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Abstract—A compact Pi-structure transformer operating at arbitrary
dual band is proposed in this paper. To achieve the ideal impedance
matching, the exact design formulas with no restrictions are obtained.
In addition, it is found that there are infinite solutions for this novel
transformer considering the fact that three independent variables exist
in two equations. Furthermore, to verify the design formulas, the
reflection characteristics in different cases are shown by numerical
simulations. The horizontal length of this transformer is half of the
Monzon’s dual band transformer. The proposed dual band transformer
can be used in many compact dual band components such as antennas,
couplers and power dividers.

1. INTRODUCTION

With the development of mobile communication, the utility ratio of
the frequency band has been improved dramatically. In many cases,
devices are required to work at two different frequencies (namely dual
band)[1-5]. Based on the principle of two-section transformers, Chow
et al. proposes a novel transformer of one-third wavelength in two
sections for a frequency and its first harmonic [6]. However, the
performance of the transformer designed by the inexact method in
[6] is deteriorated by an elevating ratio between the input and load
impedance. And then, [7] and [8] represent comprehensive analysis and
exact solutions of flexible dual band transformer. Recently, this small
dual band transformer has been applied in dual band power dividers
[9–11] and unequal dual band power dividers [12, 13].

In this paper, we present a novel Pi-structure transformer
operating at arbitrary dual band which is more compact than one
in [8]. By solving the matching equations, it is found that there are
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infinite numbers of solutions for this novel transformer considering the
fact that three independent variables exist in two equations. Since
different matching parameters can be obtained from close-form design
formulas in different cases, this compact transformer can be designed
conveniently and flexibly in compact dual band components design.
For example, in the special case when characteristic impedances of the
matching stubs are equal, the proposed transformer has been used in
dual band couplers [14] and power dividers [15], which have certified
this dual frequency Pi structure design concept simultaneously. In
addition, it is necessary to point out that the effects of circuit layouts
are not considered in the analysis of transmission lines to obtain final
closed-form design equations.

2. DESIGN EQUATIONS

The Pi-structure dual band transformer is illustrated in Fig. 1.
Considering that the transmission lines are connected in parallel, the
admittances are applied to analyze the design equations.

3 3,

1 1,θZ

2 2, LR

0Z

θZ θZ

Figure 1. Circuit of Pi-structure dual
band transformer.
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Figure 2. Equivalent circuit
of Fig. 1.

In order to be analyzed conveniently, the circuit shown in Fig. 1
can be represented as an equivalent one shown in Fig. 2, whose
admittances can be expressed as [16]:

Y1 =
1
Z1

, Y2 = g2 + jb2 =
1
Z0

+ j
tan(θ2)

Z2
,

Y3 = g3 + jb3 =
1

RL
+ j

tan(θ3)
Z3

.

(1)

The input impedance is desired to equal to Z0 at dual band. Therefore,
this design goal can be given equivalently by

Y ∗
2 = Y1

Y3 + jY1 tan(θ1)
Y1 + jY3 tan(θ1)

, (2)
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where the asterisk denotes the complex conjugate symbol. This
matching problem is similar to the single transmission line
transformation in [17, 18]. From (1) and (2), the following equation
can be obtained as

g2 − jb2 = Y1
g3 + j(b3 + Y1 tan(θ1))

Y1 − b3 tan(θ1) + jg3 tan(θ1)
. (3)

Separating and rearranging the real and imagine parts of (3), the
equations can be obtained as

{
Y1(g2 − g3) = (g2b3 − g3b2) tan(θ1),
Y1(b2 + b3) =

(
b2b3 + g2g3 − Y 2

1

)
tan(θ1).

(4)

Substituting (1) into (4), and after some straightforward manipulation,
Equation (4) in terms of characteristic impedances can be expressed
as,




Z2Z3(RL − Z0) = Z1 tan(θ1)[Z2RL tan(θ3) − Z3Z0 tan(θ2)],
Z0Z1RL[Z3 tan(θ2) + Z2 tan(θ3)]

=
[(

Z2
1 − Z0RL

)
Z2Z3 + Z2

1Z0RL tan(θ2) tan (θ3)
]
tan(θ1).

(5)

To express briefly, the normalized coefficients, which are significant
when they are positive and real, are defined as,

k =
RL

Z0
, z1 =

Z1

Z0
, z2 =

Z2

Z0
, z3 =

Z3

Z0
. (6)

Substituting (6) into (5), the Equation (5) can be simplified as,



z2z3(k − 1) = z1 tan(θ1) [z2k tan(θ3) − z3 tan(θ2)] ,
z1k [z3 tan(θ2) + z2 tan(θ3)]

=
[(

z2
1 − k

)
z2z3 + z2

1k tan(θ2) tan(θ3)
]
tan(θ1).

(7)

It should be pointed out that θn, n = 1, 2, 3 are θnf1 and θnf2 while
operating at dual frequencies f1, f2. Solutions of (7) will be discussed
in the following sections.

3. SOLUTIONS OF DESIGN EQUATIONS

There are three variables in the design equation (7) for this dual band
transformer. So we can determine one variable manually and consider
it as an independent variable.
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3.1. The Electrical and Physical Length Solutions

To assure (7) can be satisfied in dual band (supposed center frequencies
satisfy f2 ≥ f1, namely, f2 = pf1, p ≥ 1), the following equation should
be applied,

tan θnf1 = ± tan θnf2, n = 1, 2, 3. (8)

The solution of (8) is given by

θnf1 ± θnf2 = mπ, n = 1, 2, 3. m ∈ N+. (9)

Since small transformer is helpful for microwave engineers to fulfill
miniaturization, the situation that the + sign and m = 1 [8] is chosen
and from (9) the physical lengths can be obtained as follows,

l = l1 = l2 = l3 =
1

2(1 + p)
λ1, (10)

where λ1 is the wavelength of f1. With the line lengths known, we can
obtain the following parameters,

α = tan θ1 = tan θ2 = tan θ3 = tan
(

π

1 + p

)
. (11)

It is necessary to note that the li, i = 1, 2, 3 can also be unequal (For
example: l1 = ml2), as long as the final expression (7) is unchanged
with operating at both f1 and f2. Considering that the corresponding
physical lengths are large, this unequal li case will not be discussed in
the following sections.

3.2. The Characteristic Impedances Discussion

Using (11), (7) can be expressed as{
z2z3(k − 1) = z1α

2(z2k − z3),
z1k(z3 + z2) = (z2

1 − k)z2z3 + z2
1kα2.

(12)

Because there are three variables namely z1, z2, z3 in (12), it is
necessary to define one of the variables for obtaining the other ones.
We suppose that z1 is known here, the solution of (12) can be discussed
in the following different cases of k:

A. One case: when k = 1, namely, Z0 = RL, (12) can be rewritten
as {

z2 = z3,
2z1z2 =

(
z2
1 − 1

)
z2
2 + z2

1α
2.

(13)
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To assure z2 and z3 are positive and real, the values can be obtained
as,

z2 = z3 =




z1

[
1 −

√
1 + (1 − z2

1)α2
]

(z2
1 − 1)

, 0 < z1 ≤ 1.

z1

[
1 ±

√
1 + (1 − z2

1)α2
]

(z2
1 − 1)

, 1 < z1 ≤
√

1 + α2

α2
.

(14)

B. Another case: when k �= 1, namely, Z0 �= RL, (12) can be
rewritten as,

{
Cz2

2 + Dz2 + E = 0,
z3 = Az2 + B.

(15)

where

A =
z2
1kα2 − k2α2 − k2 + k

z2
1α

2 − kα2 + k2 − k
, B =

z1kα2(k − 1)
z2
1α

2 − kα2 + k2 − k
,

C = A(k − 1), D = −2B, E = z1α
2B.

The solution of (15) can be obtained as,

 z2 =

B ±
√

B2 − CE

A(k − 1)
,

z3 = Az2 + B.
(16)

To assure z2, z3 are positive and real, and after some straightforward
manipulation, (16) can be rewritten as,

z2 =




z1α
2
(
1−

√
(k+α2k−z2

1α
2)

)
z2
1α

2−kα2−k+1
, 0<z1≤

√
k+α2k−1

α2
.

z1α
2
(
1 ±

√
(k+α2k−z2

1α
2)

)
z2
1α

2−kα2−k+1
,

√
k+α2k−1

α2
<z1 <

√
k+α2k

α2
.

z3 = Az2 + B. (17)

Obviously, there are two solutions in (14) and (17) in different cases.
Considering the practical microwave implementation, one of them will
be discarded, which will be discussed in the following.
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3.3. The Final Characteristic Impedances Solutions

From the above discussion, it is interesting that (17) includes (14).
Combining (14) and (17), we can choose (17) to analyze finally. And
then (17) is separated into two different parts, which follow as

z2 =
z1α

2
(
1−

√(
k + α2k − z2

1α
2
) )

z2
1α

2 − kα2 − k + 1
, 0 < z1 ≤

√
k + α2k

α2
. (18a)

z2 =
z1α

2
(
1+

√(
k+α2k−z2

1α
2
) )

z2
1α

2−kα2−k+1
,

√
k+α2k−1

α2
<z1<

√
k+α2k

α2
.(18b)

If z1 is in the scope of (18b), the subtraction of (18b) and (18a) is

∆z2 =
2z1α

2
(√(

k + α2k − z2
1α

2
) )

z2
1α

2 − kα2 − k + 1
> 0, (19)

(19) means that the value of (18b) is larger than one of (18a) when
z1 is the same. Especially, when z1 →

√
k + α2k − 1/

√
α2 in (18b),

z2 → ∞ can be obtained. But in (18a), z2 will be a positive and real
number, which is more practical in microwave engineering. Considering
practical realization in terms of microstrip line, the values of z1, z2, z3

should be in the adequate range. Apparently, (18b) is not suitable to
practical design because the characteristic impedances are very high.
So, we only choose (18a) as the final design for different values of z1 in
this paper.

Here, the aforementioned discussion can be summarized. If z1 is
known and in the range of (20a), the final generalized design equations
of z2 and z3 can be expressed as:

0 < z1 ≤
√

k + α2k

α2
, (20a)

z2 =
z1α

2
(
1 −

√(
k + α2k − z2

1α
2
))

z2
1α

2 − kα2 − k + 1
, (20b)

z3 =
kz1α

2
(
k −

√
k + α2k − z2

1α
2
)

z2
1α

2 − kα2 + k2 − k
. (20c)

So, we can obtain different impedances solutions with different
values of z1 according to (20). When the values of impedances are
very large or small, they can be adjusted using different values of z1.
This is the main advantage of this proposed dual band transformer.
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3.4. Special Cases of Solutions

Let us consider some special cases of (20).
When z1 =

√
k, (20) can be simplified as the following equation,

z1 =
√

k, z2 =

√
kα2

1 +
√

k
, z3 =

kα2

1 +
√

k
. (21)

When z1 =
√

k(1 + α2) − 1/
√

α2, (k ≥ 1), (20) can be simplified as
the following equation based on the limitation characteristic,

z1 =

√
k(1 + α2) − 1

α2
, z2 =

z1α
2

2
, z3 =

kz1α
2

k + 1
. (22)

When z1 =
√

k(1 + α2)/
√

α2, (20) can become as follows,

z1 =

√
k(1 + α2)

α2
, z2 = z3 = z1α

2. (23)

This special case including (23) is the same with the results of [14]
and [15], and (23) has been applied in dual band couplers and power
dividers in compact structure.

4. ANALYSIS OF SOLUTIONS

In this section, using (11), we analyze the characteristics of (20) against
different p and k.

4.1. Single Matching Band

The p will be very large when f2 
 f1. Considering α ≈ π/(1 +
p) → 0, the electrical length of this transformer will become very
small. When f2 → ∞, the total transformer will be considered as
a lumped inductance and capacitance transforming network, namely
the resistances are connected directly with lumped components. This
characteristic is similar with the dual band transformer in two sections
when f2 → ∞ [8].

In addition, in the case that p is very large, we can increase the
length of transmission lines by choosing a larger m to avoid too small
physical length,

l =
m

2(1 + p)
λ1. (24)
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And the corresponding parameter becomes,

α = tan
(

mπ

1 + p

)
. (25)

Based on (24), the value of m can increase along with the value of p, it
is suitable that m satisfies 4m < p + 5 [9] because the physical length
should be kept in the adequate range.

4.2. Equal Dual Band and Quarter Wavelength Transformer

If f2 = f1, then p = 1 and α → ∞, the electrical length is π/2 which
stands for one quarter wavelength of f1. Based on the results of (21)–
(23) and conventional transmission line matching concept, z1 =

√
k

is only chosen in this case and z2, z3 → ∞ can be obtained. So, this
transformer in this case can be considered as the conventional single
band quarter wavelength transformer [16].

4.3. Symmetry Properties

Similar with the transformer of [8], this proposed compact transformer
is also symmetry. If the k in (20) is replaced by k0 and 1/k0. The
following relationship can be expressed as,

z1|k=k0
= k0z1|k=1/k0

, (26)

k0z2|k=k0
= z3|k=1/k0

. (27)

In fact, the results of the impedances in the case k = k0 < 1 can be
obtained by changing the sequence of ones in the case k1 = 1/k0 > 1.

5. NUMERICAL SIMULATIONS

In this section, some numerical examples are presented based on (20)–
(23). In these examples, the reflections coefficients |Γ| are with respect
to normalized transmission line characteristic impedance Z0 = 1.
Therefore, it is convenient to use the normalized parameters (6).

5.1. Example 1

Considering that the example f1 = 1 GHz, f2 = 2 GHz, k = 4, we
can obtain that the physical length is λ1/6 and α equals

√
3. Four

different solutions with different z1, where case 2 is z1 =
√

k and case
4 is z1 =

√
k + α2k/

√
α2, are presented in Table 1. The responding
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reflection coefficients are shown in Fig. 3. We can find that the
matching bandwidth of case 4 is wider than the other cases. However,
the corresponding characteristic impedances are larger which makes it
difficult to be fabricated in practical microstrip lines.

Table 1. Solutions of Example 1.

Case 1
z1 = 1

Case 2
z1 = 2

Case 3
z1 = 2.2

Case 4
z1 = 4/

√
3

z2 0.651 2.000 2.978 6.928
z3 1.578 4.000 5.061 6.928

0.5 1 1.5 2 2.5
-25

-20

-15

-10

-5

0

Frequency (GHz)

| Γ
|(

dB
)

Case 1
Case 2
Case 3
Case 4

Figure 3. Reflection coefficients
of Case 1–4 in Example 1.
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Figure 4. Reflection coefficients
of Case 1–4 in Example 2.

5.2. Example 2

Let us consider the example f1 = 1 GHz, f2 = 2 GHz, where α =
√

3
can be obtained. The special solution (23) (namely, the case 4 in
example 1) is adopted, and that is z1 = 2

√
k/

√
3. But the parameter

k is variable.
The corresponding results are listed in Table 2, and the reflection

coefficients are shown in Fig. 3. It can be observed from Fig. 3 that
the bandwidth will become narrow as the parameter k increases.



130 Wu, Liu, and Li

Table 2. Solutions of Example 2.

Case 1
k = 1

Case 2
k = 2

Case 3
k = 3

Case 4
k = 5

z1 1.155 1.633 2.000 2.582
z2 = z3 3.464 4.899 6.000 7.746

5.3. Example 3

Let us consider the example f1 = 1 GHz, f2 = pf1, k = 4, which two
kinds of the parameter p (p is close to 1 (A) and p is very large (B))
are used, the special solution (23) is only considered.

Table 3. Solutions of Example 3(A).

Case 1
p = 1

Case 2
p = 1.5

Case 3
p = 2.5

Case 4
p = 3

z1 2.000 2.103 2.558 2.828
z2 = z3 ∞ 19.919 4.022 2.828
l/λ1 1/4 1/5 1/7 1/8

It is interesting that case 1 is similar with case 4 in Fig. 5. They
are all matched at 1 and 3 GHz. It is necessary to point out that case 1
is the same with quarter wavelength transformer, which can match at
its odd harmonics. The difference between case 1 and case 4 is that the
reflection coefficient bandwidth of case 4 is smaller than case 1. And
the stubs are necessary in case 4 while the stubs do not exist in case 1.
Table 3 shows the design parameters employed in the example 3(A).

When p is very large (3B) and m = 1, the design parameters
are listed in Table 4 and the corresponding reflections coefficients are
shown in Fig. 6.

Figure 6 shows that the matching frequency f2 is much higher and
the matching characteristics at f1 of case 1–4 change little when p 
 1.
The curve of case 4 overlaps the one of case 3 shown in Fig. 6 when
f < 10 GHz because p 
 10 in case 3 and 4, which means that the
reflection coefficients of case 3 and 4 is very similar in the frequency
range f < 10 GHz.
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Table 4. Solutions of Example 3(B).

Case 1
p = 5

Case 2
p = 9

Case 3
p = 20

Case 4
p = 100

z1 4.000 6.472 13.419 64.309
z2 = z3 1.333 0.683 0.305 0.062
l/λ1 1/12 1/20 1/42 1/202
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-25

-20
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0
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Figure 5. Reflection coefficients
of Case 1–4 in Example 3(A).
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Figure 6. Reflection coefficients
of Case 1–4 in Example 3(B).

5.4. Example 4

Let us consider the example f1 = 1 GHz, f2 = pf1, k = 4.
Different from example 3(A), the solution (21) is chosen and it can
be obtained that z1 = 2. The other parameters are listed in Table 5.
The corresponding reflection characteristics are shown in Fig. 7.
Comparing with the results of the example 3(A), the transformer with
lower impedances in this example is easier to be fabricated, but the
bandwidth will become narrower slightly.

Table 5. Solutions of Example 4.

Case 1
p = 1.5

Case 2
p = 2.5

Case 3
p = 3

z2 6.315 1.048 0.667
z3 12.630 2.097 1.333

l/λ1 1/5 1/7 1/8
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Figure 7. Reflection coefficients of Case 1–3 in Example 4.

6. CONCLUSIONS

A novel compact Pi-structure transformer operating at arbitrary dual
band has been presented. This design can shorten the horizontal
length of a traditional Monzon’s two-section dual band transformer
by 50%. In addition, the number of solutions of this transformer can
be infinite, which increases the flexibility of applications. This dual
band transformer will provide various applicable advances in compact
dual band components including antennas’ matching, power dividers
and couplers.
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