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Abstract—In this paper, we present a fast method to predict the
monostatic Radar Cross Section (RCS) in high-frequency of a cavity,
which can be modeled as a succession of bent waveguides of the same
cross section and stuffed by a perfectly-conducting termination. Based
on a modal analysis combined with the Kirchhoff Approximation, this
method allows us to obtain closed-form expressions of the transmission
matrix at each discontinuity. In addition, to improve the efficiency, a
selective modal scheme is proposed, which selects only the propagating
modes contributing to the scattering. Compared to the Iterated
Physical Optics (IPO) method and the Multi-Level Fast Multipole
Method (MLFMM, generated from the commercial software FEKO),
this approach brings good results for cavities with small tilt angles of
the bends, typically smaller than 2 degrees.

1. INTRODUCTION

Diffraction from open ended cavities is important in scattering analysis
because jet engine inlets are significant contributors to the Radar
Cross Section (RCS). This work also finds applications in [1-3] for
instance. Anastassiu [4] presented a very interesting review of methods
devoted to this challenging task, which can be grouped in three
categories: rigorous, asymptotic and hybrid. The reader is invited
to read this article for more references. Rigorous methods, based
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on the integral equations, can handle arbitrary geometries via an
appropriately chosen discretization; but their main limitation is the
size of the scatterers. This is why for instance, hybrid boundary-
integral /modal approach was developed [5]. In high-frequency, when
the cross section of the cavity is large comparatively to the incident
wavelength Ay, asymptotic methods, like approaches based on ray
tracing [6-10], Physical Optics [11-14] and modal analysis combined
with the Kirchhoff Approximation for the boundary conditions [15-17]
are also investigated. This paper applied this latter to an open ended
cavity modeled as a succession of bent waveguides of same rectangular
cross section and stuffed by a perfectly-conducting termination. From
this scheme, a curved cavity can then be treated.

For a two-dimensional waveguide duct containing a bend with a
tilt angle of 15 degrees and of 8.7)\¢ height, Ling et al. [18] presented
numerical results from this method. By comparing them with the
Method of Moments (MoM) [5], a good agreement on the monostatic
RCS was obtained for the co-polarizations. Thus, this method should
work well for the three-dimensional case. It is one of the purposes
of this paper. In addition, unlike [18], closed-form expressions of the
elements of the transmission matrix at the bend are derived. Similar
works has been done in [19], but in this paper the boundary conditions
at the discontinuity are applied rigorously, which then requires to invert
a matrix. For canonical terminations, this method referred as to mode
matching technique is also employed in [20]. In addition, to accelerate
the computation of the sums, we propose a selective modal scheme
(similar to the one addressed in [16]), which is applied on each section
of the duct waveguide. This fact is especially useful in high-frequency
where a direct modal analysis becomes cumbersome and inefficient
due to the existence of a large number of propagating modes inside the
waveguide cavity region.

The paper is organized as follows. In Section 2, the mathematical
formulation is addressed for a waveguide connected to a bent waveguide
of same cross section, and in Section 3, the formulation is generalized to
a succession of bent waveguides connected between them. In Section 4,
our approach is compared with two methods: (i) The Iterated Physical
Optics (IPO) one, summarized in [14], which is very appropriate for
large cross sections comparatively to the wavelength; (ii) The Multi-
Level Fast Multipole Method (MLFMM) one, generated from the
commercial software FEKO [21]. In this paper, the multiple-edge
diffraction of modal rays across the aperture is assumed to be negligible
for a large cross section of the waveguide. As shown in [15], this
contribution can be added separately.
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2. MATHEMATICAL FORMULATION

In this section, the derivation in the far zone of the scattered field by
the cavity presented in Fig. 1 (Nwg = 1) is addressed from a modal
analysis combined with the Kirchhoff approximation. In Section 4,
the formulation is generalized for a cavity composed of Ny, bent
waveguides with same rectangular cross section.

2.1. Description of the Problem

The problem is presented in Fig. 1. The open ended cavity is modeled
as a succession of two waveguides of length {L;} (i = {1,2}) and with
the same rectangular cross section of area axb (a is the dimension along
the x7 direction and b the dimension along the y,). The waveguide 2
undergone a rotation of an angle 619 = 20; = 265 in the plane (z1,y;)
and its extremity is stuffed by a perfectly-conducting termination. In
what follows, the boldface stands for a vector, u, and the hat "~ indicates
that the vector is unitary (@ = u/||u||). The purpose is to derive
the diffracted field by such a structure when it is illuminated by a
plane wave of direction k; = (kg cos ¢; sin 6;, kg sin ¢; sin 6;, kg cos 0;) =
(Kiz, kiy, kiz). The angles (6;, ¢;) are depicted in Fig. 1.

Figure 1. Description of the problem geometry. 1 = ly = btan(f12/2)
and 912 = 291 = 2(92.
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For a waveguide of canonical cross section and uniform along the
z direction, the electromagnetic fields inside the waveguide can be
derived analytically by considering two polarizations. The TE case,
which means that the electric field E has no component along the z;
direction. In this paper, the quantities related to this polarization will
be marked with the superscript h. The TM case, which means that
the magnetic field H has no component along the z; direction. In
this paper, the quantities related to this polarization will be marked
with the superscript e. In addition, for a wave traveling along the
positive z; direction, the superscript + will be used, whereas for a
wave traveling along the negative z; direction, the superscript — will
be applied. From [22,23], in the Cartesian basis (X,y,2), we have for
the TE case

2 .
EF =0 HF = (kb)" etifzyh
HT = £j"e Vgt : (1)
ET = joh Zhe=i0" 2 A Vpyph
and for the TM case
5
HF =0 EF = (k)" e™P7ye
Ef = )%V pye , (2)
HT = —j3°Y°etif g A Ve

with Z" = “F, Y® = < and §* = kj — k2 (ko = 27/Xo). The
wavenumber k. depends on the polarization and on the shape of the
cross section. w is the pulsation, u is the permeability of the medium €2
inside the waveguide, assumed to be vacuum, and € is the permittivity.
The term e*75% corresponds to waves propagating in Fz direction. The
symbol Vr is a “del” operator defined in the transverse plane. For
instance, Vp = a%fc—k 8%5’ for a rectangular waveguide. The Cartesian
coordinates system (x,y) is then used for the derivations of the eigen
functions ¥ and ¢°. For more details, see for instance [22, 23] for the
derivations of the functions ¥" and ¢ for canonical cross sections of
the waveguide.

The electromagnetic fields inside each waveguide can be derived
rigorously from a modal approach given by Egs. (1) and (2). The
aperture of the waveguide 1 and the junction between the waveguides
1 and 2 modified these electromagnetic fields. Via the reciprocity
theorem and the boundary conditions, the link between the fields inside
the waveguides 1 and 2 and the field radiated by the waveguide 1 can
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be computed rigorously by discretizating the integral equations solved,
for instance, from the Method of Moments. This operation requires
then to invert a matrix, whose its size increases significantly with the
wavelength. To overcome this drawback, in this paper the Kirchhoff
approximation is applied to determine the boundary conditions at each
discontinuity.

The derivation of the scattered fields by the cavity presented in
Fig. 1 demands then three steps described in the following subsections:

(i) Electromagnetic fields transmitted into the waveguide 1,

(ii) Reflection matrix of the waveguide 2, which demands three sub-
steps:
(a) Derivation of the transmitted fields into the waveguide 2,
(b) Derivation of the reflected fields onto the waveguide 2,
(¢) Derivation of the reflected fields onto the waveguide 1,

(iii) Electromagnetic fields radiated by the waveguide 1.

2.2. First Step — Electromagnetic Fields Transmitted into
the Waveguide 1

If the waveguide 1 is illuminated by an incident plane wave, then
Egs. (1) and (2) must be multiplied by A (which depends on

the polarization, leading to Af’h and Af’e) corresponding to the
transmission coefficient between the air (medium ) and the medium
Q. It is derived by applying the boundary conditions on the transverse
plane ¥ defined at z = 0. For a large aperture comparatively to the
wavelength A\, the boundary conditions can be obtained by applying
the Kirchhoff approximation, stating that there are continuities of the
electric and magnetic tangential fields. Thus, the surface currents on
Y4 are J:O =n;AH; = z;AH; (electric) and Mj}) = -mAE; = -z, A\E;
(magnetic), in which n; is the vector normal to ¥; (n; = z;1). The
amplitude A can then be found by [23]

/Z [(eF. +e71) - 3% — (hF, +bF,) - M| a=
1
2/ (eF1 ADBT,) - 2ds
El ’ )

where e] = ef| + eilil and hj = hf, + eilil are the normalized
electric and ma’gnetic modal fields in the waveguide 1, derived from
Egs. (1) and (2) with the subscript 1. The walls of the waveguide are
assumed to be perfectly conducting. From the reciprocity theorem (3),
this technique was applied in [15-17] to obtain the coefficient A} for

Ait == ) (3)
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rectangular and circular waveguides. In this paper, Ai’ is derived for
any canonical waveguide in appendix A and applied for a rectangular
waveguide. Thus, the amplitudes A;“h and AIL’C are related to the
incident field via a matrix relation
E;
. 4
]

The elements of the matrix are given by Eq. (A7) for any cross
section X1 and are dimensionless. They depend on the integrals
{GB:Z} expressed from (A8), which can be derived analytically for a
rectangular cross section. The substitution of Eq. (A14) into Eq. (A7)
leads to

+,h
Al

+.,e
Al

ko

h h
= YOa@i YE)O%Z_
2 sin 0; 31 P

e (5]
@, @y,

(ah=— <k§yk%1 _ k?xkfnJ (1 +25 cos ei) G(kiz, a, n1) G (kiy, b, ma)
agi: —kizkiy (k,%l —i—kfm) (’% +cos 0¢> G(kiz, a,n1)G(kiy, b, m1)
af =kn, k’m1<k'221. —i—kfy) (Z—; +cos Hi) G(kiz, a,n1)G(kiy, b,my)

0, =0

I

(5)
and

. 2 )
G(k,a,ny) = —%ejg?sinc (&) with &4 =

(k+kn),  (6)

[NVJIS]

with (n1,m1) to be the mode indexes. In addition, Plh’e is given

by Eq. (Al1) and 3§ = B} = B = \/k3 — k2, — k2, in which
kn, = ™% and ky,, = ™. The function sinc(z) = sin(z)/x

1
(sinc(0) = 1) characterizes the diffraction by a rectangular aperture
and it is commonly used to avoid the singularities. Indeed, if {4 > 0,
then the subscript — in Eq. (6) is used, and vice versa. This function
allows also us to select easily the modes involved in the propagation.

2.3. Second Step — Reflection Matrix of the Waveguide 2

If the waveguide 1 is stuffed by a non-depolarizing and non-
degenerative dielectric termination, the reflection matrix R;s is then

oo _[R 0
0 Ree

—h

Al
—e

Al

+,h
Al

+.,e
Al

+,h
Al

+.,e
Al

_ . ohe
LR (7)

= s
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Since the termination is assumed to be non-depolarizing, the reflection
matrix is diagonal. In addition, a non-degenerative termination implies
that a mode (n1,m) in the waveguide 1 is not converted into several
modes in the waveguide 2. Thus, the coefficients { R"", R®®} are scalar.
As shown in Fig. 1, if the waveguide 1 is connected to a bent waveguide
2, its effect can be studied by calculating the corresponding reflection
matrix. By applying the same way as in the first step, this matrix can
be derived by using a modal approach combined with the Kirchhoff
approximation for the boundary conditions.

2.8.1. Derivation of the Transmitted Fields into the Waveguide 2

The starting point is to derive the transmitted mode amplitudes into
the waveguide 2, {A;’h, A; “1, via the reciprocity theorem given by

/E [(eiQ + e;2) Jh - (hi2 + h;2> Mjl} d%12
12

2/ (ei2 A hi2> -Ny2dY1o
PP

with ey = e y+e; 529 and hy = hy ,+e; 529 the reflected electric and
magnetic modal normalized fields onto the waveguide 2, derived from
(1) and (2) with the subscript 2. On the surface Y19, J/; = fijg A Hf
(electric) and M, = —fi1s A E{ (magnetic) are the currents, in
which njs is the normal to the surface ¥19. Using the Kirchhoff
approximation on X2, Ef = E;r’h + Ef’e and Hf = Hf’h + Hf’e are
assumed to be the transmitted modal electric and magnetic fields in the
waveguide 1, derived from Egs. (1) and (2) multiplying by {A;“h, Af’e}
(according to the polarization) and with the subscript 1. The resulting
equations are then

Af =

, (8)

Efy = = j (AT e 392k 2oVt + AT e 230 0

1

G

Y,

E+1 =+ <A‘1"vh€*jﬁhzkozov$wh . A?ee*jﬁezﬁevywﬂ

By = AT (k)|
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and

21 = —j (A;r’he—j/@hzﬁhvxth . Aiﬁee—]ﬂezkoyovywe)

1

A
1
|

1= = (AP gh T b 4 AT IR Y V)

0

HEy = AP e 9% (k)Pet |
\

with V, = 8%7 Vy = a%, and the symbol |; means that the magnitudes
are expressed in the waveguide 1.
From Fig. 1, we have
fl12 = 22 COS (92 — S’Q sin 02
21 = +22 COSs (912 - 5’2 sin 912 (11)
S’l = +Z9sin 19 + 92 cosfig ’
X] = X9
and the resulting vector dot products in the basis (X2,¥5,Z2) are then

Jh = (—Hnyl cos s + H, sin 92) %y
+H;r’1 cos 02y, + H;fl sin 6929

~M = (=B costy + BZ sinf:) % .
+E’;“’1 cos 02y, + E;l sin 69Zo
The scalar products in the numerator of Eq. (8) are then
(eiQ + e;Q) . J:l = <—H;1 cos 0y + HZl sin 02) €ro
+H;1 cos bze, 5 +H;1 sin fze;, o (13)

— (b, +hoy) My = (=B costy + BX sindy) iy
—&-E;;l cos Ggh;’Q + E;fl sin 02hz_,27

From Egs. (13), (10) and (9), the integrand of the numerator of
Eq. (8) is for the TE case and according to Af’h

(eiQ +ely) Ih - (hi2 +ho,) My
- kozoeﬂﬁ%‘zrﬂi‘ﬂmfh{ cos 0 (vywh‘l vyujh‘Z
+ V| Vo] ) (81 + 8)
—jsinfs [(kﬁf oh| vet| (k)T I, whu}, (14)
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and according to A7
(ero+esn) - J5 = (B, +hiy) - M)
= ej(ﬂSZQﬁle)Af’e{cos 0o (waell Vyth
—Vyuely V| ) (K3+0705)
2
+j sin 65 [(kgl)%g qpe|1vxwh‘2— (k?2> Bt Va°l, Wu}- (15)

Using the same way for the TM polarization, it can be shown
according to Af’h that

(€7 +ems) - I8 — (byp+hi,) - M
_ iBmpta) g {COS 00 (Veit| 0,
_vzﬂ/’h‘l Vx¢e|2> (k(anﬁ?ﬂS)
wasinn| (k)" 04| Vol (k) 08 V| w0l [} 00
and according to A7
(65,2 + ez_,2> J5 - <hi2 + hz_,Q) - M
— koYoej(ﬂSZ?_ﬂfZl)A;“e{ — cos by (Vyu°|, Vy1°,
+ Vol Vatr®ly) (B + 53)
sin 0 | (kE,)® V51, Vgl + (k)" Tyl el } (17)
Moreover, the denominator of Eq. (8) can be written as

ghe 2
/2 <ei2 /\hi?) -Ny2dX12 = cos egﬁh’ekox/ 02iB™= [(vwwh,e)
12

Y12
{ZO TE (18)
2

+<Vy¢h’e>1 d¥io Yy TM °

with 22 . fl12 = COS 02 and

1 a bcosbs
/ d212 = / dﬂjlgdylg = / dl’g/ dyg. (19)
212 Y12 cos 02 0 0
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A depolarizing effect occurs at the bend discontinuity, which
implies that for TE and TM polarizations, TM and TE modes appear,
respectively, in the waveguide 2. If the bend disappears, then 65 = 0,
ﬁ?’e = Bg’e, and since vmwvywh — qu/)evm@z;h = 0 (orthogonally
relation between the eigen functions), one can show that A;’h =
Af’hejﬁhLl and A3 = A7°e/I1 where L; is the length of the
waveguide 1.

2.8.2. Case of Rectangular Waveguides

If the waveguides 1 and 2 have a same rectangular cross section, then
Egs. (14)-(17) can be simplified. Indeed, in this case, "¢ = 15 (but
their arguments are different), 8" = 3° = 8 and k2 = k¢ = k.. On the
other hand, since 5 and k. depend on the mode indexes (n,m), they
are different in each waveguide.

From Egs. (8) and (9), the derivation of the transmitted

coefficients {A;’h, A;’e} require the calculation of two integrations over

9 and yo. This is done in Appendix C, and the resulting equation is
then

+h +h
A | isi [ Ty YoTis ] A (20)
Ay* 2Ty TS || Al
with
Plh2T1hzh =+costh (B1 + B2) (km Kn, Gf; = kmy K,y G1727)
+sin 0y (k2 km, Gy + k2 km, G157 (21)

ko PlyTys =+ cos 0z (kg + B182) (Kmy knsGls" + kmokn, G1o)
— sin Oy (k2 kny B2 + k2, kny 1) G1o' (22)

ko PL,TE8 = — cos 02 (kg + B152) (kmy knyGro™ + kmgkn, G5
tsin by (K2 kny Bo + k2 kny B1) Gy (23)
and
Py, TS =+ cos b (B1 + B2) (knyknoGro — kmikmoGis')
+sin 0y (k2 km, Gro" + k2 ki, GT57) - (24)
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Moreover

J——
1

)
,1-2->

It should be noted that k,, = kn, = k, = ™= (n = n1 = na),

a
km, = ™%, B = \[k§ — k2, — k2, and k2 = k2, + k2, In addition,

G3P? is defined by (C12), G'I5? = GUSP | =ma (B1 = B2, kmy = kmy ),
and {T;;} are dimensionless.

If the tilt angle of the bend equals zero, 619 = 0, then the argument
of the GI5 function is £3* = F(s1m1 4+ sam2), in which symy + same
is an integer. From (C12), it can then be shown that

Pl = —2835 cos 6 (k?mG’f; — k2, 25)
Py, = —235 cos 0y <k,2nQG'T2+ — k2

( GT; = % (6m1+m270 + 6m1,m2)
G1_2_ = % (5m1+m2,0 - 5m1,m2)
n 0 if m1 +me odd
Gz = —I——ﬂ(m%"i ) otherwise (26)
L 0 if my1 +mg odd
Gp' = ﬁ otherwise

2.8.8. Derivation of the Reflected Fields onto the Waveguide 2

If the waveguide 2 is stuffed by a non-depolarizing and non-
degenerative dielectric termination, the reflection coefficients in the
waveguide 2 are then

—h

A2
—e

A2

A+7h . oh,e
et e
2

RME 0
iy

2.8.4. Derivation of the Reflected Fields onto the Waveguide 1

Again, the reciprocity theorem is applied for the derivation of Aj .
Using the same way as the calculation of A;r, it can be shown that

A—,h
2o | (28)
Ay

—h
Al

hh h
_ piB2Le [ Iy YoIoy ]
AT

eh ee
ZOT21 T21

with
{ P2h1T2hlh - Pfllehzh P2th2hle - P1h2T1th (29)

e eh __ pe eh h .mhh _ ph qphh
P21T21 - P12T12 P21T21 - P12T12
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and

Pl = =281 cos 0 (K2,G'51" — K2, G'ar )
(30)
Ps = =281 cos 0 (K2, G357 = K2, Glar” )

It should be noted that G5}”? = GY3” defined by (C12) and
G,gipz = G/%m = G€§p2|m1:m2 (ﬁl = 627 kml = kmg)

2.8.5. Conclusion — Reflection Matriz of the Waveguide 2

In conclusion, from Egs. (20), (27) and (28) the reflection matrix
defined by Eq. (7) is expressed as

o [ RUTWTH - RETETY ROTSTH - ReTiTy
O RN - ReTHTS RMTISTS) + ROTESTS .
31

and in Eq. (7), the phase term e/#11 (8, = g = %) is substituted
for elPrli+2if2L2 If the tilt angle of the bend equals zero, 615 = 0,
then from Egs. (21)-(24), (26), (29), and (30), it can be shown that
Ty = Tey = To¢ = Tsp = 0, TR TR = TSTsY = 6y my,- This implies

that the matrix R;s is diagonal, whose elements are th5m1,m2 and
R0, mo-

2.4. Third Step — Electromagnetic Fields Radiated by the
Waveguide 1

From Appendix B, the components of the scattered field in far zone,
(Esg, Esp), are expressed from the amplitudes of the reflected modes

onto the waveguide 1, {Al_’h, A} by a matrix relation
Z()Ozlgls Z()Oégs AI’h

Eg je—dkofo
[ Egg ] AT

_Jc " JBC Ly 9
ArkoRo € - (32)

h e
Qs RN

The elements of the matrix are given by Eq. (B5) for any cross

section ¥;. They depend on the integrals {Gg;} expressed from (AS),
which can be derived analytically for a rectangular cross section (see
Eq. (A14)). Comparing then, Eq. (B5) with (A7), it is interesting to
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note that
(h _ _ _h

U5 = T Y0ilo,=0,,0:=0
h h

a =—«
¢s b 0;=0s,0:=0

o = o . (33)
Os 0i10,=05,0;=05
€ — €

Yo = Yily, g, 5=0s

2.5. Last Step — Sinclair Matrix of the Cavity

In conclusion, for the open ended cavity presented in Fig. 1, the Sinclair
matrix, S, which links the component of the scattered fields { Es, Fsg}
to that of the incident fields {Fjp, E;}, is expressed from Egs. (7)

(matrix Rs is given by (31)), (4) and (32) as

] . i o—jkoRo
Bw | = | B | 1€ " "5 (34)
E5¢ i Ei 47T,1€0R0
with
S=T., Ty RT 12T ) 35
01y 4. 21_ 12 01‘92_@1_ (35)
Ris

The transmission matrices are expressed as

hh he
o Tz‘jh Ty | gonta, (36)
5 T
_ 1 ko ap O‘g ] 8L
T o1 = - (37)
9i7 7 1 , 7
) sinf; \| 2P131 | af 0@ 0=0,,6=:
T N e P (38)
Mo, os  sinbs \| 2P 5 _0‘26 O‘; 1o=0,,6=0, ’

whose the elements are given by Eqgs. (21)-(24), (29) and (5). In
addition, the matrix R is defined as

R—[Rgh Roee] (39)
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For a monostatic configuration, § = 6; = 05 and ¢ = ¢; = ¢, and
for a rectangular cross section 31, ag =0, the elements of the Sinclair
matrix are

5 _ | ~BE(ab)’ + R (5)° + g (R — RY)

h ( ph hh _h
"a¢(}ﬁfa§*‘fﬁsae)

h h hh  h
Oé¢ (RZ(?S Oég - Ris a@)
2
hh h ’

where the elements {R?Sh,R?Se,Rf?,
dimensionless.

Equation (34) corresponds to the scattered field by a single mode
(n,my,mg) with n = ny = ng. Thus, in far-field, the Radar Cross
Section (RCS) in m? is then

(40)

R5S} are given by (31) and are

2

2.2 5y

n mip me

(41)

1
Oij = —
T Ankd
with i = {0, ¢} and j = {0, ¢}, and {S;;} the elements of the S matrix.

3. GENERALIZATION TO Ny CONNECTED
WAVEGUIDES

This section is devoted to the generalization of the formulation to Ny,
connected rectangular waveguides of same cross section and uniforms
along the z direction, and stuffed by a non-degenerative and non-
depolarizing termination. An example of a such structure is depicted
in Fig. 2. Each waveguide has a length L, (p € [1; Nwg]), and each
bend is characterized by this tilt angle 6,1, (p € [2; Nwg]), which is
defined along the constant z direction and in the plane (z,y)).

For Ny, connected rectangular waveguides, Eq. (35) becomes with
/
p=p+1

p=Nwg—1

S= 7'0T1

" Il ZmRTw | To
SH¥s p:1

0i,0i (42)

R'Ls
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9,
. . —
7 I '. '.
39 | o
< 1 ' 1
S~ 5, 1 ' ]
c 1 ' 1
K] , 1 |
S 4T ' ' '
o i : .
TS 3f H 1 :
> 1 : 1
2r 1 : 1
1 E L
' Iy
O L

0 1 2 3 4 5 6 7 8 9 10 11 12

z Direction ( \)

Figure 2. Cavity of rectangular and uniform cross section along the z
direction, and modeled as a succession of 3 bends. by = 8\g (a1 = 8)¢),
L1 = 5)\0, L2 = 3)\0, L3 = 2)\0, L4 = 1)\0, 912 = 20, 923 =4°et 034 = 6°
(er,lQ = 0r,23 = 0r,34 = 20)-

It should be noted that the elements of the matrix 7 pp depend on the
mode indexes (n,my, my) (n1 = ny = n), whereas the elements of the
matrix 7 o; depend on (n,my).

The RCS is then

2

4
Tij = k—g 22> 2 Sy

0 n mip ma M Nyg
S DL ONSDI DS
ko n m 0s:¢s mo ms3 M Nyyg
2
T Ny Nug— 1 RT Ny 1, Ny - }723}712) Touly, 4 | - (43)

If the tilt angles {0,_1,} = {0}, then T;; = T ;, which is a
diagonal matrix whose the elements equal 0, m;. Thus, the sum
computations over {m;} with ¢ € [2; Nyg] are not necessary and the

matrix product is reduced to TOTI‘G . R Ton

S

0i,0i"
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4. NUMERICAL RESULTS

In this section, numerical results of the monostatic RCS are shown in
co-polarizations, gy and o44. In addition, they are compared with the
Iterated Physical Optics (IPO) method [14] and the Multi-Level Fast
Multipole Method (MLFMM) generated by the commercial software
FEKO [21]. The MLFMM is based on the MoM and has the advantage
to solve electromagnetic problem with many unknowns comparatively
to the MoM. To be consistent with the Kirchhoff approximation, the
dimensions of the aperture ¥, (ai,b1), must be large comparatively
to the wavelength \g. Typically, a; > 5\ and b; > 5X¢ [18]. On
the other hand, on a standard PC, the MLFMM is limited to cavity
of dimensions 8\ x 8¢ x 9)\¢ with a sampling step of \g/8. The
frequency is f = 10 GHz, i.e., \g = 3 cm.

4.1. Selective Modal Scheme for the Waveguide 1

For a large aperture, the number of modes (n;,m;) contributing to
the RCS can be great, and thus the computing time of the sums
over (ni,m1) can be very long. To decrease this time, a selective
modal scheme similar to the one addressed in [16] is applied in the
waveguide 1. ~

For the waveguide 1, the elements of the matrix 7o given
by Eq. (5) depending on the G function expressed from Eq. (6).
This function depends on sinc ({5), which is a decreasing function
of & = S(key F knymy). The wavenumber £ either equals k, =
kosinfcos¢ > 0 (with k,,) or equals k, = kgsinfsin¢ > 0 (with
km,), with 0 = 6; = 0; > 0 and ¢ = ¢; = ¢s > 0. In Eq. (6), taking
the subscript — in &= to avoid the division by zero owing to é (&4 > 0),

the function |G| decreases rapidly as {_ increases and is maximum for

¢ =0 (sinc(0) = 1). Thus, chosen an integer defined as % =p1 >0,

the set of the modes (n1 € [ min; "1 max), M1 € [N min; M1, max))
contributing to the scattering can be defined as

N1,min = Lnl()J_ - 2p1 N1, max = Lnloj_ + 2P1 (44)
Mimin = [M10]_ —2Pp1 M1 max = [Mio)_ +2p1 ’
with
2 2b
nig = 2% in 8 cos ¢ mig = — sinfsin ¢, (45)
)\0 )\0

and n; > 0 and my; > 0. The function |z|_ rounds the variable x
to the nearest integer towards zero. The numbers niy and mig are
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Figure 3. Monostatic RCS ogg in dB m? versus # and p; = {1,2,3}.
a] = bl = 8)\0, Ll = 9)\0, and ¢ =0.
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Figure 4. Same as in Fig. 3 but for o4.

defined such as % =0 with { = (kg — kn,) and & = %(ky — km,y),
respectively.

Figures 3 and 4 present the monostatic RCS ogy and o4¢ in dB
m?, respectively, versus § and p; = {1,2,3}. In addition, the results
obtained from FEKO are shown. a; = by = 8y, L1 = 9)\g, and ¢ = 0.
In the legend, “Modal: p;” denotes our method and p; is the value
used in Eq. (44) to select the mode indexes which contribute to the

scattering. The corresponding values of 11 min and 11 max are presented
in Fig. 5 versus 6.
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20 r
- % -Modal: 1
18 H-©-Modal: 2
Modal: 3 (65112 5)

5 40 45 50 55 60
0 angle in degrees

Figure 5. Values max(n;) and min(n;), computed from Eq. (44),
versus # and used for the RCS presented in Figs. 3 and 4.

For p1 = 3, a very good agreement is obtained with the FEKO
results. For p; = 4, the RCSs (not reported in this paper) are the same
as that computed for p; = 3. From Fig. 5, as the angle € increases,
the mode indexes contributing to the scattering increase because sin 6
is an increasing of ¢ € [0;7/2]. In addition, for p; = {1, 2,3} and from
6 values larger than § = {10, 18,25}°, An; = N1 max — Ni,min = 4p1 =
{4,8,12} is a constant with respect to . It should be noted that since
$» =0, mp =0, M min = 0 and p1 max = Amy = 2py for any 6. For
the next simulations, p; = 3.

As a conclusion, this efficient procedure allows us to reduce the
term number in the computation of the sums over ny; and m;.

The evanescent modes occur for 32 < 0, which implies for a; = b;

2

4/\%1 < n? +m?. Thus in Figs. 3 and 4, the modes for which
0

n? + m? > 256 are evanescent. For instance, for § = 25° and p; = 3,

from Fig. 5, nimax = 12, M1 max = 6, and then, all the modes are

propagative since nimax + mimax = 180 < 256. As a contrast, for

0 = 50°, N1 max = 18, n%max + m%’max = 360 > 256, and then, a part
of the modes are evanescent.

that

4.2. Selective Modal Scheme for the Waveguide 2

In this subsection, the selective modal scheme is generalized to the
waveguide 2. The purpose is to calculate for a given mode (n1,my), the
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Figure 6. Functions {|G]5?|} expressed from Eq. (C12) versus the
index of the mode mgy and the tilt angle 615 = {0,2}°. a3 = by = 8¢,
n =2, and m; = 3.

number of the modes mg (n2 = n;) which contributes to the scattering.
From Egs. (21)-(24), the elements of the matrix 7;; (i = {1,2}
and j = {1,2}) depend on the function G{§* ((p1,p2) = (+1,+1),
(p1,p2) = (_17 +1)7 (p1,p2) = (+17 _1) and (p17p2) = (_17 _1))
defined from Eq. (C12).

Figure 6 shows the moduli of {G}3"*} versus the index of the mode
mg and the tilt angle 612 = {0,2}°, with a; = by = 8¢, n = 2, and
my = 3. For 612 = 0, the functions {|G}{5"|,|G5 |} contribute only for
ma = mq, which is consistent with Eq. (26). Moreover from Eq. (26),
the functions {|G{, |, |G, |} vanish if the integer m;+my is odd, which
is equivalent to have an even value for msy since mq = 3. For 615 = 2°,
the maxima of {|G{5],|G15 |} decreases weakly and the width of the
diagrams increases, which means that the adjacent modes to m; have
an influence on the scattering.
~ Figure 7 shows the moduli of the elements of the reflection matrix
Ris, given by Eq. (31), versus the index of the mode mgy and the tilt
angle 010 = {0,2}°, with a3 = by = 8)\g, n = 2, and m; = 3. It is
clearly observed that only few adjacent modes to m; = 3 contribute
to the scattering, which is consistent with the observations of Fig. 6.
Moreover, for #12 = 0, only the mode mo = my exists for R?Sh and R,
and Rl = RSP = 0.

Thus, a means to calculate the range mo € [M2 min; M2,max] of
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Figure 7. Moduli of the elements of the reflection matrix R;s given

by Eq. (31) versus the index of the mode mgo and the tilt angle
912 == {0,2}0. a1 = b1 == 8)\0, n = 2, and mi = 3.

the modes contributing in the waveguide 2, is to study the function

GU3P? given by Eq. (C12). It is defined as the sum of four functions
€312 sinc( 13%%), where &5 = 1bB73*2cosfy, in which (752 =

S1kmy + S2km, + tanfa(51 + B2). Thus, chosen an integer ps such as
1572 /m = pa, it is possible to find a range of ma € [M2 min; M2 max), i
which the functions {G73"*} contribute significantly. For small values
of the tilt angle 012, it can be shown

mQ,min =mi — LAm2J+ m27max =mj + I_AmQJ+ 9 (46)
with
0 b
Amg = % [271 + \/'y% +Ap2 (my+p2)| +p2 M= 5717 (47)

where |z, rounds the variable x to the nearest integer towards infinity.
Unlike Eq. (44), the function [z], is used to avoid Amg = 0. For
p2 = 1, in Fig. 7, the vertical dashed lines indicate the values of
M2, min and Mg max. It can be observed for mo & [M2 max; M2 min| that
the moduli of the elements of the matrix R;s do not contribute and
|Amg] . = 2. Further simulations, not shown here, confirm that ps = 1
is a good choice.
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4.3. Simulations for One Bend

Figures 8 and 9 present the monostatic RCS ogg and o4y in dB m?
obtained by FEKO, respectively, versus 6 and 6012 = {0,1,2,5}°.
a1 = by = 8o, L1 = 5o, Ly = 4)g, ¢ = 0 and the cavity is presented
in Fig. 1. As the tilt angle 012 increases, the RCSs decrease and this
diminution is more significative for the ¢¢ component.

Figures 10-11 present the same variations as in Fig. 8 but #15 = 2°
and the results of our approach (“Modal”) and IPO method (“IPO”)
are added. As we can see, our approach overpredicts slightly the RCSs,

16
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Figure 8. Monostatic RCS o049 in dB m? versus 6 and 0o =
{0, 1,2,5}0. a] — b1 = 8)\0, L1 = 5)\0, L2 = 4)\0, and gb = 0.

0¢¢ en dB m?
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Figure 9. Same as in Fig. 8 but for o4y.
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but allows to correct the difference of level observed in Figs. 89 due
to the bend.

For a1 = by = 6)\g, numerical results not shown here, leads to
the same comment. Similar to our approach, the IPO method neglects
the edge diffraction, and thus, the difference observed in Figs. 10—
11 can not be attributed to this phenomenon since the IPO results
match well with the FEKO ones. For 612 = 5° comparisons (not
reported here) between IPO, MLFMM, and Modal approaches, show
disagreement between the Modal and MLFMM results, whereas the

000 indB m?

d
_1ol ---IPO

12 v - - FEKO
' —— Modal

1% 5 10 15 20 25 30 35 40 45 50 55 60
6 angle in degrees
Figure 10. Same as in Fig. 8 but 615 = 2° and the results of our
approach are added.
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Figure 11. Same as in Fig. 10 but for o4g.
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IPO ones coincide with the MLFMM ones.

Thus, this disagreement comes from the fact that when the
boundary conditions are applied at the bend (surface ¥15 in Fig. 1), it
was assumed that the electromagnetic modal fields at z; = L are the
same as z1 = L1 +11. In electromagnetic point of view, this means that
the length [; should not to exceed some fraction of the wavelength Ay
of the waveguide 1 (typically, I; < 0.1 — 0.2)\1) defined as

)\2
X = 0 (48)

<n1)\0>2 (ml)\0>2.
1— —
2(11 2b1
This constraint also holds for the length ls. If a; > Ag and b; > A\g
then A\ = Ag. From Fig. 5, since n1 min and mq min increase with 6, A\
increases and A1 > Ag. As a conclusion, 1 = [y < Ag.
From Fig. 1, Iy = lo = btan(f12/2), and since a; > \g and
b1 > Ao to be consistent with the Kirchhoff approximation, 69
must be small. This implies I; = Iy ~ 0.00873b612 with 012 in
degrees. Thus, if I; < 0.1Xg, then with by = 8)\g, 612 < 1.43°. If
012 = 2°, then I; = 0.14)\g. Further simulations with 612 = {1,2.5,3}°,
a1 = by = {6,8}\p (not presented here) show that I; < 0.15)\.
Figures 12-13 present the same results as in Figs. 10-11, but the

length of the waveguide 2 is Ly = Ag. As expected, the length Lo has
not impact on the precision of the Modal method.

Ogg indB m?

B O S P TUTIL RS DU . I
S --FEKO| )
oo [——Modal | .. e

0 5 10 15 20 25 30 35 40 45 50 55 60

0 angle in degrees

Figure 12. Same as in Fig. 10 but the length of the waveguide 2 is
Lo = ).
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Figure 13. Same as in Fig. 12 but for o4.

As a general conclusion of this subsection, the modal analysis
combined with the Kirchhoff approximation is valid for small lengths
[, typically I3 < 0.15)\g, and since the aperture must be large, the tilt
angle A12 can not exceed 2 degrees.

4.4. Simulations for Three Bends

As presented in Fig. 2, this subsection is devoted to the calculation
of the monostatic RCS of connected rectangular waveguides of same
cross section and uniforms along the z direction stuffed by a perfectly-
conducting termination. The angle 6;; of the bend number ¢ €
[1; Nwg — 1] (j = i + 1) is the tilt angle defined along the constant
direction z1, and 6, ;; is defined along the direction z; with 0,.12 = 612.

Figures 14 and 15 present the monostatic RCS oy and o4¢ in
dBm?, respectively, versus 6. a; = by = 8)\g, L1 = b, L1 = Ly =
L3 — )\0, Hr,z'j = {0.5, 1, 2, 3}0 and ¢ =0.

For scattering angles 6 smaller 45°, similar behaviours as those
observed in Figs. 89 are found, whereas for § > 45°, the impact of
the bends on the RCSs is less important because the results becomes
similar.

Figures 16-17 present the monostatic RCS ogg and o044 in dB m?,
respectively, versus 6. a1 = by = 8\, L1 = by, L1 = Lo = L3 = Ao,
0r:j = 2° and ¢ = 0. In the legend, “Modal non” means that the
non-diagonal elements of the matrix R;s in Eq. (42) are assumed to
be zero (R} = RSM = 0, non depolarizing effect on each bend). As we
can see, a good agreement is obtained with the FEKO results, and the
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Figure 14. Monostatic RCS o0gy in dBm? versus 6 and Ori; =

{0.5,1,2,3}0. ay = b1 = 8)\0, L1 e 5)\0, L1 = L2 = L3 = )\0, and
¢ =0.
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Figure 15. Same as in Fig. 14 but for o4y.

depolarizing effect on each bend must be taken into account for the 06
component, whereas for the ¢¢, it can be neglected.

Simulations done for 6,;; = 3° (not shown here) show that our
approach is not valid to predict the monostatic RCS. It is consistent
with the conclusion of the previous subsection, because the length I;
for each waveguide 7 does not satisfy the criterion I; < 0.15\,.

Figures 18-19 (Nyg = 2 with 012 = 2° and Ly = 4)\g) present the
same variations as in Figs. 10-11, respectively, but the results obtained
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Figure 16. Same as in Fig. 14 but 0, ;; = 2° and the results of our
approach are added.
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Figure 17. Same as in Fig. 16 but for o4.

from ng =4 ((912 = (923 = 034 = 1° and L2 = Lg = L4 = 13335A0)
are added. As we can see, when the tilt angle 6;; decreases (from 2 to 1
degree), the results decreases slightly but do not improve significantly
the agreement with the FEKO results. Thus, it is more convenient
to use Nyg = 2 (3 sums), because the computing time is smaller
comparatively to that obtained with Nyg =4 (5 sums).
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Figure 18. Same as in Fig. 10 (Nywg = 2 with 612 = 2° and Ly = 4)g)
but the results obtained from Nyg = 4 (012 = a3 = 34 = 1° and
Ly = L3 = Ly = 1.3335)\g) are added.
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Figure 19. Same as in Fig. 18 but for o4y.

5. CONCLUSION

By modeling a cavity as a succession of connected bent waveguides
of the same cross section and stuffed by a perfectly-conducting
termination, a method based on a modal analysis combined with
the Kirchhoff approximation is presented in this paper to predict the
monostatic RCS of a cavity in high-frequency.

From this way, closed-form expressions of the transmission matrix
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at each discontinuity can be obtained, which avoids to invert a matrix
if rigorous boundary conditions are applied. In addition, this approach
helps us to better understand the physical mechanisms, like the
depolarizing effect and the mode conversion, which occur on a bend.
Indeed, for a given mode (m;,n;) in the waveguide ¢ (i € [1; Nyg —1]),
the mode indexes (nj,m;) (j = i + 1) of the following connected
waveguide j, which contributes to the scattering, are n; = n; and
mj € [m; — Amj;m; + Am;] with Amy; typically equals 2.

In addition with ¢ = 0°, for the ¢¢ component of the RCS, the
depolarizing effect at each bend can be neglected, whereas for the
060 component, it must be accounted for. Comparing our method
with the Iterated Physical Optics (IPO) method and the Multi-Level
Fast Multipole Method (MLFMM, generated by using the commercial
software FEKO), it is shown that the model is valid if the dimensions
{li} (see Fig. 1) do not exceed 0.15\g, where ) is the electromagnetic
wavelength in the vacuum. Since, the cavity aperture must be large
comparatively to Ag, this constraint implies that each bend tilt angle
can not exceed approximatively 2 degrees.

To overcome this drawback, instead of using for the second bent
waveguide, the eigen functions of a waveguide uniform with respect
to z direction, the eigen functions of a curved waveguide along the
z direction [24] can be used. The advantage of this way is that the
curvature effect of the waveguide is included in the eigen functions,
whereas its main drawback, is that the mathematical expressions of
the eigen functions are more complicated. The equations established
in this paper are valid for any eigen functions. From this way, a more
complex non-uniform cavity with respect to z direction, like COBRA
cavity, can be treated. The cavity is then truncated of elementary
cavities, for which the eigen functions can be derived from a modal
analysis, and the junctions between them are made with the Kirchhoff
approximation and the reciprocity theorem.

APPENDIX A. DERIVATION OF 4] FOR ANY
CANONICAL WAVEGUIDE

For a plane wave, the electric field in a spherical coordinates (RZ, éi, (Aﬁz)
can be expressed as E; = (Eigéi—i—Eid)c}f)i)ej koki'R in which R is a vector
position defined in Cartesian coordinates as R = ax 4+ yy + 22. ko =
27/ Ao stands for the wavenumber in the vacuum. From the Kirchhoff
approximation, the surface currents on ¥, are J :0 =m AH;, =2, \H;
(electric) and M, = —ny AE; = —2; AE; (magnetic). Thus in Eq. (3),
we have ((—;TE’1 + eil) Jh = e%l (21 ANH;) and (thi1 + hifl) M/, =



Progress In Electromagnetics Research, PIER 88, 2008 29

_h%,l . (21 A Ez)

In addition, since H; = Yok AE; (Yp is the admittance of vacuum),
the scalar product e%l -(z1 NHy) = Yoeéﬁl Sz A (ki AE)] =
Yol(e; - ki)(21 - Bi) — (ef, - B) (21 - ki),

The basis (k;,0;,¢,) is related to the basis (X1,¥,,21) by a
rotation matrix Rg

P L
ki 6 &;] =Rs[i v, 2] (A1)
with

sin 6; cos ¢;  sin 0; sin ¢; cos 0;
R; = | cosf;cosp; cosf;sing; —sinb; and Rgl = Rg, (A2)
— sin ¢; Cos @; 0

where the superscript T stands for the transpose. Thus, we can show
that the integrand of the numerator (3) is simplified as

+ 4 + +
et 21/ H,=Y), [—Eig <ex’1 cos qbi—key’l sin d)Z)
+E;4 cos t; (eil sin ¢; _67:;1 cos qb)} eIkoki R

(A3)
hi | - Z2AE;=|Ejpcos;( —hE, sing;+h
T,1 i = | L9 COS 1 Sin ¢z+h 1 oS i
Z¢<h 1 €Os ¢; + er vl sm¢>]eﬂ“0
Thus
. . 1 Kok, -
e%1 -z ANH; + h%,1 cZNE; = “hosnd; (Eigag, + Eigorg,) elkoki R,
(Ad)
with
o, = Yo (KiaeZ, + ke ) + cos i (Righy — kishisy )
+ + + + » (49)
Qg = (ki:(:th + kiyhyJ) + Y cos9; (k:ixe%l — kiye%l)
and eil = eic - X1, eil = ef ¥, hj[1 = hjE X1, h;tl = hjE Y1,

kiz = kosin®;cos ¢; = k; - X and k;, = k‘osme sing; = k; -y. The

normalized components {ex an 1,h;t1,hy 1} are given from Egs. (1)
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and (2) divided by k3 in order to obtain dimensionless quantities. Thus
reporting the above equations in Eq. (3), we have

A" = s (Bl + Buoel) (A6)
AT = sgeptsg (Bio§, + Eigal,)
with
(o = —j (kiGh — Ky G2) <+€_ )
ag, —J(ka + kiyGY) (%4_ os9> Ny
o, = J (kia G + kiyGy) (£ + cos ;) (A7)
| a8, = J (kG = kiyGe) (14 £ cos )
in which
th/ _ / eihwr k) yhegs)
A Ly

e | [ + ()]

: _ 0 _ 0
with Vm = 95 Vy = 9y
For a rectangular waveguide, the eigen functions are expressed as

Y (2, y) = cos (kn, x) cos (km,y)
{ (z,y) = sin (kp, z) sin (kp,y) (A9)

with k,, = ™7 and k,,, = *}*. For the TE case, n; +m3 > 0,
whereas for the TM case, n1 > 0 and m; > 0. Moreover, 3f = ﬁ{l =

k3 — k2, — k2,. Thus, Eq. (A8) becomes

Gg = —knl Gs(ki:m a, nl)GC(ki?}’ b’ ml)
Gg = —kml Gc(km, a, nl)Gs<kiy7 b, ml)

, A10
Gg = +kn1Gc(kix’a7n1)Gs(kiy7b’ml) ( )
Gg = +km, Gs(kiz, a, nl)Gc<kiy7 b,m1)
¢ = ab
phe = mtm® g2 g2 (A11)

4
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and g5, = 2 if n; =0, 1 otherwise. Moreover

Ge(k,a,n1) = / cos (kn, ) ¥ dx = jkG(k, a,n1)
0

a i Y (A12)
Gs(k,a,ny) = / sin (kn, z) ¥ de = —k,, G (k,a,n;)
0
with
1—(—=1)" Jjka
Gk, a.m) = - (A1)
k2 — %
Equation (A10) is then simplified as
Gh +]kzyG iz @y N1)G kiyv b, mq k2
h _
G = +JjkizG(kiz,a,n1)G kiyv b, my k%nl ‘ (A14)

(k )G( )
(k )G( )
Gfe = —jkizG(kiz, a,n1)G(kiy, b, m1)kn, km,
GZ = ]k‘lyG( m,a,nl)G(k‘iy,b, ml)

kg Km,

APPENDIX B. DERIVATION OF THE SCATTERED
FIELD

In far-field, the components of the scattered field (s, Fsg) in a

spherical basis (Rs,és, g?)s) are expressed from the Huygens principle
as [22]

By = e 0fp, . [ﬁg A (M;O S 125) efkoﬁS'R] s
PN
By =g 000 g / (ko (M — Zo3 5 A K, ) /R )
P
(B1)

where the magnetic J_; and electric M, currents are the unknown
problem. As previously, their expressions can be obtained from the
Kirchhoff approximation leading to J;j = —21AH| and M j = z;AE] .
The fields (E;,H]) are the reflected fields onto the waveguide 1
expressed from Egs. (1) and (2) with the subscript 1, and multiplying

by the coefficients {A;’h, A} for each polarization.
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Writing that E] = E;lil +E; et H = H;lil +H- ,, we show
ko A (M3~ 2035 AK,) = 21 (ko Bx,y ) —Eq (K- 21)
+2Zy [(il A lA{s> (f(s . HE,l)
+(konBy) (k)] (B2)
In FSA (Forward Scattering Alignment), the basis (ks, 05, ¢,) is
expressed from the Cartesian basis (X1,¥1,21) from the rotation matrix
defined by (A2), in which the incident angles (6;, ¢;) are substituted

for the scattering (observation) angles (0, ¢s). From Eqs. (B1) and
(B2), the resulting equation is then

_ jkoe 7koHo - - .
Ew= T Ll E, 1cos¢s + E, sinds
1

+Z() COs 05 (Hx_,l sin (255 — Hz;l cos (ZSS) }ejkoﬁs'Rdz

(B3)
Esy = jkoz;lj%koORo’ / [Zo (H;l cos ¢s + H, ,sin qu)
3
+ cos 6, (E;l sin ¢s — E, , cos ¢S> }ejkofcs.RdE
The substitution of Egs. (1) and (2) into (B3) leads to
ie—JkoRo 7, —h -,
Eso = trroosmo- (Al ag + A, eazs)
E o je*jkORO Ai’h h Afve o ) (B4)
¢ = m( 1, T A %S)
with
. h
ags =3 (ksng — ksyG}L}) (1 + i—o cos 95)
h _ _ h hy (8%
o s —J (ksmG + ksyG Eo —+ cos 93)
i ’ VA , (B5)

af, = J (kG5 + ksy GY) (f—z + cos 95>
g =] (ksaGY — ksyGS) (1 + f—z Ccos 05>

and ks, = kgsinfscos ¢s = ks - X and kg, = kgsinfssing, =k, - y. In
addition, the functions {G}QZ} are expressed from (AS8).
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APPENDIX C. INTEGRATIONS OVER X, AND Y,

The derivation of A expressed from (8) needs the calculation of the
integrations over xo and 5. For a rectangular waveguide, the eigen
functions are given by (A9). Thus

V:ﬂpeh vy¢h}2 = _kmkmz
Vo)l Vab®ly = kny kng
V|, V|, = Emykm,
V@ﬂ/}h\l v$¢e’2 _km1kn2

Cn1CnsySmySmas (Cl)

vy¢e|1 erhb = _kmlkng
Vywe‘l vy¢e’2 - km1km2
n T m mo 2
vxwh‘l Vw¢h‘2:kn1kn2 Sn15n2Cm1Cma (C )
Vott|, Vyiely = —kn, km,

Vﬂﬁeh djh‘Q = km Smi Cmgy

¢h|1 Vzﬂﬁhb = _kalest
b CnyCnys (C3)
(0 |1 Valy = knyCmi Smy
V™) ¥y = —Fmy Smi Cme
and
we|1 Vrfcwh‘g = —knySm, Cmy
°l; Vyutlo = kmySm, C
dj |1e yweb m22my~ma Sy Snas <C4)
va/) |1 d) |2 = kmlchSmQ
V:cwh‘l T/JQ‘Q = _knlcmlsmz
with ¢, = cos(kn,zi), ¢m; = cos(km,¥i), Sn, = sin(ky,x;) and
Sm; = sin(km,yi). The above equations depend on ¢y, cp,

cos(kn, x2) cos(kp,x2) and sy, Sp, = sin(ky, x2) sin(ky,z2), as functions
of 1 and zy. Since x5 = x1, the integration over xg € [0;a] yields

a
/ Sny SnodTa
0

€
a = 567117”2{ 5?1 ) (05)
/cnlcmdxg ™
0

S

with &y, n, = 1if n1 = n2, 0 otherwise, &7, = 2 if ny = 0, 1 otherwise,
and g, = 0ifn; = 0, 1 otherwise. The Kronecker symbol dy, ,, shows
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that a mode n; is not degenerated into several modes in the waveguide
2, because the waveguide 2 undergoes only a rotation with respect to
the axial direction X2 = %;. The terms {cf, , ¢}, } are different of the
unity only for n; = 0. For the TM case, the mode n = 0 with V m > 0
is excluded, and {ef, , €}, } can then be omitted. However, For the TE
case with m > 0, the mode n = 0 exist and these terms must be then
taken into account for ny = no = 0 with mq1 > 0 and mo > 0. As a

conclusion, the terms {e}, , &5, } will be kept only for the TE case on

mny?
the term Af’h.
To integrate over yy € [0;bcos by, the following decompositions

are used

CmyCmy = i E E el (s1kmyy1ts2kmyy2)

s1==%1s2==1
Sml Sm2 = —% E g ej(slk’ml y1+32km2y2)8182

s1==%1 so==*%1 (06)

CmySmy = % E E eJ(Slkm1y1+52km2y2)82

s1==%1 s9=%1

_ 1 ; k +s9k

SmyCmy = 15 E E e (s1kmy y1tsakmay2) o

s1=%1s2==%1

In Eqgs. (14)-(16) and (17), the term el (F222=Fiz1tsikm, yi+s2kmyy2)
occurs (5{172 = (5 = P12). From Fig. 1, one has

21 = +%9C08 012 — Y2 sin 912 — L1
Y1 = +2z2sin b2 + ya cos 012 ) (C7)
zo = Yo tan

which implies that

Boza — Brz1 + s1kmiy1 + S2km, Y2
= 01L1+ 1y [Slkml + Sgkm2 + tan 6, (ﬂl + ﬂg)] . (CS)

5152
12

The integration over y» needs then to derive the following integral

bcosfy ) )
/ e]ﬁf%%deyg —_ 1 (dbﬁféw cosfy 1)
0

- 18182
IP12

'bBSISQ cos 0 b 5182 9
= (bcosby) e T sinc (%) : (C9)
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From the above equations and from Egs. (14)—(16) and (17), the

integration over 5 and yy of the numerator of Eq. (8) leads for the TE
case to

867‘7"61[/1 B _ n - B N
ab /Z |:<eT,2 + ez,2> ’ Jsl - (hT’Q + hz72) . M81i| d212
12

— kOZOA;“h X [cos 02 (51 + B2) (km anijsfl — kmlkmngQ_st)
+sin by (k2 kmy Gy + k2 km, G151) sg]
+A7C [cos 0 (kg + B152) (kmy kny Go" + iy kimy G1y)
— sin Oy (k2 kn, B2 + k2 kny 1) G;;] , (C10)

and for the TM case to
Re—JB1L1

i SRS R RN L
= koYpA " x { — cosb2 (B + B2) (kn knosGlo™ — ki ko G1o )

+sin 0 (k2 ki, G1o" + k2, km, Gy ) }

—AP" [cos 02 (kg + 5152) (kmiknyGra + kmakn, Gi51)

— sin 0 (K2, kny B2 + kiykn, 1) GB‘] : (C11)

with
+1 if P1 = P2 = +

jgs1s2 | S182 if 1 =pP2 = —
G = Z Z el612 “ginc (&557) sy if 51:{),_71%:_

s1=%1s2=%1 S1 if prL=—,p2=-+
(C12)
b 8182 9
s w, (C13)
and knl = kng = kn = % (TL = ny = n2)’ kmz = %’ /67’ -

ke — k2 — k2, and k2 = k2 4+ k2, .
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It should be noted that the factor % = % x 4 in front of the integral

comes from ¢ in Eq. (C5) and from 1 in Eq. (C6), with the sign and

the factor % in (C6). Moreover, the term cos 2 in Eq. (C9) is absorbed
by the term ﬁ in Eq. (19).

The denominator of Eq. (8) given by Eq. (19) requires also the
derivation of the integrations over xs and yo. Using the same way as
previously, it can be shown that

ab cos by +k2,G'ly — k2,G 1y €5, TE case
s _k72l2 Gy + k}?m G/T;Efm TM case
(C14)

Eq. (19) =

in which the function G'73P* is expressed from (C12), in which, ;32

is substituted for 3'{4°* = 285 tan O + Ky, (51 + 82).

For the TM case, the mode n = 0 with ¥V m > 0 is excluded, and
the term &}, in Eq. (C14) can then be omitted because €}, = 1 for
ny > 0. On the other hand, for the TE case with m > 0, the mode
n = 0 exist and the term 5%2 in Eq. (C14) must be taken into account
at n1 = ng = n = 0 with m; > 0 and mg > 0. But, from Eq. (C10),
the term after Af’h between brackets and for n = 0 exhibits only &Y,
terms, and they are then simplified by dividing by Eq. (C14). As a
consequence, the terms e, and &}, can be omitted in Egs. (C10) and
(C14). In conclusion, the substitution of Egs. (10), (C11) and (C14)
into Eq. (8) yields Eq. (20).
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