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Abstract—In this paper, a statistical approach to evaluate randomly
rough surfaces (RRS) in an inverse scattering problem is presented.
Whereas in these investigations the roughness criterions possess
random variables, the use of deterministic techniques such as the target
decomposition (TD) can not be useful by itself as a tool of analysis.
In these conditions, a statistical approach is essentially required to
evaluate the target parameters. The goal of this study is the estimation
of the polarimetric signatures, such as the scattering mechanism α
and the entropy H, via a novel approach including the combination
of TD and a new statistical model. To validate our work, SAR data
sets, provided by the European Space Agency (ESA), are analyzed and
compared with the simulation results.

1. INTRODUCTION

In many applications, such as environmental and earth observations,
the polarimetric radars are powerful tools for retrieving quantitative
physical information [1–3]. In these frameworks, the bridge between
radar measurements and physical parameters can be organized by
target decomposition (TD) methods [4]. Among these approaches,
the target decomposition method based on the eigenvector analysis
(EV-TDM) is one of the most appropriate techniques to achieve data
interpretations [5].

Recently in inverse scattering problems, the scattering mecha-
nism of randomly rough surfaces (RRS) has attracted significant at-
tention [6–8]. These surfaces are classified in terms of the permittivity
and geometrical shapes. In these contexts, the polarimetry plays an
important role, as it allows a direct or indirect separation of rough-
ness effects, and several inversion models are based on the use of full
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polarimetric images [9–12]. In the remote sensing of natural surfaces,
the roughness criterions, i.e., ks and kl, are significant parameters for
the estimation of the polarimetric signatures. Whereas these param-
eters possess random variables, deterministic techniques, proposed in
the literatures, can not be useful alone as tools of analysis. This means
that the use of a proper stochastic approach to assess natural targets is
unavoidable. For this aim a number of statistical models, such as the
Wishart distribution (WD), can be utilized [13, 14]. Consequently the
aim of this work is the combination of a deterministic technique and
a new stochastic model, i.e., TD and modified Wishart distribution
(MWD), to present the physical interpretation of natural targets.

This paper is organized as follows; first in Section 2 a systematic
solution for calculating of the scattered fields upon RRS is addressed
and then two polarimetric signatures are introduced for the physical
interpretation of target parameters. Furthermore, a new statistical
model to extract target parameters is proposed in Section 3. Moreover
in Section 4, several scattering mechanisms of RRS are simulated with
respect to the effective parameters. Finally to validate our work, SAR
data sets classified by the European Space Agency (ESA) are analyzed
and compared with the simulation results.

2. THEORY

2.1. RRS Under Study

In this paper, to assess distributed targets such as natural scatterers,
we consider an arbitrary RRS as shown in Figure 1(a). This structure
possesses an arbitrary surface, i.e., S = L × L, subdivided into many
appropriate spaces ∆x and ∆y ≤ 0.1λ as illustrated in Figure 1(b).
Each section denotes a pyramidal configuration and its surfaces have
the local angles with respect to the main surface as can be seen from
Figure 1(c). Usually these angles have the uniform distribution with
δ1 < π/2 as plotted in Figure 1(d). The surface rms height s and
the correlation function are extracted from surface under study and
compared with the theory as presented in Figure 2. In this structure,
the correlation length l, in S-band frequency with λ = 10 cm, is 76 cm
as well as the roughness criterions are ks = 5.48 and kl = 47.75
denoting a very rough surface. In the next section, the scattered fields
of this surface are calculated by using the Kirchhoff approximation
(KA) method.
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Figure 1. Structure under study. (a) RRS in a proper coordinate
system. (b) Fragmented surface with appropriate spaces ∆x and
∆y ≤ 0.1λ. (c) Local unit vectors on the walls. (d) Distribution
of the angles.

2.2. Scattered Fields Calculation

The scattering problem of EM waves upon RRS is still not satisfactorily
solved and no exact closed-form solutions exist so far. But, for many
practical applications, approximate solutions are sufficient [15–17]. In
the field of radar remote sensing, various approximate methods for
wave scattering at rough surfaces have been developed [18, 19]. Among
these solutions, the most common approximate method has been the
Kirchhoff approximation (KA). This method is valid when the surface
roughness dimensions are large compared to the wavelength. In this
case, the scattering at a point on the surface may be considered as
scattering at the tangential plane to this point. Whereas in this study,
we deal with various RRS including high rms heights, the use of this
method is feasible. It is assumed that the total field at any point on
the surface can be computed as if the incident wave is impinging upon
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an infinite plane tangent to the point.
According to Stratton and Chu’s formula [20], the total scattered

field can be calculated as:

�Es =
−jk̂se

−jksRo

4πR0

∑
ij

[
�Etan ·ij − η0k̂s × �Htan ·ij

]
ejk̂s·�r∆s (1)

where Etan and Htan are the tangential electric and magnetic fields and
Ks, η0 and R0 are the wave number, intrinsic impedance and range
from the center of the illuminated area to the point of observation
respectively. Basically in the fully polarimetric radars, the incident
wave contains two polarized waves such as the horizontal and vertical
linear polarizations, i.e., Ei = Eihhi + Eivvi where i is an incidence
index. In this case, the horizontal and vertical unit vectors with respect
to the plane of incidence can be defined as follows:

ĥi =
k̂i × ẑ∣∣∣k̂i × ẑ

∣∣∣ , v̂i = k̂i × ĥi (2)

where ki = 2π/λ denotes the incident wave number which its vector is
defined by:

k̂ =
2π
λ

[− sin(θi) cos(ϕi)x̂+ sin(θi) sin(ϕi)ŷ − cos(θi)ẑ] (3)

In the surface scattering, a RRS located in a proper coordinate system
has azimuthal symmetry [4] as shown in figure 1(a). This means that
the angle ϕi is not important and can be canceled, i.e., ϕi = 0. In this
condition, after substituting (3) in (2), the horizontal and vertical unit
vectors are reduced as follows:

ĥi = ŷ (4)
v̂i = − cos(θi)x̂+ sin(θi)ẑ (5)

In addition, the unit vector on the pyramid surfaces is given as:

n̂l =
−Zxx̂− Zyŷ + ẑ√
Z2

x + Z2
y + 1

, Zx = tan(δx), Zy = tan(δy) (6)

where δx and δy are local angles with respect to the main surface in
x and y directions respectively. Therefore the normal unit vectors on
the pyramid surfaces, i.e., nlijx−, nlijx+, nlijy− and nlijy+, are defined
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by:

n̂ijx+ =
1
Dij

[
2Z(i, j)

∆x
x̂+ ẑ

]
, n̂ijx− =

1
Dij

[−2Z(i, j)
∆x

x̂+ ẑ
]

(7)

n̂ijy+ =
1
Dij

[
2Z(i, j)

∆y
ŷ + ẑ

]
, n̂ijy− =

1
Dij

[−2Z(i, j)
∆y

ŷ + ẑ
]

(8)

In these formulas, Z(i, j) is the rms height s for an arbitrary point on
the surface and Dij is defined by:

Dij =
(

4Z2(i, j)
∆x2

+ 1
)1/2

(9)

Therefore the local tangential fields can be obtained as:

�Etan ·ijx± = n̂ijy± × [Eih(1 + Γh)ŷ
+Eiv(1 + Γv)(− cos(θi)x̂+ sin(θi)ẑ)] (10)

�Etan ·ijy± = n̂ijy± × [Eih(1 + Γh)ŷ
+Eiv(1 + Γv)(− cos(θi)x̂+ sin(θi)ẑ)] (11)

After substituting (7) and (8) in the above formulas, the tangential
electric fields on the each surface are obtained by:

�Etan ·ijx± =
Eih(1 + Γh)

Dij

[±2Z(i, j)
∆x

ẑ − x̂
]

+
Eiv(1 + Γv)

Dij

[∓2Z(i, j) sin(θi)
∆x

− cos(θi)
]
ŷ (12)

�Etan ·ijy± =
(
±2Z(i, j)Eiv(1+Γv)

∆y
sin(θi)−

Eih(1+Γh)
Dij

)
x̂

−Eiv(1+Γv)
Dij

cos(θi)ŷ ±
2Z(i, j)Eiv(1+Γv)

Dij∆y
cos(θi)ẑ (13)

where Γh and Γv are the horizontal and vertical reflection coefficients
respectively which can be obtained from the surface permittivity and
the local angles [20]. By a similar way, the tangential magnetic field,
i.e., Htan ijx+− and Htan ijy+−, on each surface can be calculated and
substituted in (1) for finalizing the scattered field calculation.

Due to the polarization diversity technique, the scattering
coefficients, i.e., Shh, Shv, Svh and Svv, can be found by the
contribution of the horizontal and vertical incident fields. These
coefficients organize the scattering matrix S and the covariance
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matrix C to present the polarimetric signatures denoting the physical
interpretation of polarimetric data [4]. In the next section, these
signatures are briefly introduced and a new statistical model is
proposed for the estimation of them.

3. PHYSICAL INTERPRETATION

3.1. Polarimetric Signatures

In order to interpret the polarimetric matrices, i.e., the scattering
matrix S and the covariance matrix C, there are two polarimetric
signatures which are directly extracted by the eigenvalues analysis
of the covariance matrix [4, 5]. These parameters are the scattering
mechanism α and the entropy H which are defined as:

α =
3∑

i=1

piαi, H = −
3∑

i=1

pi log3(pi), pi =
λi

λ1 + λ2 + λ3
(14)

where λ1, λ2 and λ3 are the eigenvalues of the covariance matrix
and pi and αi are the probability and the scattering mechanism of
λi respectively. The α-angle varies between zero and 90 degrees
corresponding to the type of scatterers. The entropy can be interpreted
as a measure of the randomness of the scattering process. For example
for smooth surfaces, the entropy H becomes zero and increases with
surface roughness. The combination of these parameters provides a
useful physical representation namely the classification plane H-α.
By using this plane, the eight usable classes, denoting an individual
type of the scattering mechanism independent on particular data set,
can be suggested [4]. Whereas these parameters possess random
variables in the scattering of natural targets, a statistical assessment
is essentially required. In the next section, a new statistical model is
briefly described to extract eigenvalues matrix.

3.2. A New Statistical Model

As previously mentioned, there are several statistical models for
estimating of the polarimetric matrices in inverse problems. Among
these models the Wishart distribution (WD) is a robust technique
which is useful for multidimensional synthetic aperture radars (MD-
SAR). In the m-dimensional SAR, the target vectors [4] possess m
independent elements and therefore their polarimetric matrices have
m2 elements. Whereas these elements may not be correlated, we must
be used a general form of WD. In the case of the three dimensional SAR
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(3D-SAR), i.e., the mono-static radar or backward scattering alignment
(BSA), the target vectors have four elements, such as S11, S12, S21

and S22, which are extremely correlated [4], i.e., S12 = S21. In this
condition, the use of the general form of WD is a very complicated
problem and therefore we propose a modified Wishart distribution
(MWD) for estimating of the covariance matrix C in the form of:

PCest (Cest) =
N3N |Cest |N−3 etr(−NC−1

trueCest )

π3 |Ctrue |N
3∏

i=1
Γ(N − i+ 1)

(15)

where Tr(·) and Γ(·) denote the trace and gamma functions
respectively and the parameter N shows the number of looks in the
scanning process. In (15), Ctrue and Cest possess the true eigenvalues
l1, l2, l3 and estimated eigenvalues λ1, λ2, λ3. By using this model,
the estimated eigenvalues can be correctly extracted from the true
eigenvalues. For instance while the true eigenvalue l1 is 3, the
probability density function (pdf) of the eigenvalue λ1 with respect
to the parameter N , i.e., N = 1, 2, . . . , 60, is shown in Figure 3. As
can be seen from this figure, the estimated eigenvalue λ1 asymptotically
approaches to the true value l1 when N is increased. This procedure
shows that the eigenvalues are correctly estimated when the number
of looks becomes very large. Furthermore the pdf of the estimated
eigenvalue λ1 is represented in Figure 4 with respect to the scattering
mechanism α for a typical RRS which is introduced in Figure 2.
Pλ1(λ1) presents a Bragg surface scattering and a dipole effect when the
α-angle approaches zero and 90 degrees respectively. From these results
we can conclude that the sample eigenvalues can be correctly estimated
by using the proposed model. In the next section, the eigenvalues
of several types of RRS as well as their polarimetric signatures are
simulated.

4. SIMULATION RESULTS

The simulation is presented with respect to the incidence angle θi
and the surface permittivity εr. In order to evaluate the behavior
of the permittivity, the α-angle is plotted versus surface slope in
Figure 5. In small slopes, the α-angle approaches to less than 5 degrees
denoting a Bragg surface scattering as shown in Figure 5(a). For
the surface including large permittivity, the α-angle is independent
of the surface slope and approaches zero denoting a fully polarized
wave. It is worth to note that this condition occurs when the bare
soil is exceedingly moisturized. In the case of large slopes and small
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Figure 2. Surface profile and correlation function for RRS under
study.
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permittivity, the scattering mechanism is independent of the surface
slope and is very close to 90 degrees denoting a dipole scattering as
illustrated in Figure 5(b).

Furthermore the behavior of the incidence angle shows that the
α-angle for very small slopes denotes a dipole effect with increasing θi
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Figure 4. Probability density function with respect to the scattering
mechanism for a typical RRS.
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Figure 5. Scattering mechanism assessments versus surface slope for
several types of RRS.
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as illustrated in Figure 5(c). With regarding to Figure 5(d) for very
large slopes, the α-angle, which is extremely dependent on the angle
of incidence, is fixed versus the surface slope. The α-angle approaches
to less than 5 degrees when the angle of incidence is a large value.
These results clearly indicate that the scattering of RRS is classified as
various known scattering mechanisms which are easily recognized from
each other. To validate these results, real data sets including several
different kinds of the scattering mechanisms are utilized in the next
section.

5. SAR DATA

In the former section, the α-angle for various types of RRS has been
discussed. In order to validate of these results, we have applied real
data set from several test fields. These regions denote a number of
suitable scattering mechanisms, such as the Bragg, dipole, multiple
and double bounce scattering, located in the San Francisco Bay and
the Foulum areas. The data set are extracted by SIR/C-AIR/SAR and
EMISAR sensor including a STK-MLC format and no header as well
as a resolution of 77 rows × 99 columns.

Figure 6 illustrates the H-α and the segmented planes of the
eigenvalues λ1, λ2 and λ3 for the San Francisco Bay areas. The data
sets show that the α-angle approaches 10 degrees and the entropy has
a value very close to zero for sea surface. Moreover the scattering
mechanism has features with a statistical behavior in agreement with
the following parameters: mean = 10.06, median = 9.844, mode =
9.844, std = 2.832 and max = 23.91 degrees. It is interesting to see
from Figure 6(a) that the bridge is clearly distinguishable from sea
areas which exhibit a mechanism compatible to the surface scattering.

Moreover Figure 7 represents another polarimetric measurement
and physical interpretation for the same data sets. The probability
density function (pdf) of the dominant eigenvalue λ1 is represented
at nine vertical scans over the bridge. The averaged value of this
probability approaches 0.95 and 0.35 for the surface of the bridge and
sea respectively. These results signify that the probability of the target
detection is higher than 95 percents.

For the Foulum regions, the histogram of the α-angle extracted
from four types of regions, such as lake, bare soil, forest and vegetated
surface, are presented in Figure 8. It is worth to notice that each
scattering mechanism has an individual feature denoting a significant
difference. The average of the α-angle for the lake surface is
30.03 degrees unlike the scattering of a sea surface as illustrated in
Figure 8(a). Because of the dissimilarity between sea and lake waters,
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Figure 6. Polarimetric parameters of the San Francisco Bay areas. (a)
α-angle for the bridge area. (b) Segmented plane of λ1. (c) Segmented
plane of λ2. (d) Segmented plane of λ3.

caused by fluctuations of the permittivity, this difference occurs. As
shown in Figures 8(b)–(d), the averaged values of this mechanism
are 37.38, 48.67 and 40.98 degrees for the bare soil, forest areas and
vegetated surface respectively. These values signify that the forest
represents a multiple scattering and the bare soil and the vegetated
surface have similar mechanisms. Because of this similarity for the
bare soil and vegetated surface, a proper recognition algorithm cannot
be easily implemented. This problem can be considered for future
works.

Moreover a quantitative assessment of the scattering mechanism
is presented in Table 1. The α-angle is extracted with respect to the
number of looks N . These angles for the bare soil are 34.40, 37.98,
37.99 and 39.40 when N is 126, 544, 1312 and 2736 respectively.
This process shows that the α-angle asymptotically approaches to
the true value with increasing N . Usually in these investigations the
introduction of a quantitative parameter namely the differential ratio
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∆R can be sensible. This parameter is defined in the form of:

∆R =
αasy − αini

αasy
× 100 (16)

where αasy and αini are the final and initial values of the scattering
mechanisms respectively. This parameter is arranged in Table 1 for
four types of the scattering mechanisms. It is interesting to see that
∆R for the bare soil, forest area, lake and vegetated surface are 12.6%,
0.75%, 6.3% and 4.3% respectively. At here a significant difference
can be realized from these values. The first is that the number of
iterations, i.e., N , is different for each scattering mechanism. The
second is that for the forest, the number of N is small denoting a fast
iterative algorithm unlike the scattering of the bare soil. As a result,
we can observe that ∆R can be a useful parameter to implement a
recognition algorithm in inverse problems.
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Figure 8. Histogram of the α-angle for several types of scatterers. (a)
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Table 1. α-angles for several types of scattering mechanisms with
respect to number of looks.

Test fields 

Bare soil forest area lake surface vegetated surface 

N  (deg.) N  (deg.) N  (deg.) N  (deg.)

126 34.40 18 .40 41 .14 553 41.9
390 37.17 312 48.65 1230 29.70 869 41.6
544 37.98 720 48.20 1804 30.01 1116 40.8

1312 37.99 1014 48.09 3280 30.20 1612 40.3
2736 39.40 1443 48.02 5248 31.10 1659 40

Averaged values  
 1021 37.38 733  48.67 2394  30.03 1161  40.98 

R = 12.6 % R = 0.75 % R =  6.3 % R = 4.3 % 

10.
0
5
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α α α α

∆ ∆ ∆ ∆
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6. CONCLUSIONS

In this paper, we have studied the polarimetric signatures such as the
α-angle and entropy in the scattering of EM waves upon RRS. For
this aim, a new statistical model to estimate these signatures has been
proposed. After extracting the scattering coefficients via polarization
diversity, the polarimetric signatures have been simulated for various
RRS and compared with real data to validate the proposed model.

In the simulation scheme, the results of RRS have been presented
with respect to the incidence angle θi and surface permittivity εr.
We have observed that for very large incident angle, this mechanism
is independent of the surface slope and approaches zero denoting a
fully polarized wave. For very large slopes, this mechanism, which is
extremely dependent on the angle of incidence, is fixed versus the slope.
The results clearly indicate that the scattering of RRS can be classified
by the known mechanisms which are usually observed in remote sensing
applications.

The real data sets indicate that the histogram of the α-angle for
the bare soil, forest areas and vegetated surface denotes a significant
difference. It is worth to notice that the bare soil and vegetated surface
have similar mechanisms which their recognition is very difficult. This
problem can be considered for future works.

A quantitative assessment of the scattering mechanisms indicates
that the α-angle asymptotically approaches to the true value with
respect to increase the number of looks which is an important
parameter in the data processing. In addition, the quantitative
parameter ∆R indicates that the iteration number is dependent on the
type of the scattering mechanism. Consequently ∆R can be utilized
as a useful parameter to introduce a recognition mechanism in inverse
problems. Finally it is possible to conclude that the technique proposed
in this study is an efficient method for the target recognition in SAR
applications.
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