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Abstract—A low complexity wavelet packet transform-based least
mean square (LMS) adaptive beamformer is presented in this paper.
This beamformer uses wavelet packet transform as the preprocessing,
reduces the signal dimension in wavelet packet domain for low
complexity and denoising, and employs least mean square algorithm to
implement adaptive beamformer. Theoretical analysis and simulations
demonstrate that this algorithm with better beamforming performance
converges faster than the conventional adaptive beamformer and the
wavelet transform-based beamformer. Finally, our proposed algorithm
has the low complexity, and it can be easy to implement.

1. INTRODUCTION

Antenna array has been used in many fields such as radar, sonar,
communications, seismic data processing, and so on [1–6]. Adaptive
beamforming technique [7–12] is the key technique of array signal
processing. A beamformer is a spatial filter that operates on the
output of an array of sensors in order to enhance the amplitude of
a coherent wavefront relative to background noise and directional
interference [13]. Least Mean Square (LMS) adaptive beamforming
is a simple and practical beamforming technique. LMS algorithm has
many advantages, such as low complexity, simply implementation and
high stability, but its remarkable disadvantage is slow convergence,
which limits its application. It has been proved that the main factor
affecting the LMS adaptive beamforming convergence is the ratio of
maximal eigenvalue to minimal eigenvalue λmax/λmin of input signal.
The convergence become faster as the reduction of λmax/λmin [14, 15].
In order to increase the convergence speed, the frequency-domain
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filtering method has been extended to yield the transform domain
filtering method, which finds applications in many field including
beamforming [16, 17], and so on.

Wavelet theory provides a new way for transform-domain
adaptive filtering [18]. Wavelet is characterized by good time-
frequency characteristic [19, 20]. Wavelet transformed signal decreases
autocorrelation, and show a special band distribution [21], which leads
to an increase in convergence speed. Wavelet transform has been
used in adaptive beamforming [22–26], and the algorithms can be still
improved further. The wavelet packet method is a generalization of
wavelet decomposition, and it offers a rich range of possibilities for
signal analysis. In the wavelet analysis, the signal is split into an
approximation and a detail. The approximation is then itself split into
a second-level approximation and detail, and the process is repeated.
In wavelet packet analysis, the details as well as the approximations
can be split repeatedly, so wavelet packet transformed signal has faster
convergence. White noise often pollutes the received signal, and is hard
to denoise in the time domain, but it is easy to denoise in the transform
domain [27].

In this paper, the received signal of array antenna is analyzed,
which shows that different Directions of Arrival (DOA) correspond
to different multi-solution in the fixed array spacing. The received
signal of array antenna has multi-resolution from DOA angle, and
is taken as the foundation of wavelet packet application. Wavelet
packet transform-based LMS adaptive beamformer is proposed. This
algorithm has the faster convergence speed than wavelet transform-
based LMS beamformer and conventional LMS beamformer. This
algorithm has low complexity, and it can be easy to implement.

This paper is structured as follows. Section 2 develops multi-
resolution characteristics of received signal. Wavelet packet transform-
based LMS adaptive beamformer is presented in Section 3. Section 4
deals with algorithm performance analysis. Section 5 presents
simulation results and Section 6 summarizes our conclusions.

Denote: We denote by (.)∗ the complex conjugation, by (.)T the
matrix transpose, and by (.)H the matrix conjugate transpose. The
notation (.)+ refers to the Moore-Penrose inverse (pseudo inverse).
‖‖F stands for the matrix conjugate transpose.

2. MULTI-RESOLUTION CHARACTERISTICS OF
RECEIVED SIGNAL

In applying wavelets to an array signal processing problem, a key
issue is how to understand the scale in an array signal. According
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to Ref. [28], the difference between the received signals at two adjacent
sensors is contained in the phase term. Basically, this phase term
determines the oscillation rate in a spatial signal. This can be
further understood from the spatial sampling criterion. To avoid phase
ambiguity, a constraint is imposed on the phase difference between the
received signals at two adjacent sensors:

|kd sin θ| =
∣∣∣∣2π

λ
d sin θ

∣∣∣∣ ≤ π (1)

where λ is wavelength, d is the spacing between adjacent sensors, and
θ is DOA. From Eq. (1), the spatial sampling interval depends on the
signal direction.
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Figure 1. Spatial multi-resolution of different DOAs.
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Figure 2. DOA-spatial frequency resolution rectangle.

In the condition of the fixed array spacing, we assume that DOAs
ping at array from DOA [0, π/2]. When DOA changes from 0 to π/2,
the spatial sampling interval kd sin θ changes, as shown in Fig. 1. When
DOA is small, the spatial sampling interval is small and the spatial
resolution is high (Fig. 1(a)). When DOA is large, the spatial sampling
interval is large and the spatial resolution is low (Fig. 1(b)). Therefore,
different DOAs correspond to different spatial resolutions in the fixed
array spacing. Assume that DOA is different; then the resolution is
different. When the DOA increase between [0, π/2], its resolution
degrades, which is shown in Fig. 2. Hence, the received signal of
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array antenna is regarded as the addition of multi-resolution signals.
If the received signal is under wavelet pack transform, the different
resolutions can be detected through wavelet packet decomposition;
thus the detection of the different DOA signals can be implemented.

3. WAVELET PACKET TRANSFORM-BASED LMS
BEAMFORMER

An illustration of the wavelet packet transform-based LMS adaptive
beamforming is shown in Fig. 3. First, the wavelet packet transform
is made, secondly reduce dimension is processed, and then the LMS
algorithm is employed to implement the adaptive beamforming.

x(n) wavelet packet
transform

y(n) z(n) Y(n)
LMS

reduce
dimension

Figure 3. Wavelet packet transform-based LMS adaptive beam-
former.

3.1. Wavelet Packet Transform

Wavelet packet has the ability to further decompose the wavelet space
as follows:

V0 = V1 ⊕ W1 = U0
1 ⊕ U1

1 = U0
2 ⊕ U1

2 ⊕ U2
2 ⊕ U3

2

= . . . = U0
N ⊕ U1

N ⊕ . . . ⊕ U2N−1
N (2)

where V0 is the signal space; V1 and W1 are the approximation and
detail of V0, respectively; U0

N , U1
N , . . . , U2N−1

N are the subspaces of V0;
N is decomposition series.

The wavelet packet decomposition for N = 3 is shown in Fig. 4.
In order to analyze the wavelet packet transform characteristic, the

orthogonal matrices of wavelet packet transform are derived according
to the lowpass filter and highpass filter of wavelet. The lowpass
filer and highpass filter of the wavelet packet transform are h =
[h0, h1, . . . , h2N−1] and g = [g0, g1, . . . , g2N−1], respectively. The filter
tag length is 2N . For simplicity N is supposed to be integer exponent 2.

When 1 ≤ i ≤ J − log2 2N + 1, the 2J−i+1 × 2J−i+1 matrix Wi
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Figure 4. Wavelet packet decomposition.

for the i-th series wavelet decomposition is

Wi =




hN · · · h2N−1 0 · · · 0 h0 · · · hN−1

hN−2 · · · h2N−3 h2N−2 · · · 0 0 · · · hN−3
... · · · ...

... · · · ...
... · · · ...

hN+2 · · · 0 0 · · · h1 h2 · · · hN+1

gN · · · g2N−1 0 · · · 0 g0 · · · gN−2
... · · · ...

... · · · ...
... · · · ...

gN+2 · · · 0 0 · · · g1 g2 · · · gN+1




(3)

where the number of 0 in every row is 2J−i+1 − 2N .
Similarly, when J − log2 2N + 1 < i ≤ J , the 2J−i+1×2J−i+1

orthogonal matrix Wi for the i-th series wavelet decomposition is

Wi =




h′
0 h′

1 h′
2 · · · h′

2J−I+1−2
h′

2J−I+1−1

h′
2J−I+1−2

h′
2J−I+1−1

h′
0 · · · h′

2J−I+1−4
h′

2J−I+1−3

...
...

... · · · ...
...

h′
2 h′

3 h′
4 · · · h′

0 h′
1

g′0 g′1 g′2 · · · g′
2J−I+1−2

g′
2J−I+1−1

...
...

... · · · ...
...

g′2 g′3 g′4 · · · g′0 g′1




(4)

where h′
m = hm + h2J−I+1+m + · · · + h2N−2J−I+1+m, g′m = gm +

g2J−I+1+m + · · · + g2N−2J−I+1+m, 0 ≤ m < 2J−i+1.
It is proved that Wi is also an orthogonal matrix.
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The 2J×2J matrix WT for the J series wavelet decomposition and
the 2J × 2J matrix WP for the J series wavelet packet decomposition
are as follow:

WT =




WJ 0 0 · · · 0
0 I · · · 0
...

. . . · · · ...
0 0 0 · · · I


 × · · · ×

[
W2 0
0 I

]
× W1 (5)

WP =



WJ 0 0 · · · 0
0 WJ · · · 0
...

. . . · · · ...
0 0 0 · · · WJ


× · · · ×

[
W2 0
0 W2

]
×W1 (6)

It is proved that WT and WP are orthogonal matrices.

3.2. Reduce Dimension and Denoise

Different DOAs correspond to different spatial resolutions, and the
useful signal is in low frequency part. We think the high frequency
part in the wavelet packet transform signal includes the noise, and
we can remove high frequency part for the wavelet packet transform
signal, and that is also called reduce-dimension. The reduce-dimension
for the he wavelet packet transform signal is to denoise and reduce the
complexity of LMS algorithm. In general, we reduce dimension into
half of it. Reduce dimension will be reduce the algorithm complexity.

3.3. Wavelet Packet Transform-based LMS Adaptive
Beamformer

Perform wavelet packet transform for the received signal x. The
transformed signal is denoted by

y(n) = WPx(n) (7)

y(n) is a vector with M × 1, the wavelet packet transform signal.
We reduce dimension for the wavelet packet transform signal

z(n) = Py(n) (8)

where P is reduce-dimension matrix.
LMS algorithm is used

r(n) = vT(n)z(n) (9)
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where v is the weighed vector of LMS algorithm; r is the output signal
of LMS. The error in the nth iteration is shown

e(n) = d(n) − r(n) (10)

where d(n) is the training sequence; e is the error.

v(n + 1) = v(n) + 2ae(n)r∗(n) (11)

where a is the learning step.

4. ALGORITHM PERFORMANCE ANALYSIS

4.1. Optimal Solution

The cross-correlation vector Py between the desired signal and the
wavelet packet transform signal is

Py = E(d(n)y(n)) = E(d(n)WPx(n)) = WPPx (12)

where Px is the cross-correlation between the input signal x(n) and
desired signal.

The autocorrelation matrix Ry of the wavelet packet transform
signal is

Ry = E
(
y(n)y(n)H

)
= E

(
WPx(n)x(n)HWP

)
= WPRxWP (13)

where Rx is the autocorrelation matrix of input signal x(n). Then,
the wiener optimal solution of wavelet packet domain beamforming is

Vopt = R−1
y Py = R−1

y WPPx

= R−1
y WRxR−1

x Px = R−1
y WPRxwopt (14)

where wopt is the time domain beamforming Wiener solution.
The minimal mean square error (MSE) of wavelet packet domain

beamforming is

ey
min = E

(
d2(n)

)
− PH

y R−1
y Py = E

(
d2(n)

)
− PH

y R−1
y WPPx

= emin − PH
y

(
WPR−1

y WP − R−1
x

)
Px (15)

where emin is the time domain LMS minimal mean square error.
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4.2. Convergence Analysis

The algorithm convergence speed is determined by the ratio of maximal
eigenvalue to minimal eigenvalue λmax/λmin. The convergence speed
becomes faster with the reduction of λmax/λmin. According to Ref. [29],
the autocorrelation matrix of the orthogonal transform signal has a
diagonal tendency, and the remarkable decrease in λmax/λmin results
in the improvement of convergence performance of the algorithm.

Assume the input signal is a real signal x(n) and its
autocorrelation matrix is Rxx, and the autocorrelation matrix of
wavelet packet transform signal y(n) is Ryy. Then, Rxx and Ryy

are real symmetrical matrices, and the orthogonal matrices Qx and
Qy exist, such that

Rxx = QxΛxQ−1
x ; Ryy = QyΛyQ−1

y (16)

where Λx and Λy are eigenvalue diagonal matrices of Rxx and Ryy,
respectively.

According to Eq. (7)

Ryy = QyΛyQ−1
y = E

[
y(n)yT (n)

]

= E
[
WPX(n)XT (n)WT

P

]
= WPRxxWT

P (17)

So we get

Ryy = QyΛyQ−1
y = WPQxΛxQ−1

x WT
P (18)

Λy = QT
y WPQxΛxQ−1

x WT
PQy = AΛxAT (19)

where
A = QT

y WPQx (20)

According to Eq. (19), we have

λy
k =

N∑
i=1

a2
kiλ

x
k, k = 1, 2, . . . , N (21)

where λy
k and λx

k are the eigenvalues of Rxx and Ryy, respectively; aki

is element (k, i) of A.
It is seen that eigenvalue λy

k is related to WP closely. The following
conclusions are made according to characteristics of orthogonal
matrices WT and WP :
(1) Different wavelet bases correspond to different orthogonal matri-

ces, which lead to different eigenvalue distribution. Therefore,
different wavelet bases lead to different convergence performances
of wavelet packet transform-based adaptive beamforming.
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(2) With wavelet packet decomposition series increasing, the
autocorrelation matrix of wavelet packet transform signal has the
further diagonal tendency, so the convergence performance of our
proposed algorithm is improved.

(3) When the decomposition series are the same, wavelet packet
transform based beamforming algorithm has a better convergence
than wavelet transform based beamforming algorithm. (This will
be demonstrated experimentally in Section 5).

4.3. Complexity Analysis

This beamforming algorithm uses wavelet packet transform as the
preprocessing, and then wavelet packet transform signal uses LMS
algorithm to implement the adaptive beamforming. Using wavelet
packet transform requires an extra but small computation. Suppose
that the number of antennas is M , and the decomposition series
is J . The computational complexity of wavelet packet transform is
O(JM log2 M). The computational complexity of a conventional LMS
iteration is O(2M). When M = 32, J = 3, the computational
complexity of wavelet packet transform is equivalent to several
iterations of LMS. Our proposed adaptive beamforming algorithm uses
the reduce-dimension technique to reduce the complexity. The reduced
dimension is M/2, so and the computational complexity of LMS in our
proposed algorithm is O(M). The autocorrelation matrix of wavelet
packet transform signal has the diagonal tendency, which leads to a
quick convergence speed of LMS. Our proposed algorithm has the low
complexity, and it can be easy to implement.

5. SIMULATION RESULTS

We present simulations to test the performance of wavelet packet
transform-based adaptive beamforming algorithm. The 32-element-
uniform-linear array with spacing λ/2 is used in the simulation. The
array antenna receives 6 signals with different DOAs of 10◦, 20◦, 30◦,
40◦, 50◦ and 60◦, respectively. The DOA of the expected signal is
30◦, and Daubechies wavelet base series is chosen. We use MATLAB
software and computer with Pentium 4, CPU 3.2 GHz, memory 504 Mb
as simulation environment. For our proposed algorithm with SNR=20
and 600 iterations, our proposed algorithm method requires 12 s.

Simulation 1. Wavelet Packet transform-based Adaptive
BeamForming algorithm (WP-ABF) is compared with Wavelet
Transform based Adaptive BeamForming (WT-ABF) and LMS
Adaptive BeamForming algorithm (LMS-ABF), respectively. db5 is
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mance comparison.

100 200 300 400 500 600 700 800
-600

-500

-400

-300

-200

-100

0

100

iteration

M
S

E
/d

B

scale2
scale3
scale4

Figure 8. Convergence compar-
ison under different composition
series.

chosen as the wavelet base, and decomposition series is 4. The
simulation results are shown in Fig. 5–Fig. 7. Different algorithms
are compared without noise in Fig. 5 and with SNR = 20 in Fig. 6.
From Fig. 5 and Fig. 6, we find that WP-ABF algorithm has much
better convergence performance than WT-ABF, and the convergence
performance of LMS-ABF is the worst among the three algorithms.
Different algorithm beamforming performances with 200 iterations are
shown in Fig. 7; it is seen that WP-ABF has lower sidelobe and better
beamforming performance than LMS-ABF.

Simulation 2. The effect of different series under the same
wavelet base on the convergence speed of WP-ABF is studied. db3 is
chosen as the wavelet base. The simulation results are shown in Fig. 8,
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Figure 9. Convergence comparison under different wavelet bases.

from which we find that the convergence performance of the algorithm
becomes better with series increasing. That is because the wavelet
packet transform signal correlation decreases with series increasing.

Simulation 3. The effect of different wavelet bases on the
convergence speed of WP-ABF under the same series is investigated.
Daubechies wavelet base series, including db1, db3, db5 and db8, are
chosen. Simulation results are shown in Fig. 9. It is seen that db8
has the best convergence performance among the four wavelet bases,
db5 is better than db3, and db3 is better than db1. That is because
the convergence performance gets better with wavelet base regularity
increasing. Among the four wavelet bases, db8, which has the highest
regularity, is the best in convergence performance; and db1, which has
the worst regularity, has the lowest convergence performance.

6. CONCLUSIONS

A low complexity wavelet packet transform-based LMS adaptive
beamforming algorithm is presented. Theoretical analysis and
simulations demonstrate that this algorithm converges faster than the
conventional LMS adaptive beamforming algorithm and the wavelet
transform-based beamforming algorithm. The convergence of the
algorithm is closely related to wavelet base and series: the convergence
gets better with the increasing of series, and under the same series
of wavelet base the convergence gets better with the increasing of
regularity. Our proposed algorithm has the low complexity, and it
can be easy to implement.
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