basis function in one group on the finest level couples
with the higher order basis functions in the same and the adjacent
groups on the same level via the near-field matrix. Therefore, each
basis function in a group couples with the same set of higher order
basis functions in the near-field matrix. Based on this information, we
can now further reduce the size of the least-squares problems defined
by formulation (25).

Let j-th group be denoted by Gj and its neighbors by NGj (not
including itself), then the nonzero structure for all columns of Mh

corresponding to the hierarchical basis functions in the group Gj can
be determined and defined as:

J = {i ∈ [1, N ]s · t · i ∈ Gj or i ∈ NGj}
Suppose NNGj to be neighbor groups of NGj (also not including
itself), the nonzero structure of the above defined submatrix Ahn(:, J),
is constrained by the set of indices I defined as:

I = {i ∈ [1, N ]s · t · i ∈ Gj or i ∈ NGj or i ∈ NNGj}
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We defined the newly constrained near-field matrix by Āhn. And then
we defined the j-th column vector of Mh and unit vector corresponding
to the nonzero rows in the newly constrained near-field matrix Āhn by
M̄j and Ēj , respectively. Thus, the least-squares problems can be
further reduced into the form of

min
∥∥Ēj − ĀM̄j

∥∥2
2 , j = 1, . . . ,M (26)

where R is the number of groups on the finest level in MLFMM. Since
R is usually much smaller than N , the construction cost of the SAI
preconditioner can be significantly cut down by using formulation (26)
instead of (25).

To capture stronger couplings between the basis functions and to
keep the size of the problems (26) to be smaller, we apply two filtrations
to the set of indices J and I, respectively, as follows:

J = {i ∈ [1, N ] (i ∈ Gj or i ∈ NGj) and (dist(i, j) ≤ τ1)} (27)
I = {i ∈ [1, N ] (i ∈ Gj or i ∈ NGj or i ∈ NNGj)

and (dist(i, k) ≤ τ2, k ∈ J)} (28)

where dist(i, j) denotes the distance between the center point of the
group Gj and the center point of the edge i and dist(i, k) denotes the
distance between the center point of groups containing all edges k ∈ J
and the center point of the edge i. τ1 and τ2 are two nonzero real
values. Generally, the size dimension of the group on the finest level
is approximately half of the wavelength (0.5λ). Then the values of τ1
and τ2 are recommended to be

0.25λ ≤ τ1, τ2 ≤ 1.0λ and τ1 ≤ τ2

It should be noted that the proposed SAI preconditioner operates on
all edges in a group at a time, it can reduce the construction cost of
the conventional SAI significantly.

4. NUMERICAL EXPERIMENTS

In this section, we show some numerical results for open conducting
structures that illustrate the effectiveness of the proposed SAI
preconditioner for the solution of the EFIE linear systems in
electromagnetic scattering problems. The EFIE linear systems based
on the presented hierarchical basis functions of 1.5 order are solved
with higher order hierarchical MLFMM accelerated Krylov iterative
methods. All numerical experiments are performed on a Pentium
4 with 2.9 GHz CPU and 2 GB RAM in single precision. The
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restarted version of GMRES(m) (generalised minimal residual iterative
method) [20] algorithm is used as iterative method, where m is the
dimension size of Krylov subspace for GMRES. Additional details and
comments on the implementation are given as follows:

• Zero vector is taken as initial approximate solution for all
examples and all systems in each example.

• The iteration process is terminated when the normalized
backward error is reduced by 10−3 for all the examples. The maximum
number of iterations is limited to be 600.

• m = 30 is used as the dimension of the Krylov subspace for the
restarted GMRES method. 1.0 is taken as the relaxation parameter
for building the SSOR preconditioner.
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Figure 2. The bistatic RCS for a box-plate scatterer consisting of a
plate of size (1 m × 1 m) placed on an 2 m × 1 m large plate having a
thickness of 0.3 m at 1 GHz.

The first example is a box-plate perfectly electrically conducting
(PEC) scatterer consisting of a plate of size (1 m × 1 m) placed on
a 2 m × 1 m large plate having a thickness of 0.3 m. As shown in
Figure 2, the bottom box of the box-plate scatter has x direction
in the longer side and the vertical plate is parallel to y-z plane in
the Cartesian coordinate. The operating frequency is 1 GHz. The
scatterer is discretized with 12232 curvilinear triangular patches for
0.5 order hierarchical basis functions and 2328 for 1.5 order ones with
18319 and 11614 unknowns, respectively. To verify the accuracy of
the method, a closed scatterer consisting of a plate of size (1 m× 1 m)
having a thickness of 0.01 m placed on the above plate is considered.
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In our experiments, the restarted version of GMRES (30) algorithm
is used. The normalized residual error is taken to be 10−3. The
MLFMM algorithm with four levels is employed to speed up the
computation of the matrix-vector products involving non-near zone
interaction elements. The bi-static RCS of the scatterer with vertical
polarization is given in Figure 2 for 0.5 and 1.5 order hierarchical basis
functions. The incident angles of plane wave are φi = 0◦, θi = 0◦. It
can be found that there is an excellent agreement between the box-
plate and the closed one. As shown in Table 1, the computation time
and memory requirement of the restarted GMRES algorithm is given
for the EFIE matrix system with 0.5 and 1.5 order hierarchical basis
functions, respectively. It can be seen that the use of the hierarchical
higher order basis functions allows the number of unknowns to be
reduced by a factor of 1.58.

Table 1. Computation time (in seconds) and memory requirement for
a box-plate scatterer.

Basis functions Unknowns Iteration step Solution time Memory

0.5 order 18319 1193 1951 s 60MB

1.5 order 11614 9201 9773 s 16MB
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Figure 3. The monostatic RCS for vertical polarization at 300 MHz
for an open cavity.
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It is also observed that the number of iterations and computation
time increases with the order of the hierarchical basis functions
because of the increased condition number of the system. In order
to accelerate the convergence rate of GMRES algorithm for the
EFIE system based on the hierarchical basis functions of order 1.5,
the improved SAI preconditioning techniques are developed. We
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Figure 4. The monostatic RCS for vertical polarization at 3.0 GHz
for an open cone.
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Figure 5. The monostatic RCS for vertical polarization at 300 MHz
for an open tube.
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Figure 6. Convergence history of GMRES algorithms on the box-
plate example.

investigated the performance of the improved SAI preconditioner on
four open conducting structures. The first example is the above box-
plate example. The second example is a 2.5λ × 2.5λ × 3.75λ open
cavity with 4698 unknowns for 1.5 order hierarchical basis functions
at 300 MHz (λ is wavelength in free space). The third example is a
metallic open cone, which has a height of 20 cm and a base whose
diameter is also 20 cm. The open cone is discretized with 1632
curvilinear triangular patches for 1.5 order hierarchical basis functions
with 8096 unknowns at 3 GHz. The last example is a metallic open
circular cylinder (tube), which has a length of 2.76λ and a diameter of
0.432λ. The open tube is discretized with 2412 curvilinear triangular
patches for 1.5 order hierarchical basis functions with 12012 unknowns
at 300 MHz. The numerical results of monostatic RCS for the other
three examples are given in Figures 3–5. It can be found that the result
using 1.5 order hierarchical basis agree well with the result in [26–28].

In order to further investigate the performance of the proposed
improved SAI preconditioner, the convergence history of GMRES
algorithms with different preconditioners for all examples is shown
in Figs. 6–9, where Diag denotes the diagonal preconditioner, ILUT
denotes the ILU preconditioner dynamically control fill-ins during the
construction process [20], SSOR denotes the symmetric successive
over-relaxation preconditioner, and MSAI stands for the improved
SAI preconditioner suggested in this paper. It can be found that
GMRES algorithm with no preconditioner does not reach convergence
in 600 iterations for these four open structures. Furthermore, the
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Figure 7. Convergence history of GMRES algorithms on the open
cavity example.

diagonal, SSOR and ILUT preconditioned GMRES method slow down
the convergence of GMRES algorithm, while both SAI preconditioned
GMRES and MSAI preconditioned GMRES reach convergence in
less than 600 iterations for all the examples. It can be seen that
diagonal, SSOR and ILUT preconditioners deteriorate the convergence
of GMRES method on the examples due to the ill-conditioned factors
of the preconditioning matrix. It can also be observed that the SAI
and MSAI preconditioners are much more efficient than the other
preconditioners. When compared with SAI preconditioned GMRES,
the improved SAI preconditioned GMRES decreases the number of
iterations by a factor of 2.1 on the box-plate example, 2.5 on the open
cavity example, 2.6 on the open cone example, and 2.0 on the open
tube example. This demonstrates the efficiency of the newly proposed
SAI preconditioner for open structures.

Since a good preconditioner depends not only on its effect on
convergence but also on its construction and implementation time.
The construction time and total solution time of GMRES algorithms
with different preconditioners on all examples are given in Tables 2–5,
where ∗ refers to no convergence after maximum 600 iterations and
the density of a preconditioner is defined by the ratio of the number
of non-zero entries in the preconditioning matrix to the number of
entries in the full EFIE impedance matrix. It can be found that
the MSAI preconditioner reduces the construction cost significantly
while maintains good quality compared with the conventional SAI
preconditioner. This justifies the use of grouping information from
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Figure 8. Convergence history of GMRES algorithms on the open
cone example.
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Figure 9. Convergence history of GMRES algorithms on the open
tube example.

higher order hierarchical MLFMM for reforming the least-squares
problems and for selecting nonzero pattern in the implementation of
the MSAI preconditioner. When compared in terms of total solution
time (including both the construction time and the iterative solution
time), the MSAI preconditioner has a gain over the general SAI
preconditioner by a factor of 11.4 on the box-plate example, 20.7 on
the open cavity example, 16.2 on the open cone example, and 18.2 on
the open tube example.
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Table 2. Comparison of the cost and performance of different
preconditioners on the box-plate example.

Density
Construction

time
Iterations Solution time Total time

SSOR 0.73% - ∗ ∗ ∗
ILUT 2.5% 3723 s ∗ ∗ ∗
SAI 1.39% 4572 s 365 525 s 5097 s

MSAI 2.21% 236 s 176 212 s 448 s

Table 3. Comparison of the cost and performance of different
preconditioners on the open cavity example.

Density
Construction

time
Iterations Solution time Total time

SSOR 1.89% - ∗ ∗ ∗
ILUT 6.28% 1391 s ∗ ∗ ∗
SAI 1.87% 529 s 235 112 s 641 s

MSAI 1.84% 6 s 94 25 s 31 s

Table 4. Comparison of the cost and performance of different
preconditioners on the open cone example.

Density
Construction

time
Iterations Solution time Total time

SSOR 1.11% - ∗ ∗ ∗
ILUT 3.67% 3059 s ∗ ∗ ∗
SAI 2.01% 6464 s 277 159 s 6623 s

MSAI 3.76% 332 s 107 78 s 410 s

5. CONCLUSIONS AND COMMENTS

In this paper, a new set of higher order hierarchical basis functions
based on curvilinear triangular patch is proposed for EFIE solved using
the MLFMM with a reduced computational complexity. Information
from higher order hierarchical MLFMM is employed to develop high
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Table 5. Comparison of the cost and performance of different
preconditioners on the open tube example.

Density
Construction

time
Iterations Solution time Total time

SSOR 0.8% - * * *

ILUT 4.54% 5723 s * * *

SAI 1.465% 14834 s 56 185 s 15019 s

MSAI 2.26% 726 s 28 96 s 822 s

quality of SAI preconditioner when solving large dense linear systems
that arise in the EFIE formulation of electromagnetic scattering
problems. The key idea is to block several independent least-
squares problems into one for all edges in a group. Thus, the
N independent least-squares problems in the construction of the
general SAI preconditioner are reduced to M (group number) reformed
least-squares problems, which save the construction cost significantly.
Moreover, two filtration strategies are proposed to capture stronger
coupling between higher order hierarchical basis functions for proper
nonzero pattern selection. Numerical experiments on several open
structure examples are performed and the comparison is made with
other preconditioners. It can be found that the proposed SAI
preconditioner is more efficient and can significantly reduce the overall
computational cost.
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