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Abstract—Perfect electromagnetic conductor (PEMC) is a medium
where certain linear combinations of electromagnetic fields are required
to vanish. Since PMC has found important applications in antenna
design, one may expect that PEMC will also have potential for similar
applications; therefore it is important to investigate its radiation
properties. In this paper, dyadic Green functions in integral forms have
been derived for a structure with a dielectric layer on a PEMC plane.
Whereas electric and magnetic dyadic Green functions is required to
satisfy the dyadic mixed boundary condition on PEMC surface, a new
classification of the electric and magnetic dyadic Green functions has
been introduced based on parameter M of PEMC boundary. This
classification is general and contains classes of dyadic Green functions
which satisfy Dirichlet and Neumann boundary conditions.

1. INTRODUCTION

The concept of perfect electromagnetic conductors (PEMC) was
introduced as an extension of both the perfect electric conductor (PEC)
and the perfect magnetic conductor (PMC) [1]. It is characterized by
a real medium parameter, M , which denotes the admittance of the
PEMC boundary. This parameter for two special cases, the PMC and
PEC, takes the values zero and infinity, respectively.
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In the perfect electromagnetic conductor, certain linear combina-
tions of electromagnetic fields are required to vanish as follows.

�H +M �E = 0 and �D −M �B = 0 (1)

Hence, at the surface of a PEMC the boundary conditions are as
follows.

n̂× ( �H +M �E) = 0 and n̂ · (�D −M �B) = 0 (2)

The most notable specification of PEMC is the nonreciprocity of
its boundary when the parameter M has a finite nonzero value [2].
In fact, it has been demonstrated theoretically that a PEMC material
acts as a perfect reflector of electromagnetic waves, but differs from
the PEC and the PMC in that the reflected wave has a cross-polarized
component [3]. Since PEMC does not allow electromagnetic energy to
enter, it can be served as a boundary material [2]. Realizations for the
PEMC boundary are studied in terms of a layer of some nonreciprocal
medium backed by a PEC plane [2].

Lindell and Sihvola introduced a two-parameter duality transfor-
mation which is able to transform problems involving PEMC objects
with the parameter M in air to corresponding problems where PEMC
is replaced by PEC [3]. Thus, problems involving PEMC objects in an
isotropic medium can be transformed to ordinary problems. Using the
duality transformation, they solved some typical examples: plane-wave
reflection from a PEMC plane, rectangular PEMC waveguide, scatter-
ing from a small PEMC object, and image theory for a source above a
PEMC ground.

Jancewicz has investigated plane electromagnetic wave propaga-
tion in PEMC [4]. Also, Ruppin has presented an analytical theory for
the scattering of an electromagnetic plane-wave by a perfect electro-
magnetic conductor sphere [5, 6].

In this paper, the dyadic Green functions in integral form for a
structure with a dielectric layer on a PEMC plane have been derived.

In Section 2, a new classification of the electric and magnetic
dyadic Green functions has been introduced based on parameter M
of PEMC boundary. This classification is general and contains classes
of the dyadic Green functions which satisfy the dyadic Dirichlet
and Neumann boundary conditions. In Section 3, the dyadic Green
functions in integral form for a structure with a dielectric layer on a
PEMC plane have been derived. We will use exp(−iωt) convention in
our analysis.
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2. CLASSIFICATION OF DYADIC GREEN FUNCTIONS

The boundary conditions of a PEMC surface are represented in (2).
The tangential boundary conditions can be written in terms of electric
or magnetic fields as follows:

n̂×
[
∇× �E + iMηk �E

]
= 0 (3)

n̂×
[
∇× �H − ik

Mη
�H − �J

]
= 0, (4)

where k and η are respectively the wave number and the wave
impedance in the electromagnetic medium in contact with the PEMC
medium. Also, n̂ denotes the unit normal vector pointed from
boundary of PEMC medium, and �J denotes the volume current density
infinitesimal beyond the PEMC boundary. By considering three sets
of fields due to three orthogonal infinitesimal electric dipoles, we can
transform (3) into a dyadic form [7].

The technique of dyadic Green function (DGF) is introduced
mainly to formulate various canonical electromagnetic problems in a
systematic manner to avoid treatments of many special cases which
can be treated as one general problem [7]. In general, the notations
¯̄Ge and ¯̄Gm are used to denote, respectively, the electric and the
magnetic DGFs which are introduced in [7]; they are solutions of the
dyadic differential equations

∇×∇× ¯̄Ge(R̄, R̄′) − k2 ¯̄Ge(R̄, R̄′) = ¯̄Iδ(R̄, R̄′) (5)

∇×∇× ¯̄Gm(R̄, R̄′) − k2 ¯̄Gm(R̄, R̄′) = ∇× [ ¯̄Iδ(R̄, R̄′)]. (6)

Considering a region bounded interiorly by a surface S0, which is
the boundary of a PEMC medium, and exteriorly by a surface S∞ at
infinity, a new classification of the electric and magnetic DGFs can be
defined based on parameter M of the PEMC boundary. Consider two
groups of dyadic functions which satisfy the dyadic mixed boundary
condition with a dimensionless parameter α on S0,

n̂× [∇× ¯̄Ge(α)(R̄, R̄
′) + iαk ¯̄Ge(α)(R̄, R̄

′)] = 0 (7)

n̂× [∇× ¯̄Gm(α)(R̄, R̄
′) + iαk ¯̄Gm(α)(R̄, R̄

′)] = 0. (8)

Actually, ¯̄Ge(α) and ¯̄Gm(α) are mathematical dyadic functions which
can be used to designate as the electric and the magnetic DGFs.
For example, in the case that S0 denotes the PEC surface where M
approaches infinity, if one substantiates α = ∞ and α = 0 respectively
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in Equations (7) and (8), these equations reduce to n̂× ¯̄Ge(∞)(R̄, R̄′) =
0 and n̂ × ∇× ¯̄Gm(0)(R̄, R̄′) = 0. Obviously, ¯̄Ge(∞) and ¯̄Gm(0) can be
nominated as electric and magnetic DGFs in the PEC case, as it is
mentioned in [7]. This example shows that, in the general case which
S0 denotes the PEMC surface with parameter M , the relationship
between the electric and the magnetic DGFs can be obtained from the
following equations,

∇× ¯̄Ge(α)(R̄, R̄
′) = ¯̄Gm(ᾱ)(R̄, R̄

′) (9)

∇× ¯̄Gm(ᾱ)(R̄, R̄
′) = k2 ¯̄Ge(α)(R̄, R̄

′) + ¯̄Iδ(R̄, R̄′), (10)

where α = Mη and ᾱ = −1/α. These relationships, can be examined
if one substitutes these equations in Equations (7), i.e.,

n̂× [ ¯̄Gm(ᾱ)(R̄, R̄
′) + iαk(∇× ¯̄Gm(ᾱ)(R̄, R̄

′) − ¯̄Iδ(R̄, R̄′))/k2] = 0.

Since source point isn’t in boundary, the above equation can be written
as

n̂× [(−ik/α) ¯̄Gm(ᾱ)(R̄, R̄
′) + (∇× ¯̄Gm(ᾱ)(R̄, R̄

′)] = 0,

which is the same Equation (8) with a dimensionless parameter ᾱ. It
means if ¯̄Ge(α) is considered as the electric DGF of supposed structure,
then ¯̄Gm(ᾱ) is the magnetic DGF of supposed structure. Now, for
instance, one can compare Equation (10) with Equation (4.96) in [7],
which can be written as

∇× ¯̄Gm(0)(R̄, R̄
′) = k2 ¯̄Ge(±∞)(R̄, R̄

′) + ¯̄Iδ(R̄, R̄′).

Obviously, one can see that equation is special case of Equation (10)
when M approaches infinity.

3. DYADIC GREEN FUNCTIONS FOR A DIELECTRIC
LAYER ON A PEMC PLANE

The structure under consideration is shown in Fig. 1. The surface
of PEMC plane is denoted by S0 and the interface is denoted by S.
The wave number in region 1 (air) and that of region 2 (dielectric) is
denoted, respectively, by k1 and k2. As it is typical for more than two
media, the Green functions will be denoted by ¯̄G(ij)

e(α) and ¯̄G(ij)
m(α), which

i and j indicate field point and source point, respectively. Therefore,
the electric DGFs which will be derived are ¯̄G(11)

e(α),
¯̄G(21)

e(α),
¯̄G(22)

e(α) and
¯̄G(12)

e(α) where α = Mη2.
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Figure 1. A dielectric layer on a PEMC plane.

The corresponding vector wave functions to represent the DGFs
associated with plane stratified media, both electric and magnetic, are
denoted by M̄ and N̄ which can be written as

M̄(k̄) = ∇×(ẑψ(k̄)
)
, M̄(k̄) = i(kyx̂− kxŷ)ψ(k̄) (11)

N̄(k̄) =
1
κ
∇×M̄(k̄), N̄(k̄) =

(
−kz

κ
(kxx̂+kyŷ)+

k2
x+k2

y

κ
ẑ

)
ψ(k̄) (12)

where, κ2 = k2
z + k2

x + k2
y and ψ(k̄) = exp(ikxx+ ikyy + ikzz).

It can be shown that M̄ and N̄ are orthogonal, i.e.,∫∫∫
M̄(k̄) · N̄(k̄′)dV = 0,

∫∫∫ (
ẑ×M̄(k̄)

) · (ẑ×N̄(k̄′)
)
dV = 0 (13)

These orthogonality relations can be used to break up a dyadic
equation into several distinct equations.

Considering the vector wave functions, the eigenfunction
expansions of the electric dyadic Green functions will be derived in
two cases namely; electric current source is in region 1 (3.1) or in
region 2 (3.2).

3.1. Source in Region (1)

In this case, one assumes a localized electric current source in region 1.
By the method of scattering superposition, the electric DGFs can be
written as

¯̄G(11)
e(α)(R̄, R̄

′) = ¯̄G(1)
e0 (R̄, R̄′) + ¯̄G(11)

es (R̄, R̄′) (14)

¯̄G(21)
e(α)(R̄, R̄

′) = ¯̄G(21)
es (R̄, R̄′), (15)

where the dyadic function ¯̄G(1)
e0 denotes the free-space electric DGF

defined in a medium of the same constitutive constants as that of
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region 1 and can be written, by integrating with respect to kz and
using contour integration [7], as

¯̄G(1)
e0 (R̄, R̄′) = − 1

(k1)2
ẑẑδ(R̄ − R̄′) +

+∞∫∫
−∞

dkxdkyCk1

{
M̄(±h1)M̄ ′(∓h1) +N̄(±h1)N̄ ′(∓h1)

}
, z ≷ z′ (16)

where

M̄ (±hj) = ∇× (ẑei(kxx+kyy±hjz)
)
,

M̄ ′(±hj) = ∇′ ×
(
ẑei(kxx′+kyy′±hjz′)

) (17)

N̄(±hj) =
1
kj

∇× M̄(±hj)

N̄ ′(±hj) =
1
kj

∇′ × M̄ ′(±hj)
(18)

hj
2 = kj

2 − kx
2 − ky

2

Ckj
=

i

8π2hj(k2
x + k2

y)

where, indices j, (j = 1, 2), represent the regions.
Using some manipulations, the scattered functions must have the

form

¯̄G(11)
es (R̄, R̄′) =

+∞∫∫
−∞

dkxdkyCk1

{
[a1M̄(h1) + a′1N̄(h1)]M̄ ′(h1)

+ [b1N̄(h1) + b′1M̄(h1)]N̄ ′(h1)
}

(19)

¯̄G(21)
es (R̄, R̄′) =

+∞∫∫
−∞

dkxdkyCk1

{
[a+

2 M̄(+h2) + a−2 M̄(−h2)

+a′+2 N̄(+h2) + a′−2 N̄(−h2)]M̄ ′(h1)
+[b+2 N̄(+h2) + b−2 N̄(−h2)
+ b′+2 M̄ (+h2) + b′−2 M̄(−h2)]N̄ ′(h1)

}
. (20)

Assuming μ2 = μ1 = μ0, the boundary condition to be satisfied at S0

is
ẑ ×

(
∇× ¯̄G(21)

e(α) + iαk2
¯̄G(21)

e(α)

)
= 0 (21)
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and the boundary conditions at S are⎧⎨
⎩
ẑ ×

(
¯̄G(11)

e(α) − ¯̄G(21)
e(α)

)
= 0 (22)

ẑ ×
(
∇× ¯̄G(11)

e(α) −∇× ¯̄G(21)
e(α)

)
= 0 (23)

Using orthogonality relations, these three equations can be broken
up into twelve distinct equations (Appendix). These twelve equations
lead to ⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

a+
2 = 
 (1+ρ′)−α2(1−ρ′)

(1−ρ)(1+ρ′)+α2(1−ρ′)(1+ρ)

a′+2 = −
 2iα
(1−ρ)(1+ρ′)+α2(1−ρ′)(1+ρ)

b+2 = −
′ (1−ρ)−α2(1+ρ)
(1−ρ)(1+ρ′)+α2(1−ρ′)(1+ρ)

b′+2 = 
′ 2iα
(1−ρ)(1+ρ′)+α2(1−ρ′)(1+ρ)

and

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
a−2 = ρa+

2 +

a′−2 = ρ′a′+2
b−2 = ρ′b+2 +
′

b′−2 = ρb′+2

and

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
a1= (a+

2 + a−2 e
−i2Δ2)eiΔ − e−i2Δ1

a′1= (k2/k1)(a′+2 + a′−2 e
−i2Δ2)eiΔ

b1 = (k2/k1)(b+2 + b−2 e
−i2Δ2)eiΔ− e−i2Δ1

b′1 = (b′+2 + b′−2 e
−i2Δ2)eiΔ

where⎧⎨
⎩

Δ1= h1d

Δ2= h2d

Δ = Δ2 − Δ1

{
ρ = h2−h1

h2+h1
ei2Δ2

ρ′= h2(k1)2−h1(k2)2

h2(k1)2+h1(k2)2
ei2Δ2

{

 = 2h1

h2+h1
eiΔ


′= 2h1k1k2
h2(k1)2+h1(k2)2

eiΔ

3.2. Source in Region (2)

In this case, one assumes a localized electric current source in region 2.
Using scattering superposition, the electric dyadic Green functions can
be written as

¯̄G(22)
e(α)(R̄, R̄

′) = ¯̄G(2)
e0 (R̄, R̄′) + ¯̄G(22)

es (R̄, R̄′) (24)

¯̄G(12)
e(α)(R̄, R̄

′) = ¯̄G(12)
es (R̄, R̄′), (25)

where the dyadic function ¯̄G(2)
e0 denotes the free-space electric DGF

defined in a medium of the same constitutive constants as that of
region 2 and can be written as, by integrating with respect to kz and
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using contour integration [7], as

¯̄G(2)
e0 (R̄, R̄′) = − 1

(k2)2
ẑẑδ(R̄ − R̄′) +

+∞∫∫
−∞

dkxdkyCk2

{
M̄(±h2)M̄ ′(∓h2)+N̄(±h2)N̄ ′(∓h2)

}
, z ≶ z′ (26)

where Ck2 and h2 are defined after Equation (18).
Using some manipulations, the scattered functions must have the

form

¯̄G(22)
es (R̄, R̄′) =

∫∫ +∞

−∞
dkxdkyCk2

{
M̄(h2)[A+

2 M̄
′(+h2)+A−

2 M̄
′(−h2)

+A′+
2 N̄

′(+h2)+A′−
2 N̄

′(−h2)]+M̄ (−h2)[B+
2 M̄

′(+h2)
+B−

2 M̄
′(−h2)+B′+

2 N̄ ′(+h2)+B′−
2 N̄ ′(−h2)]

+N̄(h2)[C+
2 N̄

′(+h2)+C−
2 N̄

′(−h2)+C ′+
2 M̄ ′(+h2)

+C ′−
2 M̄ ′(−h2)] +N̄(−h2)[D+

2 N̄
′(+h2) +D−

2 N̄
′(−h2)

+ D′+
2 M̄ ′(+h2) +D′−

2 M̄ ′(−h2)]
}

(27)

Similarly;

¯̄G(12)
es (R̄, R̄′) =

+∞∫∫
−∞

dkxdkyCk2

{
M̄(h1)[A+

1 M̄
′(+h2)+A−

1 M̄
′(−h2)

+A′+
1 N̄

′(+h2)+A′−
1 N̄

′(−h2)] + N̄(h1)[C+
1 N̄

′(+h2)
+C−

1 N̄
′(−h2)+C ′+

1 M̄ ′(+h2)+C ′−
1 M̄ ′(−h2)]

}
(28)

Assuming μ2 = μ1 = μ0, the boundary condition to be satisfied at S0

is
ẑ ×

(
∇× ¯̄G(22)

e(α) + iαk2
¯̄G(22)

e(α)

)
= 0 (29)

and the boundary conditions at S are⎧⎨
⎩
ẑ ×

(
¯̄G(22)

e(α) − ¯̄G(12)
e(α)

)
= 0 (30)

ẑ ×
(
∇× ¯̄G(22)

e(α) −∇× ¯̄G(12)
e(α)

)
= 0. (31)

Using orthogonality relations, these three equations can be broken
up into twelve distinct equations. On the other hand, since ψ′(h) and
ψ′(−h) are two independent functions of z′, if the derived equations
are assorted in terms of ψ′(h) and ψ′(−h), then their coefficients are
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required separately to vanish. Hence, twenty four equations result.
After simplifying these twenty four equations (Appendix), one obtains⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

A+
2 = (1+ρ′)−α2(1−ρ′)

(1−ρ)(1+ρ′)+α2(1−ρ′)(1+ρ)

A′+
2 = 2iα

(1−ρ)(1+ρ′)+α2(1−ρ′)(1+ρ)

C+
2 = − (1−ρ)−α2(1+ρ)

(1−ρ)(1+ρ′)+α2(1−ρ′)(1+ρ)

C ′+
2 = − 2iα

(1−ρ)(1+ρ′)+α2(1−ρ′)(1+ρ)

and

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
A−

2 = ρA+
2

A′−
2 = ρ′A′+

2

C−
2 = ρ′C+

2

C ′−
2 = ρC ′+

2

and

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
B+

2 = ρA+
2

B′+
2 = ρA′+

2

D+
2 = ρ′C+

2

D′+
2 = ρ′C ′+

2

and

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
B−

2 = ρA−
2 + ρ

B′−
2 = ρA′−

2

D−
2 = ρ′C−

2 + ρ′

D′−
2 = ρ′C ′−

2

and

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

A+
1 = (A+

2 +B+
2 e

−i2Δ2)eiΔ

A′+
1 = (A′+

2 +B′+
2 e−i2Δ2)eiΔ

C+
1 = (k2/k1)(C+

2 +D+
2 e

−i2Δ2)eiΔ

C ′+
1 = (k2/k1)(C ′+

2 +D′+
2 e−i2Δ2)eiΔ

and

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

A−
1 = (1 +A−

2 +B−
2 e

−i2Δ2)eiΔ

A′−
1 = (A′−

2 +B′−
2 e−i2Δ2)eiΔ

C−
1 = (k2/k1)(1 + C−

2 +D−
2 e

−i2Δ2)eiΔ

C ′−
1 = (k2/k1)(C ′−

2 +D′−
2 e−i2Δ2)eiΔ

where ρ and ρ′ are defined previously.

4. CONCLUSION

In this paper, a new classification of the electric and magnetic dyadic
Green functions has been introduced with a dimensionless parameter α.
The relation between the electric and magnetic dyadic Green functions
with parameter α has been obtained. Using this classification, the
Green theorem can be employed in problems involving a PEMC.
The symmetrical properties of dyadic Green functions for our new
classification are left for another work. As an important instance, the
dyadic Green functions in integral form for a structure with a dielectric
layer on a PEMC plane have been derived.
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APPENDIX A.

a) Source in Region (1)
In this case, Equations (16), (19), and (20) can be substitute into

(21) to (23). Using orthogonality relations, Equations (21) to (23) can
be broken up into twelve distinct equations which can be written as

(21)
yields−−−→

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(a+
2 − a−2 ) + iα(a′+2 − a′−2 ) = 0 (A1a)

(a′+2 + a′−2 ) + iα(a+
2 + a−2 ) = 0 (A1b)

(b+2 + b−2 ) + iα(b′+2 + b′−2 ) = 0 (A1c)
(b′+2 − b′−2 ) + iα(b+2 − b−2 ) = 0 (A1d)

(22)
yields−−−→

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(a+
2 + a−2 e

−i2Δ2) = (a1 + e−i2Δ1)e−iΔ (A2a)

h2k1(a′+2 − a′−2 e
−i2Δ2) = h1k2(a′1)e

−iΔ (A2b)

h2k1(b+2 − b−2 e
−i2Δ2) = h1k2(b1 − e−i2Δ1)e−iΔ (A2c)

(b′+2 + b′−2 e
−i2Δ2) = (b′1)e

−iΔ (A2d)

(23)
yields−−−→

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

h2(a+
2 − a−2 e

−i2Δ2) = h1(a1 − e−i2Δ1)e−iΔ (A3a)

k2(a′+2 + a′−2 e
−i2Δ2) = k1(a′1)e

−iΔ (A3b)

k2(b+2 + b−2 e
−i2Δ2) = k1(b1 + e−i2Δ1)e−iΔ (A3c)

h2(b′+2 − b′−2 e
−i2Δ2) = h1(b′1)e

−iΔ (A3d)

where, Δ1 = h1d, Δ2 = h2d and Δ = Δ2 − Δ1.
Now, there are twelve undefined coefficients and twelve algebraic

equations. To solve this algebraic system, one can find simplified
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equations as

(A2a), (A3a)
======⇒ h1a1 = h1(a+

2 + a−2 e
−i2Δ2)eiΔ − h1e

−i2Δ1

= h2(a+
2 − a−2 e

−i2Δ2)eiΔ + h1e
−i2Δ1 (A4a)

(A2b), (A3b)
======⇒ h1k1k2a

′
1 = h2(k1)2(a′+2 − a′−2 e

−i2Δ2)eiΔ

= h1(k2)2(a′+2 + a′−2 e
−i2Δ2)eiΔ (A4b)

(A2c), (A3c)
======⇒ h1k1k2b1= h2(k1)2(b+2 − b−2 e

−i2Δ2)eiΔ + h1k1k2e
−i2Δ1

= h1(k2)2(b+2 +b−2 e
−i2Δ2)eiΔ−h1k1k2e

−i2Δ1(A4c)
(A2d), (A3d)
======⇒ h1b

′
1 = h1(b′+2 + b′−2 e

−i2Δ2)eiΔ

= h2(b′+2 − b′−2 e
−i2Δ2)eiΔ (A4d)

Hence,{
(A4a)

===⇒a−2 = ρa+
2 + 
 (A5a)

(A4b)
===⇒a′−2 = ρ′a′+2 (A5b)

{
(A4c)

===⇒ b−2 = ρ′b+2 + 
′ (A5c)
(A4d)

===⇒ b′−2 = ρb′+2 (A5d)

where, ρ = h2−h1
h2+h1

ei2Δ2 , ρ′ = h2(k1)2−h1(k2)2

h2(k1)2+h1(k2)2
ei2Δ2 , 
 = 2h1

h2+h1
eiΔ,


′ = 2h1k1k2
h2(k1)2+h1(k2)2

eiΔ.
With the aid of the eight equations, (A1a) to (A1d) and (A5a) to

(A5d), it is a simple task to show that these equations result in

a+
2 = 


(1 + ρ′) − α2(1 − ρ′)
(1 − ρ)(1 + ρ′) + α2(1 − ρ′)(1 + ρ)

(A6a)

a′+2 = −
 2iα
(1 − ρ)(1 + ρ′) + α2(1 − ρ′)(1 + ρ)

(A6b)

b+2 = −
′ (1 − ρ) − α2(1 + ρ)
(1 − ρ)(1 + ρ′) + α2(1 − ρ′)(1 + ρ)

(A6c)

b′+2 = 
′
2iα

(1 − ρ)(1 + ρ′) + α2(1 − ρ′)(1 + ρ)
. (A6d)

The coefficients a−2 , a′−2 , b−2 and b′−2 can be obtained by Equations (A5a)
to (A5d), and the coefficients a1, a′1, b1 and b′1 can be obtained by
Equations (A4a) to (A4d).

b) Source in Region (2)
In this case, Equations (26) to (28) can be substitute into (29)

to (31). Using orthogonality relations, Equations (29) to (31) can
be broken up into twelve distinct equations. On the other hand, since
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ψ′(h) and ψ′(−h) are two independent functions of z′, their coefficients
are required to vanish. Hence, twenty four equations can be resulted
as follows.

(29)
yields−−−→

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(C ′+
2 +D′+

2 ) + iα(A+
2 +B+

2 + 1) = 0 (A7a)
(C ′−

2 +D′−
2 ) + iα(A−

2 +B−
2 ) = 0 (A7b)

(A+
2 −B+

2 − 1) + iα(C ′+
2 −D′+

2 ) = 0 (A7c)
(A−

2 −B−
2 ) + iα(C ′−

2 −D′−
2 ) = 0 (A7d)

(C+
2 +D+

2 + 1) + iα(A′+
2 +B′+

2 ) = 0 (A7e)
(C−

2 +D−
2 ) + iα(A′−

2 +B′−
2 ) = 0 (A7f)

(A′+
2 −B′+

2 ) + iα(C+
2 −D+

2 − 1) = 0 (A7g)
(A′−

2 −B′−
2 ) + iα(C−

2 −D−
2 ) = 0 (A7h)

(30)
yields−−−→

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(A+
2 +B+

2 e
−i2Δ2) = A+

1 e
−iΔ (A8a)

(A−
2 +B−

2 e
−i2Δ2 + 1) = A−

1 e
−iΔ (A8b)

h2k1(C ′+
2 −D′+

2 e−i2Δ2) = h1k2(C ′+
1 )e−iΔ (A8c)

h2k1(C ′−
2 −D′−

2 e−i2Δ2) = h1k2(C ′−
1 )e−iΔ (A8d)

(A′+
2 +B′+

2 e−i2Δ2) = A′+
1 e

−iΔ (A8e)

(A′−
2 +B′−

2 e−i2Δ2) = A′−
1 e

−iΔ (A8f)

h2k1(C+
2 −D+

2 e
−i2Δ2) = h1k2(C+

1 )e−iΔ (A8g)

h2k1(C−
2 −D−

2 e
−i2Δ2 + 1) = h1k2(C−

1 )e−iΔ (A8h)

(31)
yields−−−→

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

h2(A+
2 −B+

2 e
−i2Δ2) = h1A

+
1 e

−iΔ (A9a)

h2(A−
2 −B−

2 e
−i2Δ2 + 1) = h1A

−
1 e

−iΔ (A9b)

k2(C ′+
2 +D′+

2 e−i2Δ2) = k1(C ′+
1 )e−iΔ (A9c)

k2(C ′−
2 +D′−

2 e−i2Δ2) = k1(C ′−
1 )e−iΔ (A9d)

h2(A′+
2 −B′+

2 e−i2Δ2) = h1A
′+
1 e

−iΔ (A9e)

h2(A′−
2 −B′−

2 e−i2Δ2) = h1A
′−
1 e

−iΔ (A9f)

k2(C+
2 +D+

2 e
−i2Δ2) = k1(C+

1 )e−iΔ (A9g)

k2(C−
2 +D−

2 e
−i2Δ2 + 1) = k1(C−

1 )e−iΔ (A9h)

where, Δ1 = h1d,Δ2 = h2d and Δ = Δ2 − Δ1.
Now, there are twenty four undefined coefficients and twenty four

algebraic equations. To solve this algebraic system, one can find
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simplified equations as

(A8a), (A9a)
======⇒h1A

+
1 e

−iΔ = h1(A+
2 +B+

2 e
−i2Δ2)

= h2(A+
2 −B+

2 e
−i2Δ2) (A10a)

(A8b), (A9b)
======⇒h1A

−
1 e

−iΔ = h1(1 +A−
2 +B−

2 e
−i2Δ2)

= h2(1 +A−
2 −B−

2 e
−i2Δ2) (A10b)

(A8c), (A9c)
======⇒h1k1k2C

′+
1 e−iΔ = h2(k1)2(C ′+

2 −D′+
2 e−i2Δ2)

= h1(k2)2(C ′+
2 +D′+

2 e−i2Δ2) (A10c)
(A8d), (A9d)
======⇒h1k1k2C

′−
1 e−iΔ = h2(k1)2(C ′−

2 −D′−
2 e−i2Δ2)

= h1(k2)2(C ′−
2 +D′−

2 e−i2Δ2) (A10d)

(A8e), (A9e)
======⇒h1A

′+
1 e

−iΔ = h1(A′+
2 +B′+

2 e−i2Δ2)

= h2(A′+
2 −B′+

2 e−i2Δ2) (A10e)
(A8f), (A9f)
======⇒h1A

′−
1 e

−iΔ = h1(A′−
2 +B′−

2 e−i2Δ2)

= h2(A′−
2 −B′−

2 e−i2Δ2) (A10f)
(A8g), (A9g)
======⇒h1k1k2C

+
1 e

−iΔ = h2(k1)2(C+
2 −D+

2 e
−i2Δ2)

= h1(k2)2(C+
2 +D+

2 e
−i2Δ2) (A10g)

(A8h), (A9h)
======⇒h1k1k2C

−
1 e

−iΔ = h2(k1)2(1 + C−
2 −D−

2 e
−i2Δ2)

= h1(k2)2(1+C−
2 +D−

2 e
−i2Δ2) (A10h)

Hence,

(A10a)
===⇒B+

2 = ρA+
2 (A11a),

(A10b)
===⇒B−

2 = ρA−
2 + ρ (A11b)

(A10c)
===⇒D′+

2 = ρ′C ′+
2 (A11c),

(A10d)
===⇒D′−

2 = ρ′C ′−
2 (A11d)

(A10e)
===⇒B′+

2 = ρA′+
2 (A11e),

(A10f)
===⇒B′−

2 = ρA′−
2 (A11f)

(A10g)
===⇒D+

2 = ρ′C+
2 (A11g),

(A10h)
===⇒D−

2 = ρ′C−
2 + ρ′ (A11h)

where, ρ = h2−h1
h2+h1

ei2Δ2 , ρ′ = h2(k1)2−h1(k2)2

h2(k1)2+h1(k2)2
ei2Δ2 .

With the aid of the sixteen equations, (A7a) to (A7h) and (A11a)
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to (A11h), it is a simple task to show that these equations result in

A+
2 =

(1+ρ′)−α2(1−ρ′)
(1−ρ)(1+ρ′)+α2(1−ρ′)(1+ρ)

(A12a), A−
2 =ρA+

2 (A12b),

A′+
2 =

2iα
(1−ρ)(1+ρ′)+α2(1−ρ′)(1+ρ)

(A12c), A′−
2 =ρ′A′+

2 (A12d),

C+
2 =− (1−ρ)−α2(1+ρ)

(1−ρ)(1+ρ′)+α2(1−ρ′)(1+ρ)
(A12e), C−

2 =ρ′C+
2 (A12f),

C ′+
2 =− 2iα

(1−ρ)(1+ρ′)+α2(1−ρ′)(1+ρ)
(A12g), C ′−

2 =ρC ′+
2 (A12h),

The coefficients B+
2 ,B′+

2 ,D+
2 ,D′+

2 ,B−
2 ,B′−

2 ,D−
2 and D′−

2 can be
obtained by Equations (A11a) to (A11h) and the coefficients
A+

1 ,A−
1 ,C ′+

1 ,C ′−
1 ,A′+

1 ,A′−
1 ,C+

1 and C−
1 can be obtained by Equa-

tions (A12a) to (A12h).
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