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Abstract—Blind direction of arrival (DOA) estimation algorithms of
coherent sources using multi-invariance property is presented in this
paper. ESPRIT-like algorithm in [23] can estimate DOA of coherent
signal, but its performance is without satisfaction. We reconstruct
the received signal to form data model with multi-invariance property,
and then multi-invariance ESPRIT and multi-invariance MUSIC
algorithms for coherent DOA estimation are proposed in this paper.
Our proposed algorithms can resolve the DOAs of coherent signals.
They have much better DOA estimation performance than ESPRIT-
like algorithm. Meanwhile they identify more DOAs than ESPRIT-like
algorithm. The simulation results demonstrate their validity.

1. INTRODUCTION

Antenna array has been used in many fields such as radar, sonar,
communications, seismic data processing, etc. [1–12]. The directions-
of-arrival (DOA) estimation [13–18] of signals impinging on an array
of sensors is a fundamental problem in array processing, and many
methods have been proposed for its solution. Eigen-decomposition-
based methods, including multiple signal classification (MUSIC) and
estimation of signal parameters via rotational invariance techniques
(ESPRIT), have high resolution DOA estimation performance, but
they fail to work in coherent signal condition. Some smoothing
methods including spatial smoothing techniques [18, 19], subspace
smoothing techniques [21], temporal smoothing techniques [22] etc.
were proposed to resolve this coherent problem. But these methods
are all at the cost of a reduction in array aperture, the number of
resolved sources is restricted within the number of reduced array.
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Some higher-order cumulants based methods [24, 25] and third-order
cyclic moment method [22] can resolve coherent DOA estimation, but
the required number of snapshots is too large and the complexity is
relatively high; they also require the signal statistic characteristic.
[26] derives a large-sample maximum likelihood estimator for coherent
DOA estimation, which may be difficult to realize. Some special array
structures [23, 27] are used for coherent DOA estimation. In [23],
a coherent DOA estimation was presented from another point of
view, which reconstructed a special antenna array model based on the
Toeplitz matrix whose rank is only related to the DOA of signals and
cannot be affected by the coherency between them. EPSPIT method is
used to coherent DOA estimation, but its DOA estimation performance
is without satisfaction. Also, ESPRIT-like algorithm [23] requires
stronger conditions in terms of the number of sensors, N > 2P + 1,
where N , P are the numbers of antennas and sources, respectively.

Improved DOA estimation algorithms of coherent signal are
investigated in this paper. Our proposed algorithms, which
employ multi-invariance property, have much better DOA estimation
performance than ESPRIT-like algorithm and identify more DOAs
than ESPRIT-like algorithm. Our proposed algorithm can overcome
the shortcomings of EPSPIT-like method.

This paper is structured as follows. Section 2 develops data model.
Section 3 deals with algorithmic issues. Section 4 presents simulation
results, and Section 5 summarizes our conclusions.

Denote: We denote by (.)∗ the complex conjugation, by (.)T the
matrix transpose, and by (.)H the matrix conjugate transpose. The
notation (.)+ refers to the Moore-Penrose inverse (pseudo inverse).
‖‖F stands for Forbenius norm.

2. DATA MODEL

A uniform linear array (ULA) with spacing d is considered in this
paper. The structure of uniform linear array is shown in Fig. 1. The
received signal of antenna array containing N(N = 2M + 1) elements
is shown

X = AS + N0 (1)

where S = [s1 · · · s1 sL+1 · · · sp]. We suppose that the first
L signals are mutually coherent, while the others are independent
of the first signals. N0 is the received noise. A is the
direction matrix. A = [a(θ1) a(θ2) · · · a(θp), where a(θp) =
[ej2πdM sin θp/λ · · · 1 · · · e−j2πdM sin θp/λ]T , and λ is wavelength.
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Figure 1. The structure of array antennas.

The covariance matrix of the received signal is Rxx = E{XXH},
where E{.} stands for the expectation. According to [23], the element
of Rxx can be expressed as

r(m, n) =
P∑

i=1

dm, ie
j2πdn sin θi/λ + σ2

nδm, n,

m, n = −M, . . . , 0, . . . , M (2)

where dm, i is shown in [23].
We collect data and form the following Toeplitz matrices with

(M + 1) × (M + 1)

R(m) =




r(m, 0) r(m, 1) · · · r(m,M)
r(m,−1) r(m, 0) · · · r(m,M − 1)

...
...

. . .
...

r(m,−M) r(m,−M + 1) · · · r(m, 0)


 ,

m = −M, . . . , 0, . . . , M
= ArD(m)AH

r + Nm (3)

where D(m) = diag{dm,1 dm,2 · · · dm,P } ∈ C
P×P , Nm is the noise

component.
Ar = [ar(θ1) ar(θ2) · · · ar(θp)] ∈ C

M+1×P , and ar(θp) =
[1 e−j(2π/λ)d sin θp · · · e−j(2π/λ)dM sin θp ]T .

Define a matrix H as

H =




d−M,1 d−M,2 · · · d−M,P
...

...
. . .

...
d0,1 d0,2 · · · d0,P
...

...
. . .

...
dM,1 dM,2 · · · dM,P



∈ C

2M+1×P (4)
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Define Rk = R(m), for k = m + M + 1, k = 1, 2, . . . , 2M + 1 and
m = −M, . . . , 0, . . . , M . Rk is shown

Rk = Ardiagk(H)AH
r + Nk, k = 1, 2, . . . , 2M + 1 (5)

where diagk(.) extract the kth row of its matrix argument and
construct a diagonal matrix out of it. Ar is a matrix with Vandermode
characteristic, so we can use ESPRIT method [28] to estimate DOA.

According to Eq. (5), we get



R1

R2
...

R2M+1


 =




Ardiag1(H)
Ardiag2(H)

...
Ardiag2M+1(H)


AH

r +




N1

N2
...

N2M+1


 (6)

The noiseless signal in Eq. (5) can be denoted as trilinear
model [29], which has been used in [30–34].

xm,n,k =
P∑

p=1

am,pa
∗
n,phk,p,

m=1, . . . ,M+1; n=1, . . . ,M+1; k=1, 2, . . . , 2M+1 (7)

where am,p stands for (m, p) element of matrix Ar; hk,p stands for
(k, p) element of matrix H. Ardiagk(H)AH

r , k = 1, 2, . . . , 2M − 1,
can be interpreted as slicing the trilinear model in a series of slices
(2-D data or matrix) along the antenna direction. The symmetry of
trilinear model in Eq. (7) allows other matrix system rearrangements
which can be interpreted as slicing the trilinear model along different
directions. In particular

Ym = A∗
rdiagm(Ar)HT , m = 1, 2, . . . , M + 1 (8)

where Eq. (8) can be regarded as the reconstructing signal of Eq. (5).

3. BLIND DOA ESTIMATION OF COHERENT
SOURCES USING MULTI-INVARIANCE PROPERTY

3.1. Multi-invariance ESPRIT (MI-ESPRIT) Algorithm for
Coherent DOA Estimation

According to Eq. (8), we form the following matrix.

Y =




Y1

Y2
...

YM+1


 =




A∗
rdiag1(Ar)

A∗
rdiag2(Ar)

...
A∗

rdiagM+1(Ar)


HT =




A∗
r

A∗
rΦ
...

A∗
rΦ

M


HT (9)
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where Φ = diag[e−j(2π/λ)d sin θ1 , e−j(2π/λ)d sin θ2 , . . . , e−j(2π/λ)d sin θp ],
which is called the rotation matrix. So we can use multi-invariance
ESPRIT [35] to estimate DOAs.

For Eq. (9), RY = YYH . We denote the matrix containing the
eigenvectors {fp}P

p=1 associated with the P largest eigenvalues of RY

by E

E =




A∗
r

A∗
rΦ
...

A∗
rΦ

M


T (10)

where T is a P × P full-rank matrix.
According to (10), we define E1 and E2

E1 =




A∗
r

A∗
rΦ
...

A∗
rΦ

M−1


T (11)

E2 =




A∗
rΦ

A∗
rΦ

2

...
A∗

rΦ
M


T (12)

According to Eq. (11) and Eq. (12),

E2 =




A∗
r

A∗
rΦ
...

A∗
rΦ

M−1


ΦT=




A∗
r

A∗
rΦ
...

A∗
rΦ

M−1


TT−1ΦT=E1T−1ΦT (13)

Define Ψ = T−1ΦT. Eq. (13) becomes E2 = E1Ψ, and then Ψ =
E+

1 E2. Because Ψ has the same eigenvalues as Φ, we use eigenvalue
decomposition (EVD) for Ψ to get e−j(2π/λ)d sin θp , p = 1, 2, . . . , P ,
and then estimate DOA θp, p = 1, 2, . . . , P .

It should be pointed out that ESPRIT-like algorithm [17] requires
stronger conditions in terms of the number of sensors, N > 2P + 1,
where N , P are the numbers of antennas and sources, respectively.
Our proposed algorithm has no this limitation. Exploiting multiple
invariance characteristic in Eq. (11) and Eq. (12), it easy to determine
the maximum number of users Kmax which MI-ESPRIT algorithm can
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detect. It is clear Kmax = M(M + 1) (N = 2M + 1). We also consider
the number of sources K ≤ N . So the number of sources which MI-
ESPRIT can identify K ≤ min{M(M + 1), N}.

3.2. Multi-invariance MUSIC (MI-MUSIC) Algorithm for
Coherent DOA Estimation

We also use multi-invariance MUSIC [36] to estimate coherent DOA. In
[36], DOAs of uncorrelated sources are estimated with multi-invariance
MUSIC, but herein we employ multi-invariance MUSIC to estimate
DOAs of coherent sources. Equation (10) is also denoted as

E = ΛT (14)

where T is a P × P full-rank matrix. Λ is

Λ =




A∗
r

A∗
rΦ
...

A∗
rΦ

M


 = [a1 ⊗ β1, a2 ⊗ β2, . . . , ap ⊗ βp] (15)

where ap is the pth column of the matrix Ar. βp is the pth column of
the matrix A∗

r . ap ⊗ βp denotes Kronecker product.
According to Eq. (14), Λ = ET−1, and then minimizing the signal

subspace fitting, T̂, Λ̂ = arg min
T, Λ

∥∥∥Λ − ÊT
−1

∥∥∥
2

F
, which is also denoted

as

T̂, Λ̂ = arg min tr(ΛHΠ⊥
Ê
Λ) (16)

where tr(.) denotes the sum of the elements of the principal diagonal
of the matrix. Π⊥

Ê
= I− Ê(ÊHÊ)−1ÊH , and I is a (M + 1)× (M + 1)

identity matrix. According to Eq. (15), the minimization of Eq. (16)
becomes

âp, β̂p = arg min
ap, βp

P∑
p=1

(ap ⊗ βp)HΠ⊥
Ê
(ap ⊗ βp) (17)

The minimization for Eq. (17) can be attained by finding the P deepest
minima of the following criterion.

V(θ, β) = (a(θ) ⊗ β)HΠ⊥
Ê
(a(θ) ⊗ β)

= βH(a(θ) ⊗ I)HΠ⊥
Ê
(a(θ) ⊗ I)β

= βHQ(θ)β (18)
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where a(θ) = [1 e−j(2π/λ)d sin θ · · · e−j(2π/λ)dM sin θ]T ∈ C
(M+1)×1;

Q(θ) = (a(θ)⊗I)HΠ⊥
Ê
(a(θ)⊗I); β ∈ C

(M+1)×1. I is the (M+1)×(M+
1) identity matrix. A constraint eTβ = 1, where e = [1, 0, . . . , 0]T ∈
R

(M+1)×1, is added to eliminate the trivial solution β = 0. The DOA
θp, p = 1, 2, . . . , P , are estimated via a 1-D search. The solution for
θp is

θ̂p = arg max
θ

eTQ−1(θ)e (19)

Searching θ ∈ [0, 360◦], we find the P largest peak of the (1, 1)
element of Q−1(θ). The P largest peak should correspond to DOA
θp, p = 1, 2, . . . , P .

3.3. Complexity Analysis

In contrast to ESPRIT, our algorithms have a larger computational
load, which is usually dominated by formation of the covariance matrix
and calculation of EVD.

For MI-ESPRIT algorithm, the computational complexity of
formation of the covariance matrix is O((M+1)4(2M+1)); calculation
of its eigen decomposition requires O((M + 1)6); and eigen value
decomposition for Ψ requires O(P 3). The major computational
complexity of MI-ESPRIT is O((M + 1)4(2M + 1) + (M + 1)6 + P 3),
while ESPRIT requires O((M + 1)2(2M + 1)P + (M + 1)3 + P 3).

For MI-MUSIC algorithm, the computational complexity of
formation of the covariance matrix is O((M + 1)4(2M + 1)) and
calculation of its eigen decomposition requires O((M + 1)6). For
MI-MUSIC, which employs a 1-D criterion that must be searched
for P local maximum, the computational load is determined by the
complexity of evaluating the criterion for each θ. MI-MUSIC requires
the formation of the matrix Q(θ) for each θ, which is an O((M + 1)4)
operation, followed by calculation of the (1, 1) element of Q−1(θ),
which requires O((M + 1)4).

4. SIMULATION RESULTS

Let Rk = Ardiagk(H)AH
r + Nk be the received noisy data, for

k = 1, 2, . . . , 2M − 1, where Nk are the additive white Gaussian
noise (AWGN) matrices. We define signal to noise ratio (SNR)

SNR = 10 log10

∑2M+1
k=1

∥∥Ardiagk(H)AH
r

∥∥2

F∑2M+1
k=1 ‖Nk‖2

F

(20)
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A uniform linear array with N = 11 (N = 2M + 1, then M =
5) sensors is used in this simulation, and there are three signals
si(t) = ρie

j(2πft+φi), i = 1, 2, 3, impinging on a uniform linear array
at θ1 = 10◦, θ2 = 20◦, θ3 = 30◦ respectively. ρi and φi stand for
the power and the initial phase of signal, respectively. The second
signal is the duplicate of the first signal, and the third signal is
independent of first signal. The element spacing d is λ/2. Define
MSE = 1

1000

∑1000
m |θm − θ0|2, where θm is the estimated DOA of

the mth simulation, θ0 is the perfect DOA. We present Monte Carlo
simulations that assess DOA estimation performance of the proposed
algorithms. The number of Monte Carlo trials is 1000.

Figure 2 and Fig. 3 show the DOA estimation of MI-ESPRIT
and MI-MUSIC algorithm at 30 dB. From Fig. 2–Fig. 3, we find that
our proposed algorithms (MI-ESPRIT and MI-MUSIC algorithm) have
better coherent DOA estimation performance.

5 10 15 20 25 30 35
0

5

10

15

20

25

30

DOA/degree

ex
pe

rim
en

t 
tim

e

Figure 2. DOA estimation performance of MI-ESPRIT at SNR =
30 dB.

We compare our algorithms with ESPRIT [23]. Their DOA
estimation performance comparisons under different SNR are shown
in Figs. 4–6. Fig. 4 shows the MSE of the estimate of θ1 = 10◦ versus
SNR, and from Fig. 4 we find that MI-ESPRIT algorithm has much
better DOA estimation performance than ESPRIT-like algorithm.
The DOA estimation performance of MI-ESPRIT algorithm is about
9 dB better than ESPRIT-like algorithm. MI-MUSIC algorithm has
about 1 dB gain over MI-ESPRIT, and about 10 dB over ESPRIT
algorithm. Fig. 5 and Fig. 6 present θ2 = 20◦ and θ3 = 30◦
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estimation performance, respectively. From Fig. 5 and Fig. 6, we
find that MI-ESPRIT algorithm has much better DOA estimation
performance than ESPRIT-like algorithm. MI-MUSIC algorithm has
better DOA estimation performance than MI-ESPRIT. MI-ESPRIT
and MI-MUSIC algorithms have better coherent DOA estimation than
ESPRIT, because MI-ESPRIT and MI-MUSIC algorithms utilize fully
multi-invariance structure.
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Figure 3. DOA estimation performance of MI-MUSIC at SNR =
30 dB.
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Figure 4. MSE of the estimate of θ1 = 10◦ versus SNR.
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Figure 5. MSE of the estimate of θ2 = 20◦ versus SNR.
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Figure 6. MSE of the estimate of θ3 = 30◦ versus SNR.

As we mentioned above, ESPRIT-like algorithm in [23] only
works well when P < M + 1. When P ≥ M + 1, ESPRIT-like
algorithm fails to work. Our proposed algorithm has no this limitation.
Suppose there are 6 signals impinging on a uniform linear array with
N = 11 (N = 2M + 1, then M = 5) sensors at θ1 = 10◦, θ2 = 20◦,
θ3 = 30◦, θ4 = 40◦, θ5 = 50◦, θ6 = 60◦, respectively. The second signal
is the duplicate of the first signal, while other signals are independent
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of first signal. Fig. 7 shows the DOA estimation of MI-ESPRIT at
38 dB with 30 independent trials. Fig. 8 presents the DOA estimation
performance of MI-MUSIC algorithm. From Figs. 7–8, we conclude
that our proposed algorithms have better coherent DOA estimation
performance with larger source number. They identify more DOAs
than ESPRIT-like algorithm.
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Figure 7. DOA estimation performance of MI-ESPRIT at SNR =
38 dB.
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Figure 8. DOA estimation performance of MI-MUSIC at SNR =
38 dB.
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5. CONCLUSIONS

We reconstruct the received signal to form data model with multi-
invariance property, so multi-invariance ESPRIT and multi-invariance
MUSIC algorithms for coherent DOA estimation are proposed in this
paper. Our proposed algorithm can resolve the DOAs of coherent
signals. Our proposed algorithm has much better DOA estimation
performance than ESPRIT-like algorithm, meanwhile they identify
more DOAs than ESPRIT-like algorithm. Multi-invariance MUSIC
algorithm has the better DOA estimation performance than multi-
invariance ESPRIT algorithm, but its computational complexity is
larger than multi-invariance ESPRIT algorithm.
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