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Abstract—Our method that uses current generator operator assumes
the current on the entire surface of conducting scatterers. While,
Physical Optics (PO) method assumes that the surface current
generates only on the illumination region. The effect of the shadow
region on the scattering waves is, therefore, proved by comparing our
exact method with PO method. In this regard, radar cross-section
(RCS) is calculated for smooth concave-convex contour. We work
on numerical calculation of the RCS and analyze its characteristics
with different target configurations including complexity and size.
Concave illumination region is postulated with considering targets are
taking large sizes of about five wavelengths. Here, we assume waves
propagation and scattering from targets in free space and horizontal
polarization (E-wave incidence).

1. INTRODUCTION

Radar cross section (RCS) is a key parameter used in radar design,
target detection, and system benchmarks [1–3]. Defined as a far-
field parameter it represents the effective target area as seen by
a radar, independent of range. Various radar problems require
an understanding of this parameter at distances less than infinity.
Several methods were introduced to calculate RCS such as Finite
Element Method (FEM) [4] and Method of Moment [5]. Despite the
high computational accuracy of these methods, they require so long
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computational time and so large memory that it is hard to apply
in scattering analysis for large size objects like in this paper. Fast
Multipole Method (FMM) [6] was proposed to reduce the processing
time but yet not enough for large and complex targets.

In earlier work, the problem of scattering waves from conducting
targets was solved efficiently via an exact method that uses a current
generator operator to calculate the electromagnetic field on the whole
surface of the target; actually there are several articles that describe
this method, e.g., [7–10], where other references are available. In those
studies, numerical results were presented for RCS and backscattering
enhancement; our results are in excellent agreement with those
conducted for circular cylinder in [11]. The scatterer need not be a
simple mathematically defined body. High frequency scattering from,
or propagation along, a perfectly conducting boundary with smooth
concave–convex surface profile is of interest for a variety of applications
as in [12]. We considered a perfectly conducting target with an
analytic concave–convex boundary shape. Generated numerical results
revealed characteristics that exist with partially convex cross sections
and absent with typical convex surface such as circular and elliptic
shapes [13].

Wave scattering was found to vary remarkably with many
parameters including illumination region curvature, incident wave
polarization, and target configuration. When a concave surface is
illuminated by a plane wave incidence, the scattering wave may
undergo focusing, which is absent when the surface and/or illuminated
area of the surface is convex. Focusing and defocusing of scattering
waves play a role when the scatterer has a smoothly deformed contour
comprising concave and convex portions. Detailed studies of these
phenomena were undertaken for partially convex targets with inflection
points [8]. However, those studies were limited to the case where
the normalized target size is in the range of one wavelength of
incident waves in free space. These features appeared to be related
to the contributions from shadow region as well as stationary points
that spread over the illuminated concave region. Some studies were
presented showing the stationary points and creeping waves effects on
the scattering waves as in [9, 14, 15]. In this work, we probe the
impact of normalized target size together with the prescribed effects
on the scattering waves in the far-field response. In this regard, we
consider targets are extended to take large sizes up to five wavelengths
with concave illumination region. To verify our results, we use physical
optics PO method that estimates the scattering fields from the specular
region only [16–19]. The extended physical optics (EPO) method was
originated by Adachi [20]. A characteristic feature of this method,
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in comparison with the conventional physical optics (PO) method,
is that the EPO current is assumed over the entire surface of the
conducting target, while the PO method assumes the current only
on the illuminated surface. As a result, the EPO method was found
to be valid in the Rayleigh region and in the resonance region of
the scattering, while the PO method is valid in the limit of high
frequency. In this sense the EPO method is quite different from the
PO method in principle [21]. Accordingly, we would be able to show
the effect of shadow region on the backscattering waves in the limit of
high frequency using the PO method. We take into our account the
horizontal polarization (E-wave incidence). The time factor exp(−iwt)
is assumed and suppressed in the following section.

2. SCATTERING PROBLEM

Let us consider scattering waves from targets in free space. Geometry
of the problem is shown in Figure 1.
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Figure 1. Geometry of the problem of wave scattering from a
conducting cylinder.

Here, k = ω
√

ε0µ0 is the wavenumber in free space.
An electromagnetic wave radiated from a source located at rt,

that is beyond the target at the far field, propagates in free space,
illuminates the target and induces a surface current on the target. A
scattered wave from the target is produced by the surface current and
propagates back to the observation point that coincides with the source
point.

The target is assumed as a conducting cylinder with a cross-section
expressed as

r = a[1 − δ cos 3(θ − φ)] (1)

where a is the mean size of the target in which a � rt, δ is the concavity
index, and φ is the rotation index.
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Using the current generator YE and Green’s function in free space
G0(r | r′), we can express the scattered wave as

us(r) =
∫

S
dr1

∫
S

dr2 [G0(r | r2)YE(r2 | r1)uin(r1 | rt)] (2)

where uin(r1 | rt) is expressed as

uin(r1 | rt) = G0(r1 | rt) (3)

whose dimension coefficient is understood. Here, YE is the operator
that transforms incident waves into surface currents on S and depends
only on the scattering body [7–10]. The current generator can be
expressed in terms of wave functions that satisfy Helmholtz equation
and the radiation condition. That is, for E-wave incidence, the surface
current is obtained as

∫
S

YE(r2 | r1)uin(r1 | rt) dr1 � (4)

Φ∗
M (r2)A−1

E

∫
S
� ΦT

M (r1), uin(r1 | rt) � dr1

where ∫
S
� ΦT

M (r1), uin(r1 | rt) � dr1 ≡
∫

S
φm(r1)

∂uin(r1 | rt)
∂n

− ∂φm(r1)
∂n

uin(r1 | rt) dr1 (5)

Above equation is sometimes called “reaction” named by Rumsey
[22]. Here, the basis functions ΦM are called the modal functions
and constitute the complete set of wave functions satisfying the
Helmholtz equation in free space and the radiation condition; ΦM =
[φ−N , φ−N+1, . . . , φN ], M = 2N +1 is the total mode number, φm(r) =
H

(1)
m (kr) exp(imθ), and AE is a positive definite Hermitian matrix

given by

AE =




(φ−N , φ−N ) . . . (φ−N , φN )
...

. . .
...

(φN , φ−N ) . . . (φN , φN )


 (6)

in which its m, n element is the inner product of φm and φn:

(φm, φn) ≡
∫

S
φm(r)φ∗

n(r)dr (7)
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The YE is proved to converge in the sense of mean on the true
operator when M → ∞. We can obtain the RCS σ as follows:

σ = 〈|us(r)|2〉 · k(4πz)2 (8)

The calculation of scattering data has been restricted to the interval
0.1 < ka < 30. It is quite difficult to exceed this ka’s limit since larger
ka requires so big M which consequently enlarges the calculation time
dramatically.

In the physical-optics approximation (PO), the RCS is given by
[10–13] which assumes zero surface current on the shadow region.
The validity of (9) was confirmed experimentally by [23] and also
theoretically by [24].

σ = k

∣∣∣∣
∫

S
n e−j2krt.r′dr′

∣∣∣∣
2

(9)

where n is the normal vector to the target surface in the outword
direction.

3. NUMERICAL RESULTS

Here, RCS calculations for concave illumination region of concave-
convex targets are presented in Figure 2. Using our exact method
defined in (8), it is observed that the behavior of RCS is different
from that one with convex illumination region that was shown in
[7]. This difference is attributed to the contributions from complex
saddle points that lie near the concave-to-convex transitions on the
physical contour as has been described in [14]. The effect of target’s
curvature represented by δ is, therefore, limited on RCS in case of
convex illumination region. On the other hand, δ has more influence
on the waves scattered from concave region; as we perceive with big
δ, the RCS increases with ka to a certain limit and then decreases
in a stepwise manner. Such behavior can be explained as follows:
as magnifying δ, the concavity of the incident area expands which
in turn increases the effective illumination region. Therefore, the
contributions from this region become sometimes in phase so they add
up and sometimes out of phase so they cancel out with ka depending
on the real and complex scattering rays directions and that leads to
such up-down behavior with δ = 0.18, 0.2. However, with smaller δ,
the specular reflections reduce as a result of lowering the concavity
slope of the effective illumination region. So in such case and with
expanding ka, the illumination region is stretched and, accordingly,
the scattering waves progress in same directions and be in phase so
they add up and therefore RCS keeps increasing gradually with ka.
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Figure 2. RCS vs. target size using exact method and PO method
where (a) δ = 0, (b) δ = 0.05, (c) δ = 0.1, (d) δ = 0.15, (e) δ = 0.18,
(f) δ = 0.2.
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To verify the effect of the shadow region, we use PO method
defined in (9) to estimate RCS. Numerical results for RCS behavior
using our exact method are in good agreement with the approximate
PO method apart from the magnitude. It is obvious that the
magnitude of RCS with PO method deviates from our exact method
especially with enlarging the concavity of the scatterer implemented
by δ. This is attributed to the nonspecular contributions from the
shadow region that includes as well those points in the vicinity of
concave-to-convex inflection points on the scatterer surface as was
pointed out in [9, 14, 15]. As well known, these contributions are
not considered in the RCS estimate using PO method. In Figure 2(a),
in the high frequency range, RCS performance completely agrees with
that presented in our previous study in [7] where the target has circular
cross section (δ = 0). This is owing to having only one stationary
point and the shadow region has no seeming effect on the scattering
waves as a result of the lack in the vicinity of concave-convex inflection
points. This proves that illuminating and scattered waves are subject
to wavefront curvature [25].

4. CONCLUSION

The RCS of conducting targets with inflection points behaves in a
way that can be explained as a result of the contributions from the
effective illumination region in addition to the shadow region that
includes the vicinity of concave-to-convex transitions on the scatterer
surface. The nonspecular contributions interpret the effect of shadowed
side on the scattering data compared to the calculation that considers
the illumination region only as the case with physical optics method
tested here on the same targets. All features in reference data for the
RCS using our exact method have been discussed completely. Target’s
configuration including curvature and size is playing a primary role on
the RCS especially for concave illumination region of partially convex
targets.
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