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Abstract—We propose an exact synthesis method which allows the
design of dual-band transformers with an arbitrary even number
of uniform sections giving equi-ripple impedance matching in two
separate bands centered at two arbitrary frequencies. This method
is a generalization of the exact Collin-Riblet synthesis of Chebyshev
single-band transformers. As compared to a single-band Collin-Riblet
transformer encompassing both required passbands, the proposed
design yields significantly better performance in terms of passband
tolerance and width.

1. INTRODUCTION

The multisection transformer is a standard tool in microwave
engineering to obtain impedance matching in transmission line circuits
supporting transverse electromagnetic (TEM) propagation [1, 2]. In
the 1950s classical design methods, e.g., binomial and Chebyshev
synthesis [1], were introduced to design transformers giving impedance
matching in a single passband. Classical transformers consist of a
cascade of uniform transmission line sections which are a quarter wave
long at the central frequency of the matching band. Other methods to
design multisection transformers consisting of uniform or nonuniform
transmission line sections are dealt with in [3–5].
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However, the above mentioned methods faced the problem of
designing impedance transformers working in a single passband. On
the other hand, in many cases of practical interest (cellular/PCS,
WLAN, GSM/DCS and other dual-band applications [6–9]) impedance
matching over two separate bands can be required. So, in the last
years various design methods for dual-band impedance transformers
have been proposed [10–14]. In particular, the synthesis problem of a
dual-band two-section one-third wavelength transformer with the two
bands centered at a given frequency f1 and at its first harmonic 2f1 is
dealt with in [10] and [11]. The more general problem of designing a
transformer working in two bands centered at two arbitrary frequencies
is solved in [12] and [13], but only for a two-section transformer.
Finally, the problem of designing a transformer with an arbitrary even
number of quarter-wavelength uniform sections working in two bands
centered at two frequencies f1 and f2 ≤ 3f1 is solved in [14], but
under the small-reflections approximation. In particular, the method
introduced in [14] is a generalization of the standard approximate
single-band Chebyshev transformer design [1] in which the input
reflection coefficient obtained using the small-reflection approximation
is expressed as a Chebyshev polynomial with argument cos θ, θ being
the electrical length of the transformer sections. The basic idea of
the dual-band synthesis in [14] consists in replacing the argument
cos θ by a suitable second order polynomial in cos θ. Note that this
method gives accurate results only if the range of the ratio ZL/Z0 is
about 1/2 ≤ ZL/Z0 ≤ 2, where ZL is the real valued impedance to
be matched to the transmission line with real valued characteristic
impedance Z0 [1].

In this paper we present a dual-band design method which
overcomes the limits on the ratio of the impedances ZL/Z0 and
frequencies f2/f1 of the procedure in [14]. The method is based on
the exact Collin-Riblet design procedure [15, 16] which allows the
characteristic impedances of the transformer sections to be iteratively
calculated once the power loss ratio (the power available from the
generator divided by the power delivered to the load) is given. In
the exact synthesis of single-band equi-ripple transformers the power
loss ratio is enforced to be a suitable function of the Chebyshev
polynomial with argument cos θ [1]. Our method for the exact dual-
band design is based (as in [14]) on replacing the argument cos θ by
a suitable second order polynomial in cos θ. In this way, we can
obtain impedance transformers, consisting of a cascade of N = 2M
uniform transmission line sections which are a quarter wave long at
the frequency f0 = (f1 + f2)/2, working in two bands Ω1 and Ω2

centered at two arbitrary frequencies f1 and f2, respectively, without
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any restriction on the ratio ZL/Z0 and on M .
In terms of passband tolerance (largest reflection coefficient absolute
value) in the two required bands Ω1 and Ω2, the N -section
transformer obtained using our method outperforms the exact single-
band Chebyshev N -section transformer whose passband encompasses
both Ω1 and Ω2, which is perhaps the most obvious alternative design.
We also analyze the robustness of our method with respect to the
absorption, showing that moderate dielectric losses in the transmission
line sections do not significantly affect the transformer performance.
Moreover, we explore the possibility of using our synthesis procedure
also in the case of waveguiding structures supporting quasi-TEM
propagation, showing that our method gives very good results in facing
the impedance matching problem in microstrip line circuits.

The paper is organized as follows. Our method is introduced and
discussed in Section 2. Results follow under Section 3. Section 4 deals
with the design of microstrip transformers. Conclusions follow under
Section 5.

2. AN EXACT DUAL-BAND CHEBYSHEV IMPEDANCE
TRANSFORMER

In this section we present our method to design a dual-band Chebyshev
impedance transformer based on the exact Collin-Riblet synthesis
procedure [15, 16].

Consider the synthesis problem of an impedance transformer
consisting of N -sections having the same electrical length θ = 2πl/λ,
l and λ being the optical length of the sections and the wavelength
in the vacuum, respectively, that matches a load of impedance ZL to
a transmission line of characteristic impedance Z0 (both ZL and Z0

are assumed to be real-valued) in two separate equal-width frequency
bands, namely Ω1 = [f1 − ∆f, f1 + ∆f ] and Ω2 = [f2 − ∆f, f2 + ∆f ],
where f1 and f2 are two arbitrary frequencies. Following the Collin-
Riblet procedure, we consider the power loss ratio PLR [1]

PLR(θ) =
PG

PL(θ)
=

1
1 − |Γ(θ)|2 (1)

where PG and PL are the power available from the generator and the
power delivered to the load, respectively, and Γ is the input reflection
coefficient. It can be shown that PLR can be expressed as [16]

PLR(θ) = 1 + Q2
N (cos θ) (2)

where QN (·) is an even or odd polynomial of order N . Once
the polynomial QN (·) is given, the Collin-Riblet design method
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allows the characteristic impedances of the transformer sections to be
calculated [15, 16].

The polynomial QN (·) can be chosen so that the impedance
matching condition is obtained in the two separate equal-width bands
Ω1 and Ω2. To this end, we choose N = 2M and l = c/(4f0), where c
is the velocity of the light in the vacuum and f0 = (f1 + f2)/2. The
electrical length of each section is θ = πf/(2f0), and the two bands
Ω1 and Ω2 can be expressed in terms of the dimensionless variable θ,
namely Θ1 = [θ1 − ∆θ, θ1 + ∆θ] and Θ2 = [θ2 − ∆θ, θ2 + ∆θ], where
θ1 = πf1/(2f0), θ2 = πf2/(2f0) = π − θ1 and ∆θ = π∆f/(2f0). In
order to obtain an equi-ripple power loss ratio in the two bands Θ1

and Θ2, we enforce

Q2M = kTM (a cos2 θ + b) (3)

where TM is the Mth-degree Chebyshev polynomial and a, b and k are
constants to be determined. Note that our method is a variation of the
single-band Chebyshev synthesis, using the second order polynomial
a cos2 θ + b as the argument of the Chebyshev polynomial instead of
the first order polynomial used for the single-band design [1]. In order
to obtain the impedance matching in the two bands Θ1 and Θ2, we
enforce the condition −1 ≤ a cos2 θ + b ≤ 1 for θ ∈ Θ1 ∪ Θ2, which,
in view of the symmetry of the polynomial a cos2 θ + b with respect to
π/2, can be obtained enforcing

{
a cos2(θ1 − ∆θ) + b = −1
a cos2(θ1 + ∆θ) + b = 1

(4)

Equation (4) gives the constant a and b



a =
2

cos2(θ1 + ∆θ) − cos2(θ1 − ∆θ)

b = −cos2(θ1 + ∆θ) + cos2(θ1 − ∆θ)
cos2(θ1 + ∆θ) − cos2(θ1 − ∆θ)

(5)

Finally, the constant k can be obtained by considering

PLR(0) =
|R + 1|2

4R
(6)

where R = ZL/Z0. Using Equations (2), (3) in (6) yields

k =
|R − 1|

2
√

R|TM (a + b)|
(7)
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Once the constants a, b and k have been computed, the power loss
ratio PLR is completely determined and the characteristic impedances
of the transformer sections can be computed using the Collin-Riblet
method [15, 16].

3. REPRESENTATIVE RESULTS

As an illustration of our method, in this section we present some
representative results. Given the two frequency bands Ω1 and Ω2

and the impedances Z0 and ZL, following the method described in
the above section we computed the characteristic impedances of the
transformer sections. In all calculations we performed, the values
of these impedances resulted to be real and positive according to
the physical realizability stated by the Riblet theory. Once the
characteristic impedances of the N -sections of the transformer had
been computed, we calculated the input reflection coefficient of the
transformer Γin(θ) using the transmission matrix method [1]. In
all simulations |Γin(θ)| exactly agreed with the reflection coefficient
absolute value |Γ(θ)| obtained substituting Equations (3) and (2) in
Equation (1), that is

|Γ(θ)| =
|kTM (a cos2 θ + b)|[

1 + k2T 2
M (a cos2 θ + b)

]1/2
(8)

As a first case, we considered R = 4, N = 4, θ2/θ1 = 2.5 and
∆θ/θ1 = 0.2. In Fig. 1, |Γin| of our dual-band exact Chebyshev
transformer (henceforth called dual-band transformer) is displayed as
a function of the electrical length θ and compared to the one of a four
section single-band exact Chebyshev transformer (henceforth called
single-band transformer), synthesized using the exact Collin-Riblet
method, with a passband Θ encompassing both required passbands,
i.e., Θ = [θ1−∆θ, θ2+∆θ]. The passband tolerance ρm of the dual-band
transformer is about 6.3 dB lower than the single-band transformer one.

In order to perform an extensive comparison between the dual-
band transformer and the single-band transformer, we analyzed the
input reflection coefficient spectrum of both transformers by varying
the parameters R, N , ∆θ/θ1 and θ2/θ1. Fig. 2 shows the passband
tolerance ρm of the dual-band transformer and the single-band
transformer as a function of R for N = 4, θ2/θ1 = 2.5 and ∆θ/θ1 = 0.2.
As expected, the ρm of both transformers increases with R, and the
dual-band transformer outperforms the single-band transformer by
roughly 6.3 dB for all R values.

Increasing the number of the sections N , obviously the ρm of both
transformers decreases, while the difference between the ρm of the
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Figure 1. Reflection coefficient absolute value vs. θ for the dual-band
transformer (solid line) and the single-band transformer with passband
[θ1 − ∆θ, θ2 + ∆θ] (dashed line) for R = 4, N = 4, θ2/θ1 = 2.5 and
∆θ/θ1 = 0.2.
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Figure 2. Passband tolerance vs. R for the dual-band transformer
(solid line) and the single-band transformer with passband [θ1 −
∆θ, θ2 + ∆θ] (dashed line) for N = 4, θ2/θ1 = 2.5 and ∆θ/θ1 = 0.2.

dual-band transformer and the single-band transformer increases, as
illustrated in Fig. 3, for R = 4, θ2/θ1 = 2.5 and ∆θ/θ1 = 0.2. At N = 8
the dual-band transformer outperforms the single-band transformer by
about 13 dB.

The higher the ratio θ2/θ1 of the two center band frequencies,
the larger the difference between the two transformers performance in
terms of ρm. This is illustrated in Fig. 4 where the ρm of the dual-
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Figure 3. Passband tolerance vs. N for the dual-band transformer
(triangles) and the single-band transformer with passband [θ1−∆θ, θ2+
∆θ] (circles) for R = 4, θ2/θ1 = 2.5 and ∆θ/θ1 = 0.2.
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Figure 4. Passband tolerance vs. θ2/θ1 for the dual-band transformer
(solid line) and the single-band transformer with passband [θ1 −
∆θ, θ2 + ∆θ] (dashed line) for N = 4, R = 4 and ∆θ/θ1 = 0.2.

band transformer and the single-band transformer is displayed as a
function of θ2/θ1 for N = 4, R = 4 and ∆θ/θ1 = 0.2. The ρm of both
transformers increases with θ2/θ1, while the difference increases from
1.3 dB to 13.7 dB with θ2/θ1 ranging from 1.7 to 4.7.

Finally, Fig. 5 shows the passband tolerance ρm of the dual-band
transformer and the single-band transformer as a function of ∆θ/θ1 for
N = 4, R = 4 and θ2/θ1 = 2.5. For low values of ∆θ/θ1 the dual-band
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transformer exhibits very low values of ρm outperforming the single-
band transformer by about 38.5 dB. Both the dual-band transformer
and the single-band transformer ρm increase with ∆θ/θ1 while the
difference decreases up to zero for ∆θ/θ1 = 0.75, corresponding to
θ1 + ∆θ = θ2 − ∆θ.
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Figure 5. Passband tolerance vs. ∆θ/θ1 for the dual-band
transformer (solid line) and the single-band transformer with passband
[θ1 − ∆θ, θ2 + ∆θ] (dashed line) for N = 4, R = 4 and θ2/θ1 = 2.5.

We also compared the dual-band transformer to the single-band
transformer with center frequency f0 and the same tolerance ρm in
terms of their passbands. Dual-band transformer and single-band
transformer input reflection coefficient absolute values are shown in
Fig. 6 for R = 4, N = 4, θ2/θ1 = 2.5 and ∆θ/θ1 = 0.2. The single-band
transformer is forced to have the same passband tolerance of the dual-
band transformer, namely ρm = −30.06 dB. It is seen in Fig. 6 that
the single-band transformer does not cover both passbands of the dual-
band transformer. The same behavior has been observed also varying
the parameters R, N , θ2/θ1 and ∆θ/θ1. Figs. 7 and 8 show the ratio of
the single-band transformer passband ∆θ to ∆Θ = (θ2+∆θ)−(θ1−∆θ)
as a function of θ2/θ1 and ∆θ/θ1, respectively. As expected, ∆θ/∆Θ
decreases with θ2/θ1 and increases with ∆θ/θ1. In all simulations
performed varying R from 1.1 to 16 and N from 2 to 8, ∆θ/∆Θ keeps
around 0.85 for θ2/θ1 = 2.5 and ∆θ/θ1 = 0.2.

Moreover, it is worth to analyze the characteristic impedance
values of the transformer sections obtained using our method. In
Table 1(a) the impedance values are reported for the case N = 4,
R = 4, θ2/θ1 = 2.5 and ∆θ/θ1 = 0.2. Table 1(b) shows the impedance
values for the same parameter values but for θ2/θ1 = 3.5. In the case of
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Figure 6. Reflection coefficient absolute value vs. θ for the dual-band
transformer (solid line) and the single-band transformer with the same
passband tolerance (dashed line) for R = 4, N = 4, θ2/θ1 = 2.5 and
∆θ/θ1 = 0.2.
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Figure 7. Ratio ∆θ/∆Θ vs. θ2/θ1 for N = 4, R = 4 and ∆θ/θ1 = 0.2.

Table 1(a), our method gives a transformer with a monotonous step to
step impedance variation. On the contrary, in the case of Table 1(b), a
transformer with a non-monotonous step to step impedance variation
is obtained using our procedure. All the simulations we performed
showed that the monotonous/non-monotonous variation depends only
on the parameter θ2/θ1. In particular, for θ2/θ1 ≤ 3 our method gives
a transformer with a monotonous step to step variation, for θ2/θ1 > 3 a
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Figure 8. Ratio ∆θ/∆Θ vs. ∆θ/θ1 for N = 4, R = 4 and θ2/θ1 = 2.5.

Table 1. Characteristic impedance values of the transformer sections
for N = 4, R = 4, ∆θ/θ1 = 0.2, (a) θ2/θ1 = 2.5, (b) θ2/θ1 = 3.5.

(a) (b)
Z [Ω] Z [Ω]

1st section 64.50 81.41
2nd section 78.53 63.14
3rd section 127.33 158.38
4th section 155.03 122.84

transformer with a non-monotonous step to step variation is obtained.
Of course, in both cases the Collin-Riblet condition ZiZN+1−i = ZLZ0

is always fulfilled [16].
Finally, we conclude the analysis of the performance of our

synthesis method analyzing its robustness with respect to the
absorption in real materials. For a transmission line consisting of
a lossy dielectric material surrounding perfect conductors, assuming
a time dependence ej2πft, the characteristic impedance Z ′ and the
propagation constant k are given by [1]

Z ′ =
Z

(1 − j tan δ)1/2
(9)

k = β(1 − j tan δ)1/2 (10)
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where Z and β are the lossless characteristic impedance and
propagation constant, respectively, and tan δ = ε′′/ε′, ε = ε′ − jε′′

being the relative dielectric constant.
As an example, we analyze the case N = 4, R = 4, ∆θ/θ1 = 0.2

and θ2/θ1 = 3.5. At first, we apply our method and obtain the
characteristic impedance values reported in Table 1(b). Then, we
perturb these impedance values following equation (9), and compute
the power PL delivered to the load considering the corresponding
propagation constants given by equation (10).

In Fig. 9, PL normalized to the power PG available from the
generator is displayed as a function of θ for four different values of
tan δ = 0, 10−3, 5 ·10−3, 10−2. It can be noted that moderate dielectric
losses in the transmission line sections do not significantly affect the
transformer performance. Obviously, the losses effects are more evident
in the higher frequency passband Θ2 where, for tan δ = 10−2, PL

decreases of about 10%.
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Figure 9. Power delivered to the load normalized to the power
available from the generator vs θ: tan δ = 0 (solid line), tan δ = 10−3

(dashed line), tan δ = 5 · 10−3 (dotted line) and tan δ = 10−2 (dash-
dotted line) for N = 4, R = 4, ∆θ/θ1 = 0.2 and θ2/θ1 = 3.5.

4. MICROSTRIP TRANSFORMERS

The method presented and discussed in the previous sections works
in the case of TEM propagation in transmission lines. On the other
hand, wave-guiding structures supporting not-TEM propagation are
being used more and more in current microwave applications. For
example, planar microwave circuits based on microstrip lines have
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received intensive development in the last few decades [17–19]. A
microstrip line supports quasi-TEM mode propagation which can be
approximated by TEM propagation in a transmission line with effective
dielectric constant and characteristic impedance evaluated via a quasi-
static approximation [2]. In this section we demonstrate that our
method can also be used in the design of a microstrip transformer,
showing that quasi-TEM to TEM approximation has negligible effects
on the transformer performance.

Let us consider the problem of synthesizing a microstrip
transformer matching, in two separate bands, a given microstrip line
to a known planar load ZL. Given the height and the dielectric
constant of the substrate, the design procedure consists in finding
out the widths of the microstrip sections. At first, we compute the
characteristic impedance of the transmission line equivalent to the
input microstrip line using the quasi-static approximation formulas
reported in [2]. Then, using our method, we perform the synthesis of
the transformer matching the equivalent transmission line to a load of
impedance ZL in the two desired bands, obtaining the characteristic
impedances Zi (i = 1, . . . , N) of the transformer sections. Finally,
using again the quasi-static approximation formulas, we compute the
widths of the N sections of the microstrip transformer corresponding to
the Zi (i = 1, . . . , N). The performance of the microstrip transformer
is then analyzed via a full-wave commercial software package [20].

As a first example, we consider a microstrip line with a substrate
consisting of 0.20 mm height RT/duroid 5880 having relative dielectric
constant equal to 2.2. The width of the microstrip line is w = 0.62 mm,
corresponding to a characteristic impedance Z0 = 50 Ω, the load
impedance is ZL = 200 Ω. At first, we consider the problem faced
in the first case of Section 3, for which R = 4, N = 4, θ2/θ1 = 2.5
and ∆θ/θ1 = 0.2, giving a transformer with monotonous step to
step impedance variation. The input reflection coefficient absolute
value |Γin| of the microstrip transformer, computed via the full-wave
analysis, is compared with the |Γ| given by Equation (8) in Fig. 10,
where |Γ| and |Γin| are displayed as functions of θ. As it can be seen,
the |Γin| profile well agrees with the |Γ| one. As a further example, we
consider the matching problem with parameter values as above but for
θ2/θ1 = 3.5, giving a transformer with a non-monotonous step to step
impedance variation as shown in Section 3. |Γ| and |Γin| are displayed
in Fig. 11, showing a very good agreement between the two profiles
also in this case.

All simulations performed using different parameter values
confirmed these results.
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Figure 10. Reflection coefficient absolute value vs. θ: theoretical
values |Γ| (solid line) and full-wave analysis values |Γin| (dashed line)
for R = 4, N = 4, θ2/θ1 = 2.5 and ∆θ/θ1 = 0.2.
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Figure 11. Reflection coefficient absolute value vs. θ: theoretical
values |Γ| (solid line) and full-wave analysis values |Γin| (dashed line)
for R = 4, N = 4, θ2/θ1 = 3.5 and ∆θ/θ1 = 0.2.

5. CONCLUSIONS

We have introduced a new exact synthesis method of multisection
impedance transformers for transmission line circuits supporting TEM
propagation. Our method allows the design of dual-band transformers
with N = 2M sections working in two bands Ω1 and Ω2 centered
at two arbitrary frequencies f1 and f2, respectively, without any
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restriction on M and on the values of the impedances to be matched.
In terms of passband tolerance in the two required bands Ω1 and Ω2,
our transformer, which consists of a cascade of uniform transmission
line sections which are a quarter wave long at the frequency f0 =
(f1 + f2)/2, outperforms the exact single-band Chebyshev transformer
whose passband encompasses both Ω1 and Ω2, which is perhaps the
most obvious alternative design. We have also explored the possibility
of using our synthesis in the case of waveguiding structures supporting
quasi-TEM propagation, showing that our method gives very good
results in designing impedance transformers for microstrip circuits.

REFERENCES

1. Collin, R. E., Foundations for Microwave Engineering, 2nd
edition, McGraw-Hill, New York, 1992.

2. Pozar, D. M., Microwave Engineering, 2nd ed., John Wiley & Sons
Inc., New York, 1998.

3. Bandler, J. W. and P. A. Macdonald, “Optimization of microwave
networks by razor search,” IEEE Trans. Microwave Theory Tech.,
Vol. 17, No. 8, 552–562, 1969.

4. De Coster, I., E. Van Lil, and A. Van de Capelle, “Comparison
of design methods for binomial matching transformers,” Journal
of Electromagnetic Waves and Applications, Vol. 14, No. 9, 1229–
1239, 2000.

5. Meschanov, M. P., I. A. Rasukova, and V. D. Tupikin,
“Stepped transformers on TEM-transmission lines,” IEEE Trans.
Microwave Theory Tech., Vol. 44, No. 6, 793–798, 1996.

6. Wu, G.-L., W. Mu, X.-W. Dai, and Y.-C. Jiao, “Design
of novel dual-band bandpass filter with microstrip meander-
loop resonator and CSRR DGS,” Progress In Electromagnetics
Research, PIER 78, 17–24, 2008.

7. Ren, W., “Compact dual-band slot antenna for 2.4/5 GHz WLAN
applications,” Progress In Electromagnetics Research B, Vol. 8,
319–327, 2008.

8. Fan, J.-W., C.-H. Liang, and X.-W. Dai, “Design of cross-coupled
dual-band filter with equal-length split-ring resonators,” Progress
In Electromagnetics Research, PIER 75, 285–293, 2007.

9. Zhao, G., F.-S. Zhang, Y. Song, Z.-B. Weng, and Y.-C. Jiao,
“Compact ring monopole antenna with double mender lines for
2.45/5 GHz dual-band operation,” Progress In Electromagnetics
Research, PIER 72, 187–194, 2007.

10. Chow, Y. L. and K. L. Wan, “A transformer of one-third



Progress In Electromagnetics Research, PIER 86, 2008 319

wavelength in two sections — for a frequency and its first
harmonic,” IEEE Microwave Wireless Comp. Lett., Vol. 12, No. 1,
22–23, 2002.

11. Monzon, C., “Analytical derivation of a two-section impedance
transformer for a frequency and its first harmonic,” IEEE
Microwave Wireless Comp. Lett., Vol. 12, No. 10, 381–382, 2002.

12. Monzon, C., “A small dual-frequency transformer in two
sections,” IEEE Trans. Microwave Theory Tech., Vol. 51, No. 4,
1157–1161, 2003.

13. Orfanidis, S. J., “A two-section dual-band Chebyshev impedance
transformer,” IEEE Microw. Wireless Comp. Lett., Vol. 13, No. 9,
382–384, 2003.

14. Castaldi, G., V. Fiumara, and I. M. Pinto, “A dual-band
Chebyshev impedance transformer,” Microwave and Optical
Technol. Lett., Vol. 39, No. 2, 141–145, 2003.

15. Collin, R. E., “Theory and design of wide-band multisection
quarter-wave transformers,” Proc. IRE, Vol. 43, No. 2, 179–185,
1955.

16. Riblet, H. J., “General synthesis of quarter-wave impedance
transformers,” IRE Trans. Microwave Theory Tech., Vol. 5, No. 1,
36–43, 1957.

17. Khalaj-Amirhosseini, M., “Wideband or multiband complex
impedance matching using microstrip nonuniform transmission
lines,” Progress In Electromagnetics Research, PIER 66, 15–25,
2006.

18. Kiang, J. F., S. M. Ali, and J. A. Kong, “Modelling
of lossy microstrip lines with finite thickness,” Progress In
Electromagnetics Research, PIER 4, 85–117, 1991.

19. Matsunaga, M., “A coupled-mode theory-based analysis of
coupled microstrip lines on a ferrite substrate,” Progress In
Electromagnetics Research, PIER 42, 219–232, 2003.

20. CST Microwave Studio Suite, Getting started version 4, 2002.


