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Abstract—In this paper, design of the RII triple-clad structure as
a dispersion flattened optical fiber including small pulse broadening
factor as well as small dispersion and its slope applicable in broadband
and fast communication is considered. The proposed optimization
technique is based on the Genetic Algorithms (GA) consisting suitable
fitness function for each application. The putting forward design
method introduces the pulse broadening factor (σ/σ0) about 1.0016
after 200 Km propagation at the zero dispersion wavelength that
is so excellent compared to the structure (1.2794) reported in [2]
recently. Meanwhile, the proposed structure provides high bit rate
(more than 197.8 Gb/sec at 100 Km), large dispersion length (larger
than 17400 Km), uniform dispersion slope ([0.04, −0.08] ps/Km/nm2)
and broad bandwidths as well as small and uniform dispersion
(smaller than 2.02 ps/Km/nm) at [1.55–1.7]µm wavelength interval
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even for core diameter larger than 4.62µm. Another important
thing discussed in this paper is a proposal for optimization of the
broadening factor on large wavelength duration, which is necessary for
large bandwidth applications. The suggested technique is capable to
minimize the pulse broadening factor over duration of wavelengths that
is necessary for large bandwidth applications such as dense wavelength
division multiplexing (DWDM) and optical time division multiplexing
(OTDM). Our calculation for extracting optical properties of the
proposed structure is evaluated analytically. For this purpose modal
analysis of these fibers for obtaining possible wave vectors for given
system parameters are done using Transfer Matrix Method (TMM) in
cylindrical coordinate.

1. INTRODUCTION

Recently high-speed and large bandwidth optical communications
are basic demand in science and technology. High-speed data
communication and computing is one of the serious requests for real
time processing. Optical fiber based communication is the excellent
alternative for these purposes which needs low dispersion as well as
dispersion slope and large bandwidth supported by optical physical
medium. Nowadays, applications such as time division multiplexing
(OTDM) and dense wavelength division multiplexing (DWDM) are
usual tasks in industry. Therefore by considering these applications,
providing a large bandwidth and high-speed communication possibility
using optical fibers is highly interesting. For single wavelength
communication, dispersion shifted fiber is enough. But for applications
such as DWDM this method can not provide high-speed possibility.
In these applications, the physical media should provide the flat,
minimum, and uniform dispersion as well as dispersion slope ideally.
Also, in the case of flat dispersion characteristic, nonlinear effects such
as Four Wave Mixing (FWM) do not restrict the bandwidth of the
fiber and the number of channels in DWDM applications due to phase
mismatching.

There are some interesting reported papers, which we are going
to review some of them and present their limitations for the proposed
purposes.

As a first and interesting work, we can point out to paper
published by R. Varshney et al. [1]. In this paper a flat optical fiber
is presented to minimize dispersion and its slope. In this design, core
radius, effective area, and carrier wavelength are 1µm, 56.1 µm2 and
1.55µm respectively. According to their calculations, the dispersion
duration is [2.7–3.4] ps/Km/nm within [1.53–1.61]µm interval and
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the dispersion slope is 0.01 ps/Km/nm2 at 1.55µm wavelength. The
presented paper introduces 80 nm bandwidth that is small for today
DWDM applications which includes only C and L bands for data
transmission.

A second work reported by Tian et al. [2] discusses about the
effective area increasing for RI and RII triple-clad optical fibers. The
reported dispersion and dispersion slope at [1.54–1.62]µm wavelength
duration are 4.5 ps/Km/nm and 0.006 ps/Km/nm2 respectively. The
proposed design has small bandwidth for DWDM applications and is
not so small for high-speed data transmission.

There are other papers presented to minimize dispersion and shift
the zero-dispersion wavelength to requested values [3–6]. But the
obtained results do not satisfactory.

General information about physical mediums carrying information
especially for coaxial and optical fibers including capabilities and
limitations can be found in [7, 8].

Excess study of previous works indicates that the reported optical
fibers do not have very appreciable features to communicate high
performance in order to satisfy today requested demands.

For this purpose, in this paper, a design method based on the
Genetic Algorithm [9] is presented to find out optimum values for each
structure especially as an example for RII triple-clad optical fibers. In
this case we have six optical and geometrical parameters, which must
be determined for optimum operation. Details of the design procedure
applied to this problem will be discussed in the subsequent sections. In
order to evaluate the propagation characteristics, the Transfer Matrix
Method (TMM) [10, 11] is developed in cylindrical coordinate. In
the suggested design technique, two interesting fitness functions have
proposed to minimize the pulse broadening factor [12] (small dispersion
as well as dispersion slope) and maximize the bandwidth (wavelength
duration between zeros of the dispersion curve) as well as dispersion
be lower than a threshold. Also, in these situations, nonlinear effects
can limit the propagation performance that discussed something about
in [13].

The paper organization is as follows.
The modal analysis based on cylindrical TMM method is

presented in Section 2. Section 3 includes the Dispersion and
dispersion slope analysis. Then In Section 4, we introduce the
optimization technique and give design guidelines for achieving the
desired performance. In the following, simulation results will be
discussed for validating our suggested process. Finally the paper ends
with a short conclusion.
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2. MODAL ANALYSIS USING CYLINDRICAL TMM

In this section, the modal analysis based on cylindrical TMM for the
proposed structure illustrated in Fig. 1 is presented.

Figure 1. The refractive index profile of the proposed structures (RII).

For this structure the refractive index is defined as follows.

n (r) =




n1, 0 < r < a,
n2, a < r < b,
n3, b < r < c,
n4, c < r,

(1)

where r is the radius position of optical fiber. It is well known that
the effective refractive index is given by neff = β/k0, where β is the
propagation wave vector of guided modes and k0 is the wave number
in vacuum. Based on the effective refractive index, the operation range
of the proposed structure (RII) can be defined as n4 < neff < n2.

According to the following TMM approach, field distribution and
guided modes conditions are demonstrated. For this purpose, the
following approximation for the optical fiber refractive index is done
and the TMM approach can be developed as follows (Fig. 2).

By using the Maxwell equations, LP approximation (Ex = 0,
Hy ≈ 0 and electric field is polarized in Y -direction) and the staircase
approximated refractive index, the fields distribution in ith layer can
be expressed as follows.[

jEz

Ey

]
r=ai

= U

[
d11 d12

d21 d22

] [
Ai

Bi

]
, (2)
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Figure 2. Staircase approximation of the refractive index for
developing TMM method.

where U = e[j(ωt−βz)] is fast varying part of field distribution. Also,
for nik0 > β and nik0 < β, matrix elements are defined as follows.

nik0 > β

d11 = − (κi/2β) [Jl+1(κir) sin (l + 1) θ + Jl−1(κir) sin (l − 1) θ] ,
d12 = − (κi/2β) [Nl+1(κir) sin (l + 1) θ + Nl−1(κir) sin (l − 1) θ] ,
d21 = Jl(κir) cos lθ, d22 = Nl(κir) cos lθ,

(3)

where κi = (n2
i k

2
0 − β2)1/2, k0 = 2π/λ, Jl and Nl are first and second

order Bessel functions respectively.

β > nik0

d11 = − (γi/2β) [Kl+1(γir) sin (l + 1) θ −Kl−1(γir) sin (l − 1) θ] ,
d12 = (γi/2β) [Il+1(γir) sin (l + 1) θ − Il−1(γir) sin (l − 1) θ] ,
d21 = Kl(γir) cos lθ, d22 = Il(γir) cos lθ,

(4)

where γi = (β2 − k2
0n

2
i )

1/2, Il and Kl are first and second order
Modified Bessel functions respectively. Since above obtained relations
are correct for all values of θ, but for absence of complication and
easy mathematical calculations, we assume a special value for θ,
for simplification of the reported mathematical relations, such that
sin(l−1)θ = 0, sin(l+1)θ �= 0, cos lθ �= 0. So, based on this assumption,
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Eq. (2) can be converted to the following simple case.

nik0 > β[
Ẽz

Ẽy

]
r=ai

= U

[
κiJl+1(κir)/β κiNl+1(κir)/β

−Jl(κir) −Nl(κir)

] [
Ai

Bi

]
, (5)

where new variables are defined as follows.

Ẽz = − [2/ sin (l + 1) θ] jEz, (6)

Ẽy = − [1/ cos (lθ)]Ey. (7)
β > nik0[
Ẽz

Ẽy

]
r=ai

= U

[
γiKl+1(γir)/β γiIl+1(γir)/β

−Kl(γir) −Ll(γir)

] [
Ai

Bi

]
. (8)

For concluding fields distribution based on TMM approach, we need
the propagation and dynamic matrices. First the propagation matrix
based on field distribution inside each layer is considered. Then
dynamic matrix is concentrated. Now, by using variables defined in
Eqs. (6) and (7) the propagation matrix for ith layer is expressed in
the following.[

Ẽz

Ẽy

]
r=r2

= Qi

[
Ẽz

Ẽy

]
r=r1

=
[
q11 q12
q21 q22

] [
Ẽz

Ẽy

]
r=r1

,

ai ≤ r1, r2 ≤ ai+1.

(9)

where the matrix elements using Lommel’s function for two separate
cases are obtained as follows.

nik0 > β,

q11 =
(πκir1

2

)
[Jl+1(κir2)Nl (κir1) − Jl (κir1)Nl+1 (κir2)] ,

q12 =
(
πκ2

i r1
2β

)
[Jl+1 (κir2)Nl+1 (κir1) − Jl+1 (κir1)Nl+1 (κir2)] ,

q21 = −
(
πβr1

2

)
[Jl (κir2)Nl (κir1) − Jl (κir1)Nl (κir2)] ,

q22 = −
(πκir1

2

)
[Jl (κir2)Nl+1 (κir1) − Jl+1 (κir1)Nl (κir2)] .

(10)
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Also, for β > nik0 the following relations can be obtained.

q11 = (γir1) [Il+1(γir2)Kl (γir1) + Il (γir1)Kl+1 (γir2)] ,

q12 =
(
γ2

i r1
β

)
[Il+1 (γir2)Kl+1 (γir1) − Il+1 (γir1)Kl+1 (γir2)] ,

q21 = (βr1) [Il (γir2)Kl (γir1) − Il (γir1)Kl (γir2)] ,
q22 = (γir1) [Il (γir2)Kl+1 (γir1) + Il+1 (γir1)Kl (γir2)] .

(11)

After developing the propagation matrix, one can develop dynamic
matrix based on boundary condition in interface between adjacent
layers, which is illustrated in Eq. (12).[

Ẽz

Ẽy

]
r=a+

i

= Gi

[
Ẽz

Ẽy

]
r=a−

i

, Gi =
[

1 0
0 (ni−1/ni)

2

]
. (12)

Now using Eq. (9) and Eq. (12), field distribution inside stack of
multilayer is given as follows.[

Ẽz

Ẽy

]
r=aN

= M

[
Ẽz

Ẽy

]
r=a1

=
[
m11 m12

m21 m22

] [
Ẽz

Ẽy

]
r=a1

, (13)

where M = GN

N−1∏
i=1

(QN−i ·GN−i).

In order to present a strict algorithm for obtaining the wave
vectors of the guided modes, it is assumed that n0 and ne are the
refractive index of the first and last layers respectively. According to
established method for field distribution, the following relations show
the matrix form of the electric fields.

β < n0k0[
Ẽz

Ẽy

]
r=a1

= U

[
−κ0Jl+1(κ0a1)/β
−Jl(κ0a1)

]
A1,

(14a)

β > n0k0[
Ẽz

Ẽy

]
r=a1

= U

[
−γ0Il+1(γ0a1)/β
−Il(γ0a1)

]
B1.

(14b)

In the case of last layer, it will be defined as follow.[
Ẽz

Ẽy

]
r=aN

= U

[
γeKl+1(γeaN )/β
−Kl(γeaN )

]
Ae (14c)

According to Eq. (14), depends on the guided wave vector value, one
of the following two matrixes illustrate the characteristic equation of
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the proposed structure. Then zeros of the following determinants give
guided modes.

β < n0k0[
Kl(γeaN ) m21κ0Jl+1(κ0a1)/β −m22Jl(κ0a1)

−γeKl+1(γeaN )/β m11κ0Jl+1(κ0a1)/β −m12Jl(κ0a1)

][
A1

Ae

]
=0,(14d)

β > n0k0[
m11γ0Il+1(γ0a1)/β + m12Il(γ0a1) γeKl+1(γeaN )
m21γ0Il+1(γ0a1)/β + m22Il(γ0a1) −Kl(γeaN )

] [
B1

Ae

]
=0.(14e)

As another alternative under the LP approximation, the guided modes
and propagation wave vectors can be evaluated by using a determinant
which is constructed by the boundary conditions.∣∣∣∣∣∣∣∣∣∣∣

Im (W1) −Jm (U2) −Ym (U2)
0 Jm

(
U2

)
Ym

(
U2

)
0 0 0

W1I
′
m (W1) −U2J

′
m (U2) −U2Y

′
m (U2)

0 U2J
′
m

(
U2

)
U2Y

′
m

(
U2

)
0 0 0

0 0 0
−Im (W3) −Km (W3) 0
Im

(
W3

)
Km

(
W3

)
−Km (W4)

0 0 0
−W3I

′
m (W3) −W3K

′
m (W3) 0

W3I
′
m

(
W3

)
W3K

′
m

(
W3

)
−W4K

′
m (W4)

∣∣∣∣∣∣∣∣∣∣∣
= 0,

(n4 < ne < n2) , (15)

where the appeared transversal propagation constants are defined as
follows. It should be mentioned that for extracting guided wave vectors
the Newton-Ralfson and Bisection methods are used.

U2 = a
√
k2

0n
2
2 − β2, U2 =

P

Q
U2,

W1 = a
√
β2 − k2

0n
2
1, W3 = b

√
β2 − k2

0n
2
3,

W3 =
1
P
W3, W4 = c

√
β2 − k2

0n
2
4,

(16)

where P = b
c and Q = a

c are constants.
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3. THEORETICAL ANALYSIS OF DISPERSION AND
DISPERSION SLOPE

In this section dispersion and dispersion slope analysis based on
derived relations in previous section including waveguide and material
dispersions (single mode fibers) are done. For the proposed optical
fiber, the optical parameters are defined as follows.

R1 =
n2 − n3

n2 − n1
, R2 =

n1 − n4

n2 − n1
. (17)

Also, we define the relative index difference as follows.

∆ =
n2

2 − n2
4

2n2
4

≈ n2 − n4

n4
. (18)

Finally, the normalized frequency and propagation parameters are
defined as follows.

V = k0a
√
n2

2 − n2
4 (19)

B =
(β/k0)

2 − n2
4

n2
2 − n2

4

= 1 −
(
U2

V

)2

(20)

Now, using the defined parameters and derived relations in previous
section, the total dispersion as well as dispersion slope relations for the
introduced single mode fiber are as follows.

D = −λ

c

d2n4

dλ2

[
1 + ∆

d(V B)
dV

]
− N4

c

∆
λ
V
d2(V B)
dV 2

, (21)

S = −λ

c

d3n4

dλ3

[
1 + ∆

d(V B)
dV

]
− 1

c

d2n4

dλ2

[
1 + ∆

d(V B)
dV

]

+
N4

c

(
∆
λ2

)
V 2d

3(VB)
dV 3

+2
N4

c

∆
λ2

V
d2(VB)
dV 2

+2
∆
c

d2n4

dλ2
V
d2(VB)
dV 2

, (22)

where N4 = n4 − λ(dn4/dλ) is the group index of the outer cladding
layer. Also, the Sellmeier formula can be used for calculation
of material dispersion (dn4/dλ and d2n4/dλ

2). For complete
calculation of Eq. (21) and Eq. (22), d(V B)/dV , V d2(V B)/dV 2, and
V 2d3(V B)/dV 3 must be calculated.

For this purpose Eq. (16) and the following equations can be used.

d(VB)
dV

= 1 +
(
U2

V

)2 (
1 − 2

V

U2

dU2

dV

)
, (23)
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V
d2(VB)
dV 2

= −2
(
dU2

dV
− U2

V

)2

− 2U2
d2U2

dV 2
, (24)

V 2d
3(VB)
dV 3

= 6
(
dU2

dV
− U2

V

)2

−2U2V
d3U2

dV 3
−6V

d2U2

dV 2

(
dU2

dV
−U2

V

)
, (25)

To complete calculation of total dispersion and dispersion slope,
estimation of Eq. (23), Eq. (24) and Eq. (25) are necessary. For this
purpose, the essential calculations of U2 and it derivatives are necessary
in this step. To obtain the dispersion and its slope, relationships are
done according to the method introduced and explained completely
in Ref. [14]. Due to analytically based relationships, this approach
accurately covers all the numerical methods reported so far.

4. OPTIMIZATION TECHNIQUE USING GENETIC
ALGORITHM

As said in the introduction, in this paper we attempt to present an
optimized RII triple-clad optical fiber for obtaining good performance
from bandwidth, dispersion and dispersion slope points of view. The
optimization technique is based on the Genetic Algorithm (GA). A GA
belongs to a class of evolutionary computation techniques [9] based on
models of biological evolution. These methods have proved useful in
domains that are not well understood or for search spaces, which are
too large to be efficiently searched by standard methods. To express the
fiber optic structure we consider three optical and three geometrical
parameters. According to the GA technique, the problem will have
six genes which explain those parameters. It should be mentioned
that the initial range of parameters are chosen after some conceptual
examinations. The initial population has fifty chromosomes which
cover the search space approximately. By using the initial population,
the dispersion (β2) and dispersion slope (β3) which are the important
factors in the following related fitness function can be calculated.
Consequently elites are selected to survive in the next generation.
This algorithm is repeated some time and the optical and geometrical
parameters corresponding to the minimum fitness function value are
extracted. Eq. (26) shows our proposal for fitness function of pulse
broadening factor.

FBF =
∑

λ

∑
Z

[(
1+

Cβ2(λ)Z
t2i

)2

+
(
β2(λ)Z

t2i

)2

+(1 + C2)2
(
β3(λ)Z

2t3i

)2
]1

2

,

(26)
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where FBF , C, β2, ti, λ, Z, and β3 are broadening factor, chirp
parameter, second derivative of the guided wave vector, initial full
width at half maximum of input pulse, wavelength, distance, and
third derivative of the guided wave vector respectively. Applying
this proposed fitness function, the dispersion and dispersion slope are
minimized simultaneously. Therefore, this condition is corresponded to
maximum value for dispersion length. In the following mathematical
relations for β2, β3 and (dispersion length) LD are given.

β2 =
d2

dω2
β (ω) |ω=ωc , β3 =

d3

dω3
β (ω) |ω=ωc =

(
S − 4πc

λ3
β2

)
λ4

(2πc)2
,(27)

LD =
t2i
|β2|

. (28)

Meanwhile, in order to maximize the bandwidth of the dispersion
curve, the following fitness function is introduced.

FBW = |λ2 − λ1| , D(λ1,2) = 0, (29)

where FBW is the dispersion bandwidth of the proposed structure and
λ1,2 are corresponding to the zero dispersion wavelengths. Also, in this
fitness function another limitation is applied on software in order to
limit the dispersion value lower than a predefined measure.

The flowchart given in Fig. 3 explains the foregoing design strategy
clearly.

In the next section, our proposed fitness functions and GA
optimization method are used for investigation of the proposed
structure and simulated results are discussed.

5. RESULTS AND DISCUSSION

In this section, based on the developed design method, simulation
results are presented. The designed structures related to the first
(FBF ) and second (FBW ) fitness functions are named optimized and
modified cases respectively. In order to evaluate the efficiency of the
design procedure, propagation characteristics are compared with the
common designed structure reported in [2]. In first step, the dispersion
is considered. By applying two fitness functions, the broadening factor
is minimized and bandwidth of dispersion curve (the wavelengths
duration between two zero dispersion wavelengths) is maximized. In
this simulation the following durations for simulation parameters are
assumed.

According to the illustrated curves in Fig. 4, bandwidth for
common case (Ref. [2]) is about 200 nm within the wavelength duration
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Start

Get the initial data
(Optical and geometrical 

Parameters) 

Evaluation of the Fitness 
Function 

Optimal optical and 
geometrical parameters 

are extracted 

End

Figure 3. The scheme of the design procedure.

of [1.45–1.65]µm, whereas this quantity is 230 nm for modified case
within [1.42–1.65]µm duration which is equivalent to 15% increase
in the bandwidth. Also, maximum dispersion for common case is
3.7 ps/Km/nm, whereas dispersion for modified and optimized cases
are 3 ps/Km/nm and 2.02 ps/Km/nm respectively. The last case is

Table 1. Initial population ranges and values for the designed optical
fiber structure.

Parameters Duration
Optimized

Value

Modified

Value

Common

Value [2]

R1 [1.2–5.2] 1.2786 1.2786 2

R2 [(−0.5)–(−0.05)] −0.3818 −0.0553 −0.1

∆ [0.003–0.01] 7.908 × 10−3 4.488 × 10−3 5.9 × 10−3

P [0.5–0.8] 0.6382 0.5148 0.7

Q [0.1–0.42] 0.3327 0.3128 0.4

a [2.2–2.8] µm 2.3092 µm 2.4393 µm 2.6 µm
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equivalent to about 46% decrease in dispersion compared to common
case.

Also, the proposed design method based on the FBF fitness
function can be used to shift the zero dispersion wavelength to the
arbitrary requested wavelength. It should be mentioned that in
this case the first summation on wavelengths must be replaced to
only one wavelength that is equal to the requested zero dispersion
wavelength. For illustration of this ability of the proposed algorithm,
we assumed 1.55 µm for the zero dispersion wavelength and optimized
curve is corresponds to this wavelength and illustrated in Fig. 4. So,
the proposed idea is excellent for design of optical fibers suitable
in broadband optical communications such as DWDM and OTDM
applications. In the following, the dispersion slope of common,
optimized and modified cases are illustrated in Fig. 5. It is obvious
that the optimized and modified cases have wide bandwidths as well
as more uniformity compared to common case. For excess clarification,
Table 2 is given to show the slope of dispersion slope in the S, C and
L communication bands.

1.2 1.3 1.4 1.5 1.6 1.7 1.8

x 10-6
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-2.5
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Wavelength

D
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p
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si
o

n

Common

Optimized, C=0 
Modified 

Figure 4. Dispersion (s/m2) vs. wavelength (m) for common case [2],
optimized case using FBF fitness function (at 1.55µm), and modified
case using FBW fitness function.

It is clear that the slope of dispersion slope in optimized case is
about half of common case. So, as a result one can imagine that pulse
broadening for optimized case is smaller than common case. Also, it
is shown that the modified case is excellent for C-band compared to
the two other cases. Generally in wide bandwidth ranges optimized
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Figure 5. Dispersion slope (s/m3) vs. wavelength for common,
optimized and modified cases (normalized to 10−9).

Table 2. Slope of dispersion slope in S, C and L bands.

Band

Slope of

Dispersion

Slope for

Optimized Case

Slope of

Dispersion

Slope for

Common Case

Slope of

Dispersion

Slope for

Modified Case

S (1500 nm) −0.214 −0.399 −0.3660

C (1550 nm) −0.298 −0.5964 −0.1820

L (1600 nm) −0.462 −1.03 −0.64

case is better for small pulse broadening purposes. Consequently,
it is excellent for dense wavelength division multiplexing (DWDM)
application.

Thus, owing to discussion presented earlier, the optimized
case is selected and its other propagation features are evaluated.
Fig. 6 illustrates the pulse broadening factor at the zero dispersion
wavelength (1.55µm) versus distance for Gaussian input pulse with
5 psec Full-width at half maximum. It is evident that the broadening
factor just increase to 1.0016 after 200 Km propagation that is excellent
for practical case. In other words, after 200 Km traveling only 0.16%
increase in broadening factor is observed. It is remarkable that the
broadening factor increase to 1.2794 in the common case structure at
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Figure 6. Pulse broadening factor vs. distance (m) for zero dispersion
wavelength (1.55µm).

1.44µm which is related to 27.94% growth in this factor.
Furthermore, in order to show the excellent feature of proposed

optimized case, the pulse broadening factor is computed at the
wavelength about 10 nm away from the zero dispersion wavelength.
The simulation outcomes show that the broadening factor increases to
1.0016 at 1.56µm which is as same as its value at the zero dispersion
wavelength. But in the common case structure and under putting
forward condition, the pulse broadening factor growth is obvious at
1.45µm and reaches to 3.975 after 200 Km propagation.

In order to illustrate the importance of the obtained small pulse
broadening in the optimized case in comparison with the common one,
the dispersion length of these cases are calculated and illustrated in
Figs. 7 and 8.

Figure 7 shows the dispersion length of the common case. In
this figure, two peaks are appeared at 1.44µm and 1.65µm which are
related to nearly 500 Km and 900 Km of dispersion length respectively.
It is useful to notice that 1.44µm is corresponded to the zero
dispersion wavelength. A similar situation is illustrated for optimized
case in Fig. 8. In this figure there are two considerable dispersion
lengths that are 17400 Km and 4490 Km corresponding to 1.55µm
and 1.7µm respectively. The first peak is observed at zero-dispersion
wavelength. Based on these simulations at zero-dispersion wavelengths
the optimized case has 17400 Km whereas common case has 500 Km
dispersion lengths that is a huge increase in the optimized case. This
is equivalent to 34.8 times increase in dispersion length at the zero
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Figure 7. Dispersion length for common case.
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Figure 8. Dispersion length for optimized case.

dispersion wavelengths near to minimum fiber loss. Even for comparing
the maximum reported dispersion lengths for both two cases, we
observed that the optimized case is 19.33 times better than common
case.

In the following, the bit rate is calculated at near zero dispersion
wavelengths (about 40 nm away from zero dispersion wavelengths) for
optimized and common cases and illustrated in Fig. 9. It is found out
that the bit rates are 197.8 Gb/sec and 78.8 Gb/sec for optimized and
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Figure 9. Bit rate vs. distance for optimized and common cases
at near zero dispersion wavelengths (about 40 nm away from zero
dispersion wavelengths).
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Figure 10. Pulse broadening factor vs. distance (m) for the chirped
pulse case at zero-dispersion wavelength (1.55 µm).

common cases respectively at 100 Km. The bit rate in the optimized
case is 2.5 times higher than common case.

In this section, the optimized case name optical fiber (RII) were
investigated from many aspects such as dispersion, dispersion slope,
dispersion length and bit rate points of view. It was shown that the
small pulse broadening factor and large dispersion length as well as
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Figure 11. Pulse broadening factor vs. distance (m) for designed
case over [1.52–1.58] µm wavelength duration at the zero dispersion
wavelength (1.53µm).

large bandwidth are the main advantages of the proposed optimized
case structure, making it an ideal candidate for performing large
bandwidth and high speed optical communication applications.

In the following we consider the chirped Gaussian pulse as an input
and design an optical fiber structure by applying suggested procedure
by FBF as a fitness function. In simulation we set the chirp parameter
to C = −1 and the pulse broadening versus distance is illustrated at
zero dispersion wavelength in Fig. 10. After 257.2 Km propagation
the output pulse width is equal to start point pulse width and the
increased to 4.8027 after 1000 Km. The situation for common case is
a little different and pulse width after 1000 Km traveling broadened to
5.001. The structural parameters of the proposed case with chirped
Gaussian pulse as an input are given in Table 3.

With compared to Table 1, we find out that the considerable
difference between parameters in these two table is related to ∆.

It is noticeable that the suggested FBF fitness function could
applied to the large wavelength interval instead of predefined single
wavelength. In the case of single wavelength, the zero dispersion
wavelength is led to the predefined value. But in the duration ones,
there is no precise prediction about the zero dispersion wavelength
value. Fig. 11 demonstrates the pulse broadening factor for the
situation which the FBF is used at [1.52–1.58]µm interval. In other
word, it is attempted to minimize the pulse broadening factor in the
given wavelengths. It is observed that the zero dispersion wavelength
is equal to 1.53µm and the pulse broadening factor reaches to 1.0044
after 200 Km propagation.
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Table 3. Structural parameters value for the proposed optical fiber
structure with chirped input pulse.

Parameter Repotred Value for Chirped Pulse case
R1 1.2786
R2 −0.3872
∆ 9.5067 × 10−3

P 0.6382
Q 0.3327
a 2.3092µm

6. CONCLUSION

By applying the introduced design method, the optimized RII triple-
clad optical fiber is reported. It is shown that the obtained
optimized case introduces so interesting features to be used for optical
communication. We show that this structure have 17400 Km dispersion
length, 1.0016 pulse broadening factor after 200 Km, and 197.8 Gb/sec
at 100 Km. Based on these reported results the introduced fiber
illustrate good performance for high speed data transmission lines
and especially OTDM applications. Also, this methodology is capable
to shift the zero dispersion wavelength to an arbitrary requested
wavelength and introduce possible minimum dispersion slope. In
the simulated results, we discovered that ∆ is critical parameter in
the optimization procedure for changing input pulse from chirped to
without chirping. Finally, the FBF introduced fitness function let the
pulse broadening factor minimize within a duration of wavelengths
that is so important for large bandwidth applications such as DWDM
operation.
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