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Abstract—The excitation of forward and backward, Electromagnetic
(EM) modes and fields in an anisotropic, parallel plate waveguide
(meeting Dirichlet and Neumann boundary conditions), is studied,
using a modified coordinate transformation which reduces Maxwell’s
equations to the form of a Helmholtz wave equation satisfying Dirichlet
and mixed-partial derivative boundary conditions. The EM modes
and fields of the system are excited by a novel, slanted electric
surface current excitation whose slant angle has been chosen to
coincide with the surfaces of constant phase of the anisotropic modes
which may propagate in the waveguide. Also presented in the
paper, for comparison purposes, is the EM field excitation analysis
corresponding to an isotropic parallel plate waveguide whose waveguide
characteristics are close to those of the anisotropic waveguide. Several
results are presented herein, including; a novel waveguide modal
characteristic equation analysis used to determine the propagating
and complex (or non propagating) modes that may exist in an
anisotropic waveguide system, a novel study of backward-forward
modal orthogonality based on the complex Poynting theorem and a
power-energy reaction integral equation, descriptions of the matrix
analyses used to determine the EM fields excited in the anisotropic and
isotropic waveguide systems under consideration, and several numerical
results.
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1. INTRODUCTION

An important problem in electromagnetics consists of determining the
propagation, excitation, power characteristics and Green’s functions
that occur in a layered waveguide system containing anisotropic or
bianisotropic media [1–7]. This problem is important in such areas
as; the design of radar absorbing materials, design of microwave
and millimeter waveguides and components containing anisotropic
materials (ferrites, plasma waveguides), design of composite perfect
conductor-dielectric systems which exhibit backward propagation
characteristics (periodically placed wires in a waveguide) [2], design
of opto-electronic waveguides and devices and many other areas as
well.

A useful mathematical technique [3, 4, 8] which greatly aids in
the analysis of electromagnetic fields in anisotropic homogeneous
materials consists of using a coordinate change of variables which when
substituted in Maxwell’s anisotropic equations, reduces Maxwell’s
equations to a Helmholtz wave equation, an equation for which
well known solutions exist. Monzon [8] has used this technique to
derive the Green’s function of homogeneous, anisotropic materials
located in unbounded space for the case when just three nonzero
EM field components were excited. In a recent paper Jarem [3]
introduced a modification of the coordinate transformation developed
by Monzon [8] to derive the Green’s function corresponding to a
homogeneous anisotropic half space bounded by a Perfect Electric
Conductor (PEC ) or by a Perfect Magnetic Conductor (PMC ). Fourier
transform theory was used to derive the Green’s function and in [3],
several numerical examples of the Green’s function were presented.
The just described modified transformation of Jarem [3] has also been
recently applied to study the resonant frequency of an anisotropic,
inhomogeneous resonant cavity [4]. In this work, a resonant frequency
analysis of a parallelogram cavity consisting of three PEC walls and
one PMC wall was performed. The analysis was performed by solving
the Helmholtz wave equation (expressed in x′, y′ coordinates [3]) for
the EM fields in the cavity, forming a stationary variational expression
for the resonant frequency of the cavity, and then finally, minimizing
the variational expression using trial functions approximately meeting
EM boundary conditions on the three PEC walls and the one PMC
wall of the cavity.

The purpose of the present paper will be to further the study
of propagation and calculation of EM fields in anisotropic waveguides
by using the modified coordinate transformation of [3] to determine
the EM fields that are associated with and that are excited in an
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Figure 1. (a) The basic geometry of the anisotropic parallel plate
waveguide system is shown, (b) including boundary conditions on the
Ez electric field, is shown in dimensionless, transformed coordinates x′,
y′. The “Poynting Box S, `” (x′1 ≤ x′ ≤ x′2) may or may not enclose
the source.

anisotropic, parallel plate waveguide system. The specific parallel plate
waveguide system to be studied is assumed to be infinite in extent,
bounded by a perfect electric and a magnetic conductor wall (see
Fig. 1), contain homogeneous, anisotropic material and is assumed
to be excited by a novel electric slant-surface current (see Fig. 1).
Advantages of using the modified coordinate transformation over using
other mathematical techniques to study EM fields in anisotropic
waveguides, is the fact that the coordinate transformation allows
the easy solution and identification of the surfaces of constant phase
possessed by the propagating modes of the system. These surfaces
have the form x′ = (σP /τ)x + σMy = cons tan t (see Fig. 1) and
knowledge of these surfaces are useful for indicating the direction
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of real power flow of a given propagating mode, are useful for the
study of modal orthogonality between different waveguide modes,
and are useful for the design of efficient EM sources. The specific
values of the numerical waveguide example were chosen so that one of
the modes had the property that its phase velocity and direction of
power flow were in opposite directions (backward wave). The source
used to excite EM fields in the waveguide system has been chosen
to be a novel electric, straight-line, slant surface current excitation
(Fig. 1(a)) whose location coincided with the constant phase planes
of the exponential factor corresponding to propagating mode solutions
of the system. Very little constructive and destructive interference
was observed between the modes excited by this source. The author
believes that other mathematical techniques and methods that may
be used to solve the mixed-partial differential equation resulting from
Maxwell’s anisotropic equations (See [3]) for the present problem, such
as a direct solution by using a y-acting ordinary differential operator
with constant coefficients, such as a finite difference or finite element
method, or such as an integral equation technique cannot lead to as
simple a solution for the EM fields and surfaces of constant phase of
the propagating modes of the waveguide system as provided by the
coordinate transformation method described herein.

A motivation of the paper is to use the anisotropic modal and
source excitation analysis presented herein to calculate EM field and
scattering as results when an anisotropic, inhomogeneous material-
perfect conductor object is placed in an anisotropic waveguide [9].
The Rigorous Coupled Wave Analysis (RCWA) method [7, 10, 11] is
an effective spectral domain method for determining the EM fields
within an inhomogeneous, anisotropic material object. It consists of
dividing the material object into a number of thin layers, using Floquet
theory to solve Mawxell’s equations in each thin layer, and then,
using a boundary-condition matching ladder analysis, determining the
overall form of the EM fields inside the material object. By summing
the anisotropic, waveguide modes calculated in the present paper to
determine the general form of the EM fields exterior to the scattering
object and then boundary matching these EM fields to the internal EM
fields found by the RCWA method, the overall EM fields of the whole
system may be found. The orthogonality properties of the anisotropic
waveguide modes established herein will be useful in implementing an
accurate numerical analysis of the overall system equations for this
problem.

As far as the author knows, this paper presents for the first time
an anisotropic parallel plate waveguide analysis using the modified,
anisotropic transformation coordinates which are defined by Jarem [3].
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Several new results are presented in the paper including; a derivation
of a novel characteristic equation to calculate backward propagation
constants in the waveguide accurately; a novel study of backward
and forward waveguide orthogonality and source excitation based on
the complex Poynting theorem and an EM power reaction integral
equation; and a study of the EM fields and power in an anisotropic
parallel plate waveguide excited by a novel electric slant-line surface
current source.

2. BASIC ANISOTROPIC WAVEGUIDE PROBLEM

The present analysis is concerned with determining the propagating
and complex wave modes which can propagate in an anisotropic
parallel plate waveguide which is bounded by a perfect electric
conductor at ỹ = ỹ′ = b̃ (units of (meters)) and bounded by a perfect
magnetic conductor at ỹ = 0 operating at an angular frequency ω: (1)
when the nonzero EM field components have the form Ez(x̃, ỹ) 6= 0,
Hx(x̃, ỹ) 6= 0, Hy(x̃, ỹ) 6= 0; (2) when the magnetic permeability tensor
of the system µ̃f = µ̃fµ has the following nonzero relative permeability

components µxx = 4.4, µyy = 1.1, µxy = µ∗yx = 0.6+j0.2116601([3, 4]),
µzz 6= 0; and (3) when the permittivity of the system is isotropic
and specified by ε̃ = ε̃fε (µ̃f , ε̃f are the permeability and permittivity
values of free space, respectively). As shown in [3] with the substitution
of Ez(x̃, ỹ) 6= 0, Hx(x̃, ỹ) 6= 0, Hy(x̃, ỹ) 6= 0 in Maxwell’s equation
and introducing normalized coordinates defined by x = k̃f x̃, y = k̃f ỹ

(k̃f = 2π/λ̃f , where λ̃f is the free space wavelength in meters,
ω = 2πf = k̃fc (rad/sec) is angular frequency, f is frequency in
(Hertz), and c = 1/

√
µ̃f ε̃f is the vacuum velocity of light) and using

the transformation coordinates defined by Jarem [3]

x′ =
σP

τ
x + σMy, y′ = y (1)

it is found that Maxwell’s equations reduce to the Helmholtz wave
equation given by

∂2Ez

∂x′2
+

∂2Ez

∂y′2
+ k2Ez = 0 (2)

where k2 = εγ/µyy, γ = γ̃/µ̃2
f = [µ̃xxµ̃yy − µ̃xyµ̃yx]/µ̃2

f 6= 0,
τ =

√
µ̃xx/µ̃yy, σ1,2 = [2 ± (µ̃xy + µ̃yx)/

√
µ̃xxµ̃yy]1/2, σP = 2/σ1σ2

and σM = (σ2
2 − σ2

1)/2σ1σ2. Fig. 1(a) displays the geometry of
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the waveguide system in x, y coordinates and Fig. 1(b) displays the
geometry of the waveguide system in x′, y′ transformation coordinates.
Using the x′, y′ coordinates (Eq. (1)) it is found that the magnetic field
⇀

H is given by

⇀

H =
jµyy

η̃fγ

{(
α

∂Ez

∂x′
+

∂Ez

∂y′

)
âx −

(
βx

∂Ez

∂x′
+ βy

∂Ez

∂y′

)
ây

}
(3)

where α =
(

µxy

µyy

) (
σP
τ

)
+ σM , βx = σP τ +

(
µyx

µyy

)
σM and βy = µyx

µyy
.

The anisotropic parameters listed above have the values [3]: τ =
2.0, γ = 4.4352, σ1 = 1.5954480, σ2 = 1.206045 (in [3], σ2 was
miss-listed as “1.2066045” with an incorrect “6” inserted as shown),
σP = 1.0394023, σM = −0.2834733, α = 0 + j0.1, βx = 1.92418277 +
j0.05454545 and βy = 0.54545454 − j0.19241827. The angle θ shown
in Fig. 1(a) is derived from the equation x′ = 0 = (σP /τ)x + σMy
(or y = tan(θ)x, tan(θ) = σP /(−σMτ) > 0, as 0 < −σM ), and for
the present anisotropic case, has the value θ = 61.3895403◦ The slant
line equation just described in x, y coordinates shown in Fig. 1(a)
represents the x′ = 0 vertical line shown in Fig. 1(b). In [4] an example
of a spatially inhomogeneous, magnetic anisotropic PEC waveguide
whose symmetry properties resulted in a PMC boundary at y = 0 is
presented and discussed.

3. MODAL CHARACTERISTIC EQUATION

This section is concerned with deriving the characteristic equation
from which the wavenumbers of the propagating and complex modes
associated with the anisotropic parallel plate waveguide in the
waveguide (see Fig. 1) may be found. The EM fields of these modes,
using the x′, y′ coordinates of Eq. (1) [3, Eq. (6c)] satisfy the Helmholtz
wave equation (Eq. (2)), satisfy the EM boundary conditions that the
Ez be zero at y = y′ = b (b = k̃f b̃ = 1 herein) and Hx be zero at
y = y′ = 0, and thus Ez satisfies the boundary condition

[
α

∂Ez

∂x′
+

∂Ez

∂y′

] ∣∣∣∣
y′=y=0

= 0 (4)

Solving the Helmholtz wave equation using separation of variables,
satisfying the Dirichlet Ez boundary condition at y = y′ = b using
Ez = E0 exp(−kxx′) sin(ky(b−y′)), and substituting this Ez in Eq. (4),
it is found using k2

x − k2
y + k2 = 0, (jαI)kx sin(kyb) + ky cos(kyb) = 0,

where αI = Imag(α). Solving for kx = [k2
y − k2]1/2, substituting, and
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multiplying the resulting equation by b, it is further found

(jαI)
[
(kyb)2 − (kb)2

]1/2 sin(kyb) + (kyb) cos(kyb) = 0 (5)

For physically correct solutions in the region x′ → ∞ we require
that Real(kx) = Real[k2

y − k2]1/2 ≥ 0 in order that Ez remain
bounded. The total electric field which remains finite in a region
where x′ → ∞, for a general value of the material wavenumber value
k = (εγ/µyy)1/2 (Eq. (2)) after solving Eq. (5), consists of a sum of
NP propagating modes and an infinite sum of complex modes which
attenuate exponentially as x′ →∞, and is given by

E+
z =

∞∑

n=1

a+
n exp(−k+

xnx′) sin(k+
yn(b− y′)) (6)

where

k+
xn ≡ kxn =

{
jkxnI , n = 1, . . . , NP

kxnR + jkxnI , n = NP + 1, . . . ,∞ (7a)

k+
yn ≡ kyn =

{
kynR, n = 1, . . . , NP

kynR + jkynI , n = NP + 1, . . . ,∞ (7b)

where kxnR, kxnI , kynR, kynI are real numbers, kyn represents solutions
of the characteristic equation Eq. (5), and Real(k+

xn) = Real(kxn) =
Real[k2

yn − k2]1/2 ≥ 0. The general form of the electric field Ez,
call it E−

z , remaining finite in a region x′ → −∞ may be found
from the numerical solution for the wavenumbers k+

xn, k+
yn given by

Eqs. (7a), (7b) with a−n , k−xn, k−yn replacing a+
n , k+

xn, k+
yn respectively, and

taking k−xn = −k+∗
xn , k−yn = k+∗

yn in Eq. (6). We note overall that the
propagating mode solutions for the E±

z field hold for the entire region
−∞ ≤ x′ ≤ ∞, and it’s important to note that these modes may have
real positive flow in either the positive or negative âN directions (see
Fig. 1(a)). When using E±

z to solve source excitation problems, one
must keep only those modes radiating positive real power away from
the source and attenuating to zero at x = ±∞.

Equation (5) represents a complex transcendental, characteristic
equation for the propagating or complex mode wavenumber ky of the
system. In the limiting case when αI → 0, the solutions for kyb in
Eq. (5) approach kmb = (m − 0.5)π, m = 1, 2, 3, . . ., and when αI

is small, but nonzero, the complex magnitude of kyb, |kyb|, is close
to the value of kmb, m = 1, 2, 3, . . .. In carrying out the solution of
Eq. (5), two separate analyses need to be performed, one when kyb is
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not close to kmb and one when it is. In the first case a complex number,
root-finding algorithm may be used to find the solutions for kyb and
in the second case when kyb is very close to kmb, it is useful to make
a change of variables in the characteristic equation (Eq. (5)). Letting
kxb = ju[2kmb+2∆−u2]1/2, kyb = kmb−u2+∆, ∆ = (k−km)b, where
k = (εγ/µyy)1/2, the characteristic equation (Eq. (5)), after algebra,
may be expressed as

DL(u,∆) ≡ −αI [2kmb + 2∆− u2]1/2u

= [kmb + ∆− u2]
[− tan(u2) + tan(∆)

1 + tan(u2) tan(∆)

]
≡ DR(u, ∆) (8)

Figure 2 for the value of m = 3 displays plots of the functions
DL(u,∆) and DR(u,∆) of Eq. (8) over the interval −0.02 ≤ u ≤
0.08, for values of the parameter ∆ ranging from ∆ = −10 × 10−4,
−6.5 × 10−4, −5 × 10−4, and ∆ = 5 × 10−4. The DR(u,∆) plot for
the value of ∆ = −5× 10−4, used for calculations in the paper, is the
negative parabola, solid line plot which intersects the DL(u,∆) solid
line plot at the points u = u1 = 0.014 and u = u2 = 0.038 (shown in
Fig. 2). The resulting kx(u) wavenumbers for these u values turned out
to be kx(u1) = jkxI(u1) = j0.0536671 (kx6I in Table 1 is a backward
mode) and kx(u2) = jkxI(u2) = j0.146364 (kx3I in Table 1). Tables 1
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Figure 2. The left and right DL(u,∆), DR(u,∆) hand sides of
the characteristic equation, Eq. (8) are plotted as a function of u
(∆ = (k − km)b).
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and 2 list examples of the k+
xn, k+

yn and k−xn, k−yn modal wavenumbers
that correspond to the numerical case described in Sec. 2.

4. COMPLEX POYNTING THEOREM AND REACTION
POWER INTEGRAL EQUATION

Two important closely related mathematical equations derived from
Maxwel’s equations useful for establishing orthogonality properties of
waveguide modes and for studying how EM sources excite waveguide
modes in a parallel plate waveguide are the complex Poynting theorem
integral equation and the reaction [12] power integral equation. The
complex Poynting theorem integral equation when applied to the two
dimensional parallel plate waveguide problem of the present problem
is given by

Pf + j2ω[WM −WE ] = PS (9)

where Pf =
∮
`

⇀

S · ând˜̀, WM =
∫∫

S WMdÃ, WE =
∫∫

S WEdÃ,

PS =
∫∫

S PSdÃ, and where
⇀

S =
⇀

E × ⇀

H
∗
/2, WM =

⇀

B · ⇀

H
∗
/4,

WE =
⇀

D·⇀E
∗
/4, PS = −⇀

E·⇀J
∗
V /2, where S is the parallelogram Poynting

box shown in Fig. 1(a). (x̃, ỹ, etc. are unnormalized coordinates (units
of meters)). The anisotropic parameters µxx, µyy are real and positive,
the anisotropic parameters µxy, µyx are complex conjugates of one
another, µxy = µ∗yx = µR + jµI , thus

WM =
1
4

⇀

B · ⇀

H
∗

=
1
4
[BxH∗

x + ByH
∗
y ]

=
1
4
[µxxHxH∗

x + µxyHyH
∗
x + µyxHxH∗

y + µyyHyH
∗
y ] (10)

thus WM is real, as the terms µxyHyH
∗
x and µyxHxH∗

y are

complex conjugates of each other. The current source
⇀

JV is taken
to be a limiting large amplitude, electric volume current source
⇀

JV = Jz(x̃, ỹ)âz (units Amps/m2) distributed over a limiting small,
parallelogram region. In the limit as the small parallelogram region
approaches zero, the volume current acts like a surface current

⇀

Js(y) =
JS(y)âz distributed over the slant line y = tan(θ)x (See Fig. 1(a)).

We will now evaluate the integrals of the complex Poynting
Theorem as given by Eq. (9). When the Poynting box of Fig. 1 encloses
the volume source

⇀

JV of Eq. (9) and is integrated over the region where
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⇀

JV is nonzero, the PS integral of Eq. (9) is given by

PJS = − 1

2k̃f sin(θ)

∫ b

0
Ez(0, y′)J∗S(y′)dy′ (11)

where Ez is expressed in x′, y′ coordinates with x′ = 0. We will now
evaluate Pf =

∮
`

⇀

E × ⇀

H
∗
/2 · ând˜̀ over the Poynting box. On the

upper ỹ = b̃ edge, the integrand is zero because
⇀

E
ỹ=b̃

= Ez|ỹ=b̃
âz = 0,

and thus the integral over this edge is zero. On the lower edge
(ỹ = 0) the integrand of Pf the integral, namely,

⇀

E × ⇀

H
∗
· ân|ỹ=0 =

⇀

E × ⇀

H
∗
| · (−ây)|ỹ=0 = −EzH

∗
x|ỹ=0 = 0 because Hx|ỹ=0 = 0 and

thus the integral over this edge is zero. On the right most slant
edge of the box of Fig. 1(a) the Pf integrand is

⇀

E × ⇀

H
∗
· âN =

Ezâz × (H∗
T âT + H∗

N âN ) · âN = −EzH
∗
T , âT = cos(θ)âx + sin(θ)ây,

âN = sin(θ)âx − cos(θ)ây, where HT = cos(θ)Hx + sin(θ)Hy. HT

represents the magnetic field component tangential (or parallel) to
the right most slant edge of the Poynting box and HN is the normal
component. It is useful to express HT in terms of dimensionless
transformation coordinates x′, y′. The quantity HT may be expressed
in transformation coordinates as

HT =
j

η̃f

µyy

γ

[
tx

∂Ez

∂x′
+ ty

∂Ez

∂y′

]
(12)

where tx, ty are coefficients given by

tx≡ txR =α cos(θ)− βx sin(θ)=−
[
σP τ +

µR

µyy
σM

]
sin(θ) (13a)

ty≡jtyI =cos(θ)− βy sin(θ)=j
µI

µyy
sin(θ) (13b)

where µR = Real(µxy), µI = Imag(µxy). For the anisotropic numerical
case specified in Sec. 2, txR = −1.6892315367 and tyI = 0.16892315367.
When HT of Eq. (12) is substituted in Pf of Eq. (9), and integrated
along the right most slant edge of the Poynting box (lowest part of
edge located at x = x2 (see Fig. 1(a)), this edge corresponds x′ = x′2 of
Fig. 1(b)) using the y′ coordinate as an integration variable (note that
d` = dy′/ sin(θ), dy = dy′), it is found the Pf integral on this edge,
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call it Pf2, has a value

Pfe = −1

2k̃f sin(θ)

∫ b

0

EzH∗
T dy′ = jS̃f

∫ b

0

Ez

[
tx

∂Ez

∂x′
+ ty

∂Ez

∂y′

]∗ ∣∣∣∣
x′=x′e

dy′(14)

S̃f =
µyy

2k̃f η̃fγ sin(θ)
(15)

where Pf2 = Pfe when x′e = x′2. At the leftmost slant edge of the
Poynting box of Fig. 1(a), the Pf integral on this edge, call it the Pf1,
is given by the Pfe integral of Eq. (14) with x′e set equal to x′1 and
the sign of the integral reversed, because the outward normal on the
leftmost face is −âN , opposite to that of the rightmost face which is
âN (see Fig. 1(a)). Eq. (14) can be used to evaluate all power slant
angle integrals as long as the correct sign of the outward normal (left
or right) is accounted for in the final integrated power expressions.

The reaction power integral equation is derived from Maxwell’s
equations and application of the divergence theorem, and is given by

PRf = j2ω[−WRM −WRE ] + PRS (16)

where PRf = 1
2

∮
`

⇀

E × ⇀

H · ând˜̀, WRM = 1
4

∫∫
S

⇀

B · ⇀

HdÃ, WRE =
1
4

∫∫
S

⇀

D · ⇀

EdÃ, PRS = − ∫∫
S(

⇀

E · ⇀

JV /2)dÃ. As
⇀

H and
⇀

H
∗

satisfy the
same boundary conditions, and as the integral is taken over the same
parallelogram area S (Poynting box of Fig. 1(a)) as Eq. (9), we find,
following the same steps as were used to evaluate Pf of Eq. (14), that
PRf = PRf2 + PRf1 where

PRfe = −jS̃f

∫ b

0
Ez

[
tx

∂Ez

∂x′
+ ty

∂Ez

∂y′

] ∣∣∣∣
x′=x′e

dy′ (17)

where PRf2 is given by PRfe of Eq. (17) with x′e set equal to x′2, and
PRf1 is given by PRfe of Eq. (17) with x′e set equal to x′1 and the sign
of the integral reversed to account for the outward normal ân = −âN

being opposite to that used for PRf2 (see Fig. 1(a)). The volume
current source of integral namely PRS of Eq. (16) is evaluated in the
same way as PJS of Eq. (11) except that one uses

⇀

JV to evaluate

PRS rather than
⇀

J
∗
V as was used to evaluate Eq. (11). The reaction

power integral equation is very useful for determining the excitation of
waveguide modes when an electric current source is present.

The complex Poynting theorem equation is useful for studying
waveguide mode orthogonality as will be shown by the following
analysis. First when a linear combination of waveguide modes (having
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the separated form Xn(x′)Yn(y′), Sec. 3), whose orthogonality is to
be studied, are assumed to be excited in a parallelogram Poynting box
(see Fig. 1(a)), and the power flow integral Pf of Eq. (9) is evaluated, it
turns out that that the only nonzero contribution to this integral occurs
across the slant edges of the Poynting box (Eq. (14)). Secondly, if the
Poynting box is assumed to be source free, this further means that in
the complex Poynting theorem equation, the PS term of Eq. (9) is zero.
Thus Eq. (9) reduces to Pf1 + Pf2 + j2ω[WM −WE ] = PS = 0, where
Pf1, Pf2, are the slant edge integrals of Eq. (14). Taking the real part of
this equation, using the fact that real part of the energy difference term
of this equation is zero, (due to the fact that j2ω[WM −WE ] is purely
imaginary as WM , WE are purely real), we find Real(Pf1 + Pf2) = 0.
When the linear combination of waveguide modes to be studied is now
substituted in Pf1, Pf2 of this equation, the

⇀

E×⇀

H
∗
/2 cross product and

the slant edge integrations are evaluated, one notes then that in each n,
n′ cross product term, that the factor Xn(x′)X∗

n′(x
′), x′ = x′1, x

′
2 (x′1,

x′2 represent the location of the slant edges of Pf1, Pf2, see Fig. 1(b))
is a constant. Thus it turns out that the quantities Pf1, Pf2, are each a
n, n′ double summation of the Xn(x′i)X

∗
n′(x

′
i), i = 1, 2 constant factor

times a y′-integral, call it I0:b
n,n′(Yn(y′), Y ∗

n′(y
′)), 0 ≤ y′ ≤ b, of the

Yn(y′)Y ∗
n′(y

′), Yn(y′)dY ∗
n′(y

′)/dy′ products making up the
⇀

E × ⇀

H
∗
/2

cross product. Since Real(Pf1 + Pf2) = 0 must be zero for all values
of x′1, x′2 over a very large range of continuous values of x′1 and x′2,
the only way Real(Pf1 + Pf2) = 0 can be zero then, is if appropriate
combinations of the values of the real and imaginary parts of the I0:b

n,n′
integrals are set to zero. The appropriate combinations of the values
of the real and imaginary parts of the I0:b

n,n′ integrals which are zero
to make the Real(Pf1 + Pf2) = 0, then represent the orthogonality
relations that are satisfied by the waveguide modes of the system. We
mention now that once these relations have been established, they may
be used to derive additional waveguide orthogonality relations based
on the reaction power integral PRf =

∮
`

⇀

E × ⇀

H/2 · ând˜̀.
The most important orthogonality relations that may be derived

form the preceding discussion may be summarized as follows. When
n 6= n′ we have the

⇀

E × ⇀

H
∗
/2 power orthogonality condition that is

given by
T−+

Pn′n + T+−∗
Pnn′ = 0 (18)
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where

T+−
Pnn′ = −jtxRk−∗xn′IS+

n S−∗
n′
− tyIk

−∗
yn′IS+

n C−∗
n′

(19a)

T−+
Pn′n = −jtxRk+∗

xn IS−
n′S

+∗
n
− tyIk

+∗
yn IS−

n′C
+∗
n

(19b)

IS+
n S−∗

n′
=

∫ b

0
sin k+

yn(b− y′) sin k−∗yn′(b− y′)dy′ (20a)

IS+
n C−∗

n′
=

∫ b

0
sin k+

yn(b− y′) cos k−∗yn′(b− y′)dy′ (20b)

and where IS−
n′S

+∗
n

, IS−
n′C

+∗
n′

may be found from Eqs. (20a), (20b) by

interchanging k+
yn and k−yn′ . When the E+

z , E−
z electric field linear

combinations of Eqs. (6), (7) are substituted in the PRfe reaction
integral of Eq. (17), it is found that the total power reaction of these
fields is given by

P±
Rfe = S̃f

∑

n,n′
a±n a±n′X

±
n (x′e)X

±
n′(x

′
e)T

±±
Rnn′ (21)

where the reaction power coefficients T++
Rnn′ , T−−Rnn′ in these equations

are given by

T++
Rnn′ = jtxRk+

xn′IS+
n S+

n′
− tyIk

+
yn′IS+

n C+
n′

= T+−
Pnn′ (22a)

T−−Rnn′ = jtxRk−xn′IS−n S−
n′
− tyIk

−
yn′IS−n C−

n′
= T−+

Pnn′ (22b)

where

IS±n S±
n′

=
∫ b

0
sin k±yn(b− y′) sin k±yn′(b− y′)dy′ (23a)

IS±n C±
n′

=
∫ b

0
sin k±yn(b− y′) cos k±yn′(b− y′)dy′ (23b)

and where the wavenumbers are defined in Sec. 3. Using the
⇀

E× ⇀

H
∗
/2

power orthogonality relation, T−+
Pn′n + T+−∗

Pnn′ = 0, n 6= n′ (Eq. (18)),
substituting k−xn = −k+∗

xn , k−yn = k+∗
yn (Eqs. (6), (7)), it is found after

algebra that the reaction the reaction power coefficients T++
Rnn′ , T−−Rnn′ ,

satisfy the following reaction power orthogonality equations, n 6= n′,

T++
Rnn′ + T++

Rn′n = 0 (24a)

T−−Rnn′ + T−−Rn′n = 0 (24b)
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These equations, as mentioned earlier, are useful for defining a matrix
equation from which to determine EM source excitation. The “Plus,
Minus” superscript on the coefficient T+−

Pnn′ in Eq. (19a), for example,
indicates that n the waveguide mode is finite at x′ →∞ and that the
n′ waveguide is finite at x′ → −∞. Other ‘Plus/Minus” superscript
combinations on the coefficients T−+

Pn′n, T++
Rnn′ , T−−Rnn′ refer to regions

where the waveguide modes making up these coefficients remain finite
at x′ → ±∞. It may be further shown that no real power is carried by
complex modes or interactions with complex modes.

We now consider the special case when n and n′ are both
propagating modes. In this case we find, after substituting k+

xn =
k−xn = jkxnI , k+

yn = k−yn = kynR (Eqs. (6), (7)) in Eqs. (18)–(24), that
the sets of power and reaction coefficients in these equations are all real
and are equal to one another for the same values n and n′. Thus letting
this value be T prop

nn′ , we have T prop
nn′ = T+−

Rnn′ = T−+
Rnn′ = T++

Rnn′ = T−−Rnn′ ,
(n, n′) = 1, . . . , NP . Thus substituting T prop

nn′ in Eqs. (18)–(24), we find
that the propagating modes satisfy the following orthogonality relation
namely

T prop
nn′ + T prop

n′n = 0 (25)

where
T prop

nn′ = −txRkxn′IISnSn′ − tyIkyn′RISnCn′ (26)

ISnSn′ =
∫ b

0
sin kynR(b− y′) sin kyn′R(b− y′)dy′ (27a)

ISnCn′ =
∫ b

0
sin kynR(b− y′) cos kyn′R(b− y′)dy′ (27b)

and where n 6= n′. The T prop
nn coefficient is useful for determining the

⇀

E × ⇀

H
∗
/2 power associated with a propagating mode whose complex

amplitude is an. The power associated with this mode in this paper will
be defined to be that power which is transmitted through the slanted
right edge of the Poynting box shown in Fig. 1 and is given by Eq. (14).
The power of this mode is real, and due to the orthogonality relations
derived earlier does not interact with the other propagating modes. It
is given by

P̃n = S̃f |an|2T prop
nn (28)

where S̃f , T prop
nn are defined by Eqs. (15), (26) respectively with n = n′.

With the definition of power given in Eq. (28), if T prop
nn is greater than

zero (T prop
nn > 0) this indicates that the integrated, positive power

flow |P̃n| of the mode is in the +âN direction and if T prop
nn is negative,
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T prop
nn < 0 this indicates that the integrated, positive power flow of

the mode |P̃n| is in the −âN direction (see Fig. 1(a)). The sign
of the power flow determined by T prop

nn , is important when studying
the excitation of a waveguide system, as it gives information about
which modes transmit power away from the source, and therefore
which modes should be physically included in the EM field solution
of this problem. By selecting modes meeting proper EM boundary
conditions at x → ±∞, matching EM boundary conditions adjacent
to the electric current source, and using the reaction orthogonality
relations of Eqs. (24a), (24b) an efficient and accurate matrix equation
to determine all modal excitation amplitudes of the system may be
found. Using the proper expansion of anisotropic waveguide modes (20
modes), the source excitation matrix may also be derived by evaluating
the reaction integral equation (Eq. (16)) over a vanishing small,
Poynting box enclosing the electric current source

⇀

Js(y) = JS(y)âz

(WRM , WRE in Eq. (16) integrate to zero over this Poynting box).

5. NUMERICAL RESULTS

In this section numerical examples of the wavenumbers, modal inter-
action coefficients and demonstration of orthogonality of waveguide
modes corresponding to the anisotropic parameter case described in
Sec. 2 are presented, along with plots of the EM fields which re-
sult when the anisotropic waveguide displayed in Fig. 1 is excited
by a surface current (Fig. 1). Further, to give a sense of how the
anisotropy of the waveguide medium influences the EM fields in the
waveguide, also presented in this section are the EM fields which are
excited in a comparison isotropic waveguide when; (1) the frequency
of operation, (2) the dimensions, (3) the exciting source, and (4) the
boundary conditions, are all identical to that of the anisotropic waveg-
uide. In addition, the material wavenumber of the isotropic waveg-
uide, kiso = (µisoεiso)1/2 , has been chosen to be very close, but
just slightly higher in value, than the material wavenumber of the
anisotropic waveguide, namely k = (εγ/µyy)1/2. Standard Green’s
function theory (300 modes) has been used to determine the EM fields
of the isotropic comparison waveguide.

To study anisotropic, modal orthogonality and waveguide source
excitation, the normalized wavenumber of operation k = (εγ/µyy)1/2

(assumed excited at the angular frequency ω = 2πf (rad/sec) of
operation by ω = k̃fc (rad/sec), k̃f = 2π/λ̃f , c = 1/

√
µ̃f ε̃f ,

velocity of light) of the anisotropic waveguide has been chosen so that
k = (εγ/µyy)1/2 = π

b (m − 0.5) + ∆ = 7.85348163347 where m = 3,
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∆ = −5× 10−4 and b = k̃f b̃ = 1. For this chosen value of k and of the
anisotropic parameters specified in Sec. 2, ε = 15.2969180970. Using
this value of k, thirteen modes have been calculated in the region
x′ → ∞ and thirteen modes in the source free region x′ → −∞.
Of these thirteen modes calculated in each region, six of them are
propagating and the other seven are complex (or non propagating). In
the region x′ → ∞, three of the propagating modes have real power
flow in the +âN direction (they are labeled k+

xn = jkxnI , n = 1, 2, 3),
three of these modes have real power in the −âN direction (they are
labeled k+

xn = jkxnI , n = 4, 5, 6), and the other seven are complex
modes and attenuate to zero as x′ → ∞ (exp(−k+

xnx′) → 0, x′ → ∞)
(they are labeled k+

xn = kxnR + jkxnI , n = 7, . . . , 13, (Eq. (7a) gives
k+

xn). In the region x′ → −∞, the propagating modes are identical
to those in the region x′ → ∞ (they are labeled k−xn = jkxnI ,
n = 1, . . . , 6) and the other seven modes in this region are complex
and attenuate to zero as x′ → −∞ (exp(−k−xnx′) → 0, x′ → −∞)
(they are labeled k−xn = −kxnR + jkxnI , n = 7, . . . , 13). The mode
labeling system just described has been chosen so that the interaction
of forward and backward modes could be studied in a complete way.
The wavenumber kiso of the comparison isotropic waveguide has been
taken to have a value of kiso = π

b (m − 0.5) + |∆| = 7.85448163347,
which is slightly higher than that used for the anisotropic waveguide. A
slightly higher value of kiso was chosen to ensure that both the isotropic
and anisotropic waveguides had the same number of six propagating
modes, and thus a meaningful comparison of results of the two systems
could be made. The isotropic comparison waveguide relative dielectric
permittivity and magnetic permeability was taken to be respectively
εiso = (k2

isoµyy)/γ = 15.3008139 and µiso = k2
iso/εiso = 4.0320000000.

Taking the normalized, waveguide height for both the anisotropic and
isotopic cases to have a value of b = b̃k̃f = 1, and taking, as an example,
the unnormalized waveguide height have a value of b̃ = 1.0 (cm), we
find that both waveguide systems are operating at a frequency of
f = c/λ̃f , λ̃f = 2π/k̃f = 2πb̃, or f = c/(2πb̃) = 4.774648 GHz. The
specific electric surface current source (Eq. (11)) that was chosen to
excite EM fields in the anisotropic and comparison isotropic waveguides
is defined (see the slant line of Fig. 1(a), x = cot(θ)y) by the equation

EJS(y) ≡ η̃fJS(y) = η̃fJS(y′) = η̃fJS0 sin(kJS(b− y)) (V/m) (29)

where y′ = y (Eq. (1)), b = k̃f b̃ = 1, θ = 61.38954◦, η̃f = 377Ω,
η̃fJS0 = 1.0 (V/m), kJS = 0.7(π/b)(m− 0.5) = 5.497787, m = 3.

Tables 1 and 2 list several values of propagation constants kxn, kyn,
the T prop

nn′ , T±±Pnn′ , T±±Rnn′ complex and reaction power coefficients, their
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power flow characteristics and their on and off-diagonal orthogonality
relations. Rows 1 and 2, Table 1 display normalized modal power
P3, P6 of the n = 3, n = 6 anisotropic waveguide modes respectively
(P3, P6 are normalized by |PANI

JS | the magnitude of complex power
delivered by slant source of Eq. (29)). The unnormalized power
deliver by the source in the anisotropic waveguide when b̃ = 1.0 cm
(or f = c/(2πb̃) = 4.774648GHz) in the anisotropic waveguide was
PANI

JS = 1.3381118× 10−5 + j1.0684890 × 10−8 (Watts/m) and in the

Table 1. On-diagonal power coefficients.

T prop
3,3 = T++

R3,3 = T−−R3,3 = 3.913151× 10−2

k±x3 = jkx3I = j0.146364, k±y3 = ky3R = 7.852117
Phase velocity (+âN ), vphase ∝ (ω/kx3I) > 0

P3 = 0.4473 > 0, power flow +âN

P3 = S̃f |a3|2T prop
3,3 /|PANI

JS | (Normalized Power)
(Forward)

T prop
6,6 = T++

R6,6 = T−−R6,6 = −3.913736× 10−2

k±x6 = jkx6I = j0.0536671, k±y6 = 7.853298
Phase velocity (+âN ), vphase ∝ (ω/kx6I) > 0

P6 = −0.4452 < 0, power flow −âN

P6 = S̃f |a6|2T prop
6,6 /|PANI

JS | (Normalized Power)
(Backward)

Table 2. Off-diagonal orthogonality results.

T prop
1,6 = −0.103492, T prop

6,1 = 0.103492
T prop

1,6 + T prop
6,1 = 2.82× 10−12

T prop
3,6 = −0.0387554, T prop

6,3 = 0.0387554
T prop

3,6 + T prop
6,3 = −1.06× 10−13

T prop
2,3 = 0.398420, T prop

3,2 = −0.398420
T prop

2,3 + T prop
3,2 = −3.32× 10−10

T+−
P6,8 = T++

R6,8 = 6.01× 10−2 − j9.92× 10−4

T+−
P8,6 = T++

R8,6 = −6.01× 10−2 + j9.92× 10−4

T++
R6,8 + T++

R8,6 = 6.02× 10−12 + j1.81× 10−9

k±x8 = ±11.754964 + j0.100232
k±y8 = 14.136946± j0.083344
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isotropic waveguide was P ISO
JS = 1.3382489 × 10−5 + j3.8284423 ×

10−8 (Watts/m). Also shown in Table 1 are the signs of the phase
velocities of the modes. As can be seen from Table 1, the n = 3
waveguide mode corresponds to a forward mode as the phase velocity
and power flow of this mode have the same sign, whereas the n = 6
waveguide mode corresponds to a backward mode as phase velocity
and power for the n = 6 mode have opposite signs. Rows 1, 2, 3, and 4
of Table 2 display examples of the off-diagonal orthogonality relations
that the anisotropic waveguide modes satisfy. As can be seen from
these rows, the orthogonality relations are satisfied to a high degree of
numerical accuracy. Its interesting to note in Row 2, Table 2, that the
n = 3, forward mode, and the n = 6, backward mode (which together,
as seen from Rows 1 and 2, Table 1 radiate about ninety percent of the
power away from the electric current source) satisfy the orthogonality
relation of Eq. (25) to a very high degree of accuracy.

Figure 3 shows, respectively, the real and imaginary part of the
E+

z (y) and E−
z (y). for both the anisotropic and isotropic waveguide

cases. The quantity E±
z (y) represents values of the parallel component

of the electric field evaluated at points just to the right and left
of the electric surface current source and these fields meet EM
boundary conditions to a high degree of accuracy. Fig. 4 shows
plots of Imag(η̃fH+

T (y)) and Imag(η̃fH−
T (y)) versus coordinate y

for the isotropic (top) and anisotropic waveguide cases (bottom).
Because JS(y) is purely real, the Imag(H+

T (y)) should equal the
Imag(H−

T (y)) to a high degree of accuracy to meet the electric current-
magnetic field boundary condition, and this is observed in the figures.
An interesting feature of the Imag(η̃fH±

T (y)) plots of the isotropic
waveguide case, when compared to the Imag(η̃fH±

T (y)) plots of the
anisotropic waveguide case, is the fact that the absolute value of
the imaginary part of the tangential magnetic field (Imag(H±

T (y)))
for the isotropic case is much larger and has a much smoother
and different shape than does the corresponding tangential magnetic
field (Imag(H±

T (y))) for the anisotropic case. The smallness of the
imaginary part of the magnetic field in the anisotropic case relative to
the isotropic one is probably due to the fact that in the anisotropic
case the source is located on a phase plane where all the modes
have the same phase. Fig. 5(a) and 5(b) show plots Real(Ez(x, y))
for the anisotropic and isotropic waveguide cases, respectively. In
comparing the anisotropic and isotropic plots for the Real(Ez(x, y))
and field components, it is clearly noticed that Real(Ez(x, y)) in the
region −240 < x < 0 of the anisotropic plots (Fig. 5(a)) has a far
different wave structure and shape than the Real(Ez(x, y)) in the
region 0 < x < 240, whereas the electric field components plots
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Figure 3. Plots of tangential electric field components, just to the
right and left slanted surface current JS(y).

corresponding to the isotropic waveguide case (Fig. 5(b)) has the nearly
the same wave structure in the all regions of the plots −240 < x < 240.
The difference in the Real(Ez(x, y)) waveshape for the anisotropic
case in the regions −240 < x < 0 and 0 < x < 240, is due the
anisotropy of the medium causing different interference patterns in the
two regions. The positive and negatively propagating modes in the
isotropic waveguide case have the same waveguide wavelength, and
thus they have the same wave structure in the region −240 < x < 240.
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Figure 4. Plots of Imag(η̃fH+
T ), Imag(η̃fH−

T ), η̃f = 377 Ω just to the
right and left slanted surface current JS(y).

In Figs. 5(a), 5(b) the boundary condition Real(Ez(x, y)) = 0 is seen
to hold at y = b = 1.

For numerical calculations made for the anisotropic and isotropic
waveguide cases studied it was found that EM boundary conditions
near the surface current and near the waveguide walls were satisfied
to a high degree of accuracy and that power conservation held to a
high degree of accuracy. Specifically, defining conservation of complex
power error for the anisotropic waveguide case, call it EANI

P , as the

difference between normalized integrated complex
⇀

E × ⇀

H
∗
/2 power
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Figure 5. Plots of the Real(Ez(x, y)), for the (a) anisotropic case and
(b) isotopic case.

radiated from the source and delivered by the source, it was found
EANI

P = 1.405 × 10−4 + j6.404 × 10−4(%). Defining conservation of
reaction power error, call it EANI

P , as the difference between normalized

reaction
⇀

E× ⇀

H/2 power radiated from the source and delivered by the
source, it was found EANI

R = 4.095 × 10−8 + j1.651 × 10−10(%). As
seen from the just listed error values, conservation of complex and
reaction power are both obeyed to a high degree of accuracy, with
reaction power error being much smaller than complex power error.
Conservation of real normalized power for the isotropic waveguide case
was also calculated and found to hold to an accuracy of about 0.01(%).
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6. SUMMARY AND CONCLUSIONS

The excitation of backward and forward, EM modes and fields in an
anisotropic, parallel plate waveguide (meeting Dirichlet and Neumann
boundary conditions) has been studied using a modified coordinate
transformation [3, 4] which reduces the Maxwell’s equations of the
system to the form of a Helmholtz wave equation satisfying Dirichlet
and mixed-partial derivative boundary conditions. Overall the modal,
orthogonality, and source analysis carried out herein should be useful
for the calculation anisotropic waveguide Green’s functions and the
associated study of EM scattering as results when different metal or
material objects are placed in an anisotropic waveguide.
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