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Abstract—In this paper, we present an improved Coulombian-
based analytical calculation of magnetic fields created by permanent-
magnetic rings. The 3 dimensional (3D) components of two types of
magnetized rings (axially and radially) were analytically evaluated.
The obtained components of the magnetic field are expressed over
complete elliptical integrals of the first and second kind, as well as
by Heuman’s Lambda function. These expressions permit fast and
accurate calculations of the magnetic field at any point of interest,
for both regular and singular cases. The presented method gives an
improvement of already known expressions for calculating the magnetic
fields of the aforementioned magnetized rings, and we consider that
these improved analytical expressions are more extendable to numerical
applications.

1. INTRODUCTION

Permanent magnet rings are used in many technical applications, such
as magnetic separators, magnetic holding devices, magnetic torque
drives, magnetic bearing devices, generators, alternators, loudspeakers,
and actuators. In these applications, the magnetic fields created by
these magnets need to be accurately calculated to optimize devices used
therein. Until now, most analytical and numerical approaches have
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evaluated two major kinds of applications, such as parallelepipedic and
cylindrical magnets, [1–21]. Even though parallelepipedic magnets are
easy to produce, are easily magnetized, and create a magnetic field that
is easily calculated, we wish to evaluate cylindrical magnets with radial
and axial polarizations. The analytical solutions of the magnetic field,
based on the Coulumbian approach, created by axially and radially
magnetized permanent magnetic rings have been evaluated in [1]. The
proposed expressions obtained over the complete elliptical integrals of
the first, second, and third kind, as evaluated by Mathematica, produce
tedious expressions which are complicated for the numerical treatment.
In addition, Mathematica-based solutions contain some magnetic field
components with imaginary parts nearly equal to zero (Hz), making
these components more difficult to plot with Mathematica, especially in
the treatment of singular cases that can be solved analytically. Herein,
for the previous reason, we propose purely analytical solutions for
these components of the magnetic field for the aforementioned types of
magnets. The obtained 3D analytical expressions ameliorate already
calculated magnetic fields for permanent magnetic rings, and are more
suitable for numerical applications. All results are expressed over the
complete elliptical integrals of the first, and second kind, as well by
Heuman’s Lambda function.

2. BASIC EXPRESSIONS

The solutions for the magnetic fields, produced by permanent magnet
rings (See Figs. 1 and 2) can be obtained by using the Coulombian
method [1]. Rings with axial (Fig. 1) and radial (Fig. 2) magnetic
polarizations were investigated in this study.

The corresponding magnetic fields are:
a) Axial magnetic polarization
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Figure 1. Given geometry: A ring with z axis of symmetry and inner
and outer radius rin and rout, respectively. The magnetic polarization
is axial [1].

Figure 2. Given geometry: A ring with z axis of symmetry and inner
and outer radius rin and rout, respectively. The magnetic polarization
is radial, [1].

where

P1+
�M = (r − r1 cos θ)�ir − r1 sin θ�iθ + (z − h)�ik

P1− �M = (r − r1 cos θ)�ir − r1 sin θ�iθ + (z + h)�ik
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b) Radial magnetic polarization
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where
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µ0 = 4π×10−7 H/m — the magnetic permeability of vacuum. σ∗ = 1T
— surface magnetic pole density, ir, iθ, iz — unit vectors in the
cylindrical coordinate system.

3. CALCULATION METHOD

a) Axial magnetic polarization
By substituting the variable θ with θ = π − 2β in (1), integrating

twice, and respecting angle variable symmetry, we obtained the 3D
components of the magnetic field at the point M(r, 0, z). In this
case all integrals will be transformed on the interval of integration
0 ≤ β ≤ π/2 so that all results will be expressed over complete elliptical
integrals.
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Thus, we obtained the 3D components of the magnetic field expressed
over the complete elliptical integrals of the first, second, and third
kind [22, 23]. Ravaud et al. [1] obtained the same expressions for the
component Hr and relatively tedious expressions for the component
Hz wherein, the incomplete integral of the third kind appears. They
used Mathematica to evaluate this component and obtained its real
and the imaginary components of Hz. Obviously this component has
to be purely real. Even though the imaginary part is a consequence
of ‘numerical noise’ and nearly equals zero they obtained satisfactory
results for this component. In our calculation we obtained the complete
elliptical integrals of the third kind. These expressions are easy to
program and can be used to evaluate the magnetic field anywhere
except in the singular case. In the singular case, it is possible to replace
the coplete elliptic integral of the third kind with the elliptic integral
of the first kind and with Heuman’s Lambda function [22, 23].

After some mathematical modifications the component Hz(r, z)
which is suitable for either regular or singular cases appears in the



76 Babic and Akyel

following form:
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a) Singularity treatment
The component Hr+ has two singularities (See Fig. 3) for k+2

n =
1 (z = h, r = rin, r = rout) for which H+

r values are −∞ and +∞.
The component H+

z has two removable singularities (See Fig. 5)
for k+2

n = 1 (z = h, r = rin, r = rout). Using the L’Hopital rule we
obtained H+

z → 0 for k+2
n → 1.

K(k) — complete elliptic integral of the first kind [22, 23].
E(k) — complete elliptic integral of the second kind [22, 23].
Π(h, k) — complete elliptic integral of the third kind [22, 23].
Λ(ε, k) — Heuman’s Lambda function [22, 23].

b) Radial magnetic polarization
By substituting the variable θ with θ = π − 2β in (2), integrating

twice, and respecting angle variable symmetry,we obtained the 3D
components of the magnetic field at the point M(r, 0, z):
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Thus, we obtained the 3D components of the magnetic field expressed
over the complete elliptical integrals of the first, second, and third
kind [22, 23]. Ravaud at al. [1] obtained the same expressions for the
component Hz and relatively tedious expressions for the component
Hr wherein, the incomplete integrals of the first and third kind
appear. Above obtained expressions can be easily used to calculate
the magnetic field anywhere except in the singular case. In the
singular case, it is possible to replace the elliptic integral of the
third kind with the elliptic integral of the first kind and Heumans
Lambda function [22, 23]. After some mathematical modifications, the
component Hr(r, z) suitable for either regular or singular cases appears
in the following form:
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b1) Singularity treatment
The component H+

r has one removable singularity (See Figs. 7)
for k+2

n = 1 (z = h, r = rin). Using the L’Hopital rule we obtained
H+

r → 0 for k+2
n → 1.

The component H+
z has one singularity (See Figs. 9) for k+2

n =
1 (z = h, r = rin) for which H+

z value is +∞.

4. EXAMPLES

a) Axial magnetic polarization
In Figs. 3 and 4 we show the radial and the axial components of the

magnetic field (axial magnetic polarization) as a function of the radial
distance of the observation point for a given altitude with z = 3 mm
(component Hr) and z = 4 mm (component Hz) for a magnet with
dimensions rin = 25 mm, rout = 28 mm, h = 3 mm and σ∗ = 1 T [1].
We only considered the upper face of the permanent magnet ring to
simplify the analytical calculation [1]. If we compare our results to
those obtained in [1], we observed the same form for the components

Figure 3. The radial component Hr is a function of the radial
distance: the observation height is z = 3 mm, rin = 25 mm, rout =
28 mm.
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Figure 4. The axial component Hz is a function of the radial distance:
the observation height is z = 4 mm, rin = 25 mm, rout = 28 mm.

Figure 5. The radial component Hr is a function of the radial
distance: the observation height is z = 1.5 mm, rin = 25 mm,
rout = 28 mm [1].
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Figure 6. The axial component Hz is a function of the radial distance:
the observation height is z = 3 mm, rin = 25 mm, rout = 28 mm.

of Hr (Fig. 3). From the components of Hz (Fig. 4) we can see that
there is a difference in the right side where the magnetic field does
not exist for r > 0.025 m [1]. This component of the magnetic field is
difficult to plot with Mathematica as mentioned in [1]. We find that
our approach, in which we replaced the elliptic integral of third kind
by Heumans Lambda function, can considerably improve the magnetic
field calculation near singular points where the elliptic integral of third
kind is tedious for numerical evaluation [20].
b) Radial magnetic polarization

In Figs. 5 and 6 we show the radial and the axial components
of the magnetic field as a function of the radial distance of the
observation point for a given altitude with z = 1.5 mm (component
Hr) and z = 3 mm (component Hz) for given magnet with dimensions
rin = 25 mm, rout = 28 mm, h = 3 mm and σ∗ = 1 T [1]. We only
consider the ring inner face of the permanent magnet ring to simplify
the analytical calculation [1]. If we compare our results to those
obtained in [1] we observe the same form for all of the components
of either Hr or Hz.

Thus, we can confirm that obtained expressions (3) and (4)
perfectly correspond to those given in [1] but they are more suitable
for the calculation of magnetic fields especially in singular cases. The
comparative calculation was made using MATLAB programming.
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5. CONCLUSION

In this paper, we presented an improved analytical approach, based on
a previously developed analytical method, to calculate the magnetic
field of axially- and radially-polarized magnetic rings. The proposed
analytical expressions are easily extended to the numerical calculation
of the magnetic field at any regular or singular point in space.
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