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Abstract—The problem of diffraction of a plane electromagnetic wave
by a slot in a planar perfectly conducting screen of arbitrary thickness
in the presence of a half-infinite dielectric arranged at a distance from
a screen is solved rigorously on the bases of eigenfunction expansion
and mode matching technique. The calculation algorithm for various
components of the electric and magnetic field vectors in the entire
space is presented, and a simple computation method for corresponding
diffraction integrals is described. Just one more method of field
visualization is demonstrated, which utilizes a picture of the energy-
flux lines.

1. INTRODUCTION

Slotted diffraction elements are widely used for electromagnetic field
transformation in various optical and microwave devices [1–7]. That is
why the problem of simulation of a plane wave diffraction by slots
in conducting screens, as well the like problem of diffraction by a
complementary screen in the form of a strip, is of great interest [2, 3, 8–
14]. The classic statement of these problems proceeds from the premise
of a conducting screen having infinitesimal thickness [1, 2, 8, 9]. Their
rigorous solutions as a limiting case of the solution for an elliptical
cylinder were obtained more than half a century ago [15]. However,
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they are too complex and inconvenient for applications. Therefore,
rather successfully attempts to construct an approximate theory were
made (see, for example, [8]). At the same time, one should recognize as
necessary that the abstract premise about screens having infinitesimal
thickness does not quite correspond to the real situation. That is
why the other theoretical approach was developed. It takes into
account finite thickness of a screen and finite extent of the region
inside a slot, passing by radiation. This approach is based on the
mode-matching method [2], which looks like the method used in
the rigorous diffraction theory [1, 8, 9]. It provided the possibility
to obtain the solutions [3–6, 10–13], which may be unwieldy, but is
greatly simple than the rigorous solution for a screen of infinitesimal
thickness [15] and is convenient for computer programming. However,
the solutions obtained by the mode-matching method, are applicable
only in the cases when thickness of a screen with a slot is in the
order of the wavelength of diffracted radiation or more. For small
values of thickness a computation algorithm is unstable and yields
false results [10, 11] since the system of amplitude equations on
interfaces becomes ill-conditioned. To avoid this disadvantage, in [16]
it was proposed to apply additionally the Tikhonov regularization
procedure [17] to such a system. It provided the possibility to improve
largely the computation algorithm and to extend the field of theory
application to the cases of arbitrary screen thickness. As a result,
this approach received attributes of a perfectly rigorous diffraction
theory being independent of any constraint or approximation related
to parameters of a diffraction system.

Just one more significant merit of the mode-matching approach
is that it provides the possibility to consider additional dielectric
inclusions arranged nearly a slot. For example, in the work [18] the
problem of a plane wave diffraction by a slot which is passed by a
plane infinite dielectric layer was solved rigorously. Its solution formed
the basis of the theoretical model of a cylindrical cavity resonator
with a transverse circular slot using for measuring of permittivity of
a plane dielectric [7]. Other possible geometry of mutual arrangement
of a slot and a dielectric is its placing behind a screen. In the
given work, the solution of a diffraction problem is obtained for such
geometry, when a plane electromagnetic wave is incident on a slot in
a perfectly conducting screen and on a half-infinite dielectric arranged
at a distance from it. A similar geometry corresponds to assemblage
of practically important problems. For instance, it can considered as
a more really simulation of a diaphragm process of radiation, or a
simulation of a process of photosensitive material exposition through
an opaque template with passing openings.
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Figure 1. Diffraction of a plane wave by a slot in a screen, which is
placed in front of a dielectric. l is the half-width of a slot, d is the
half-thickness of a screen, H is the distance between a screen and a
dielectric.

2. FORMULATION OF THE DIFFRACTION PROBLEM
AND ITS SOLUTION

Let us consider the field which is formed by passing of the plane
wave exp[iα0(x + d) + iβ0z] through a slot in a plane screen in the
direction of a half-infinite dielectric (Fig. 1). It is supposed that a
screen has the finite thickness 2d and is perfectly conducting. We
shall solve a stationary diffraction problem for the monochromatic field
with time dependence determined by the factor exp(−iωt) which is
hereafter omitted. In the Cartesian coordinate system, one usually
describes two-dimensional diffraction field in terms of two independent
polarizations having the following components of the electric and
magnetic vectors [1, 2, 8, 9, 19]

Ey = u Hx =
i

k

∂u

∂z
Hz = − i

k

∂u

∂x
(1a)

for H polarization, and

Ex = − i

k

∂ū

∂z
Ez =

i

k

∂ū

∂x
Hy = ūε(x) (1b)

for E polarization, where i =
√ − 1 is the imaginary unite, k = ω/c

is the wave number, c is the speed of light, u and ū are the complex
scalar functions of the coordinates x and z. They should satisfy the
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wave equation (
∂2

∂x2
+

∂2

∂z2
+ k2ε(x)

) {
u
ū

}
= 0 (2)

Here, ε(x) is the piecewise constant function equal to the permittivity
of a dielectric ε inside the region of its placing and unity outside it.

The boundary conditions for the functions u and ū follow from
the known boundary conditions for the electric and magnetic vectors
(1) [1, 2, 8, 9]: at a conducting surface, the value u and the normal
derivative of ū should vanish, and on the surface of a dielectric the
continuity conditions should be enforced on the values u and ūε(x) as
well as on the normal derivatives of u and ū.

In all of the regions of the field space (in front of the screen, in the
interior of the slot and behind the screen), we shall seek the scalar field
functions u and ū as superpositions of standing modes of the coordinate
z. Following [16], let us write the representation for the field in front
of the screen (at x ≤ −d)

u = (cosβ0z + i sinβ0z)
(
eiα0(x+d) − e−iα0(x+d)

)

+
∫ +∞

0
[A(s)(β) cosβz + iA(a)(β) sinβz]e−iα(x+d)dβ (3a)

ū = (cosβ0z + i sinβ0z)
(
eiα0(x+d) + e−iα0(x+d)

)

−k
∫ +∞

0
α−1[Ā(s)(β) cosβz + iĀ(a)(β) sinβz]e−iα(x+d)dβ (3b)

where the first terms on the right-hand sides of (3) represent a sum
of the incident and reflected plane waves, and the integral terms are
Fourier expansions of the diffracted field with their separation on
symmetric (index “s”) and antisymmetric (index “a”) parts in z,

α =
√
k2 − β2 (4)

Inside the slot (−d ≤ x ≤ d, −l ≤ z ≤ l), one should take into
consideration the boundary conditions on the conducting surfaces
z = −l and z = l. Then, instead of a continuous distribution in
mode parameter (3) we have a sum over an infinite discrete series of
mode propagation parameters [10, 11, 16]

u=
+∞∑
n=1

{[
a(s)n exp[iσ(s)(d+ x)] + b(s)n exp[iσ(s)(d− x)]

]
cos ξ(s)nz

+i
[
a(a)n exp[iσ(a)(d+ x)] + b(a)n exp[iσ(a)(d− x)]

]
sin ξ(a)nz

}
(5a)
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ū= k

+∞∑
n=1

{
σ̄−1

(s)n

[
ā(s)nexp[iσ̄(s)(d+x)]−b̄(s)nexp[iσ̄(s)(d− x)]

]
cos ξ̄(s)nz

+iσ̄−1
(a)n

[
ā(a)nexp[iσ̄(a)(d+x)]−b̄(a)nexp[iσ̄(a)(d−x)]

]
sin ξ̄(a)nz

}
(5b)

where

ξ(s)n = ξ̄(a)n = (π/l)(n− 1/2) ξ(a)n = πn/l ξ̄(s)n = (π/l)(n− 1)
(6a)

σ(s,a)n =
√
k2 − ξ2

(s,a)n σ̄(s,a)n =
√
k2 − ξ̄2

(s,a)n (6b)

are the propagation parameters of symmetric and antisymmetric modes
on the coordinates z and x, a(s,a)n, ā(s,a)n and b(s,a)n, b̄(s,a)n are the
amplitudes of the normal slot modes, propagating in the opposite
directions of the x axis.

In the region behind the screen (x ≥ d), we should take into
account reflection and refraction at the plane boundary of a dielectric
x = d+H. Then at d ≤ x ≤ d+H (outside a dielectric) we get

u =
∫ +∞

0
[B(s)(β) cosβz + iB(a)(β) sinβz]

(
eiα(x−d) +Reiα(d+2H−x)

)
dβ

ū =k
∫ +∞

0
[B̄(s)(β) cosβz + iB̄(a)(β) sinβz]

(
eiα(x−d) + R̄eiα(d+2H−x)

) dβ

α

(7)

and in a dielectric (at x ≥ d+H)

u =
∫ +∞

0
[B(s)(β) cosβz + iB(a)(β) sinβz]TeiαH+iγ(x−d−H)dβ

ū =k
∫ +∞

0
α−1[B̄(s)(β) cosβz+iB̄(a)(β) sinβz]T̄ eiαH+iγ(x−d−H)dβ

(8)

Here,

γ =
√
k2ε− β2 (9)

is the mode propagation parameter on the coordinate x in a dielectric,

R =
α− γ

α+ γ
R̄ =

εα− γ

εα+ γ
T =

2α
α+ γ

T̄ =
2α

εα+ γ
(10)
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are the reflection and refraction coefficients for every mode on the plane
dielectric boundary x = d+H.

The field functions (3), (7), (8) should have finite values at infinity
of x, hence one needs to choose the roots (4), (9) with the nonnegative
imaginary parts (Imα ≥ 0, Imγ ≥ 0).

In each of the field existence regions, mode amplitudes are
determined by field matching at their boundaries x = −d and x = d.
It is convenient to use the following procedure: at first, to express the
amplitudes of the modes outside a slot A(s,a)(β), B(s,a)(β) and Ā(s,a)(β),
B̄(s,a)(β) in terms of the slot-mode amplitudes a(s,a)n, b(s,a)n and ā(s,a)n,
b̄(s,a)n. Corresponding equations can be obtained by means of enforcing
the boundary conditions at x = ±d on the function u and on the normal
derivative ∂ū/∂x, and using the property of mutual orthogonality of
the mode functions of z in the expansions (3), (5). Then, one should
substitute the obtained expressions into the boundary conditions for
the normal derivative ∂u/∂x and for the function ū. It provides the
possibility to reduce the problem to solving a system of linear algebraic
equations in the slot-mode amplitudes. In this way, we can find the
following expressions for the amplitudes of the modes outside a slot

A(s,a)(β) =
l

π

∞∑
n=1

[a(s,a)n + b(s,a)n exp(2iσ(s,a)nd)]Q
(s,a)
n (β)

B(s,a)(β) =
l

π[1 +R exp(2iαH)]
∞∑

n=1

[a(s,a)n exp(2iσ(s,a)nd) + b(s,a)n]Q(s,a)
n (β)

(11)

where

Q(s)
n (β) =

1
l

∫ l

−l
cosβz cos ξ(s)nzdz

= sinc[(β − ξ(s)n)l] + sinc[(β + ξ(s)n)l]

Q(a)
n (β) =

1
l

∫ l

−l
sinβz sin ξ(a)nzdz

= sinc[(β − ξ(a)n)l] − sinc[(β + ξ(a)n)l]

are the overlap integrals for the modes outside a slot and the slot
modes, sinc is the conventional notation for the function sincx =
sinx/x. The same expressions will be valid for the amplitudes of
E polarization if parameters of H polarization are replaced with
corresponding parameters of E polarization. On substitution all these
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expressions into the boundary conditions for the normal derivative of
u, we obtain the following equations in the slot-mode amplitudes of H
polarization, which are analogous with the equations of [16]

∞∑
m=1

(
V (s,a)

nm Γ(s,a)
m p(s,a)

m +W (s,a)
nm ∆(s,a)

m q(s,a)
m

)

+ σ(s,a)n∆(s,a)
n p(s,a)

n = α0Q
(s,a)
n (β0)

∞∑
m=1

(
W (s,a)

nm Γ(s,a)
m p(s,a)

m + V (s,a)
nm ∆(s,a)

m q(s,a)
m

)

+ σ(s,a)nΓ(s,a)
n q(s,a)

n = α0Q
(s,a)
n (β0)

(12)

where

p(s,a)
n = (a(s,a)n + b(s,a)n)/2 q(s,a)

n = (a(s,a)n − b(s,a)n)/2

Γ(s,a)
n = 1 + exp(2iσ(s,a)nd) ∆(s,a)

n = 1 − exp(2iσ(s,a)nd)

V (s,a)
nm =

l

π

∫ +∞

0
U (s,a)

nm (β)dβ W (s,a)
nm =

l

π

∫ +∞

0
U (s,a)

nm (β)Re2iαHdβ

U (s,a)
nm (β) =

αQ
(s,a)
n (β)Q(s,a)

m (β)
1 +R exp(2iαH)

(13)

The form of the corresponding equations for E polarization is
distinguished from (12) by the presence of the factor 1/k instead
of the constant factor α0. Besides, in the matrix element (13), the
coefficient α will go from the numerator to the denominator. Because
of symmetry of the diffraction structure about the x axis (Fig. 1), the
obtained system of equations (12) splits into two subsystems for the
symmetric and antisymmetric modes which is independent one from
the other. However, the presence of a dielectric disturbs symmetry of
the structure about the z axis, therefore, the system does not further
split into independent subsystems for the amplitude values p(s,a)

n and
q
(s,a)
n , as it occurred in the case of the absence of a dielectric [16].

One should carry out the reduction of the infinite-dimensional
system (12) to a finite-dimensional system [20], bounding number of
the slot modes in all expressions by the finite value N . Then, the
either system (12) with the index “s” or “a” can be solved by one of the
well-known methods [21], using previously the Tikhonov regularization
procedure, as it was described in [16]. This procedure provides the
possibility to obtain a stable mathematical solution for the general
case of arbitrary screen thickness.
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So, the calculation of diffracted field is reduced to the following. At
first, the slot amplitudes are determined as the solutions of two systems
(12), then the mode amplitudes outside of a screen are calculated
by means of expressions (11), and afterwards one can determine
the scalar field functions in each of the field existence regions using
expressions (3), (5), (7) and (8). The components of the electric
and magnetic vectors in these regions are computed with the help of
Equations (1), into which the given expressions should be substituted.
The integral matrix elements (13) and the integral expressions for
the scalar field functions (3), (7) and (8) can be calculated using
quadrature formulas on uniform grid for argument β by the mid-
ordinate rule [22]. In that way, the continuous spectrum of the modes
outside a slot is approximated by a discrete finite spectrum like the
slot-mode spectrum. One should bear in mind that far from a slot
(at large |x| or |z|) sinusoidal and complex exponential functions in
the integrands of (3), (7), (8) will be fast oscillating, therefore, for the
integrals, a simple mid-ordinate rule can cause to be in great error. In
order to decrease such errors, one can utilize the more general rule for
integral computation over every interval of a grid (see Appendix).

Figure 2 demonstrates the spatial distributions of two different
electric field components of H and E polarizations. They were
computed according to the described above algorithm for the case of
normal incidence of a plane wave on the slot with the width 2l = 1.15λ
(i.e., when kl = 3.6), cut in the perfectly conducting screen with the
thickness 2d = 0.573λ, which is placed within the distance H = 0.955λ
of the self-infinite dielectric with the complex index of refraction
n = 1.85 + 0.022i.

One more method of field visualization for two-dimensional
diffraction problems is indication of energy-flux lines, i.e., lines having
the Poynting vector [1, 9, 19]

S = (c/8π)Re(E × H∗) (14)

as a tangential one, where the asterisk denotes complex conjugation.
These lines show direction of energy propagation and also provide the
possibility to evaluate energy flux value using their density in a given
field region. For the convenience of computer calculation of such lines,
one can consider a scalar function, which is called conventionally the
energy potential [16]

U = U0 +
∫ r

r0

(ey × S)dr (15)

where ey is the ort of the y direction, i.e., of the direction of
translational invariance, U0 = U(r0), r0 is the radius vector of an
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Figure 2. Spatial distribution of one electric field component for
normal propagation of a plane wave through a slot in a conducting
screen in the direction of a self-infinite dielectric. The case of H
polarization (the component Ey) is left, and the case of E polarization
(the component Ez) is right.

arbitrary chosen fixed point in space. Gradient of the energy potential
(15) is orthogonal to the Poynting vector S (14), hence every such a
vector directs along equipontential line of (15) in some point of space,
and a set of these lines will be energy-flux ones.

Figure 3 demonstrates the energy-flux lines of H and E
polarizations computed by means of the energy potential (15) for
the same case as the amplitude distributions in Fig. 2. Because of
symmetry about the x axis, this picture is displayed only for the
half-space z ≥ 0. In a dielectric, the energy-flux lines are drew
as dotted lines, since in absorbing media these lines are not vortex
as in transparent media. Here, according to the known equation of
energy balance [9, 19], there is continuous distribution of sources of
electromagnetic field absorption over the whole dielectric volume.

Notice that substitution of Equations (1) into (14) yields the
following expression for the Poynting vector in terms of the scalar field
function

S = (c/8πk)|u|2∇(arg u)

both for H and for E polarization, where arg u is the argument of
the complex field function u. From that, it is clear why the energy-
flux lines of H polarization are pushed from a conducting screen, but
conversely, the energy-flux lines of E polarization are as if attracted by
it [16] (see Fig. 3). Indeed, the field function value for H polarization
should vanish on conducting surface, consequently appropriate flux
lines should be sparse near it. On the contrary, for E polarization, on
such a surface not the scalar field function but its normal derivative
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Figure 3. Energy-flux lines for normal propagation of a plane wave
through a slot in a conducting screen in the direction of a self-infinite
dielectric. The case of H polarization is left, and the case of E
polarization is right.

specifies zero value. It corresponds to maximum value of this function
hence there is dense distribution of flux lines near conducting surface.

3. CONCLUSION

We obtained the solution of the problem of plane wave diffraction by
a slot in a plane screen and a self-infinite dielectric placed behind a
screen. Just as the similar solution obtained for more simple case of the
absence of a dielectric [16], this solution can regarded as quite rigorous,
since it corresponds to a stable calculation algorithm at any thickness
of a screen, and its utilization is not conditioned on some geometrical
parameter of a problem. The solution can be easily extended on the
case when a slot is filled in by a dielectric with the permittivity εs; for
this purpose, one needs to substitute k2εs for k2 in Equations (6b).
The obtained solution can be generalized also on the case when a
more complex dielectric structure is placed behind a screen, which
is formed by plane layers with various dielectric permittivity. Then, in
Equations (7) and (13), the reflection coefficients for one boundary (10)
should be replaced with appropriate reflection coefficients calculated
for a layered dielectric structure as a whole.
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APPENDIX A. A SIMPLE NUMERICAL METHOD FOR
COMPUTATION OF FIELD PROPAGATION
INTEGRALS

In the diffraction theory, one should often evaluate an integral of the
form ∫

F (β) exp[i(αx+ βz + γy)]dβ (A1)

where

α =
√
k2 − β2 γ =

√
k2ε− β2 (A2)

and x, z and y can specify rather great values. For example,
the integrals determining the scalar field function (3), (7), (8)
of our diffraction problem in regions outside a slot, are such
integrals. In [16, 18], the brief qualitative instruction for deduction of
corresponding quadrature formula for these integrals was given. This
formula should stand duty as a simple generalization of the ordinary
mid-ordinate rule [22] to fast oscillating functions. We present below
the specific form of such a formula and its deduction.

Following the usual procedure of integral computation, we should
split the interval of integration into a set of small segments. Then the
integral (1) will be present itself a sum of elementary integrals

I =
1

b− a

∫ b

a
F (β) exp[i(αx+ βz + γy)]dβ

over all such small segments. For the function F which change
slowly within a small segment, one can use the ordinary mid-ordinate
approximation [22], when a function value in the middle of a segment
is used as a value of F over a whole segment

I ≈ 1
b− a

F

(
a+ b

2

) ∫ b

a
exp[i(αx+ βz + γy)]dβ (A3)

For the remaining integral of exponent, one can write a simple
expression using a linear approximation for the parameters α and γ
(A2) as functions of β. Really, far from zero, a minor portion of the
square root function is well approximated by a linear function. More
exactly, let 0 ≤ β ≤ 0.7k or β ≥ 1.3k(Reε)1/2 for all values of β
ranges from a to b. For definiteness, we assume that Reε > 1, but this
supposition has not influence on a final result. Then, one can use a
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linear approximation for the functions (A2)

α(β) ≈ [(bαa − aαb) + (αb − αa)β]/(b− a)
γ(β) ≈ [(bγa − aγb) + (γb − γa)β]/(b− a)

(A4)

where we introduced the brief designations

αa = α(a) αb = α(b) γa = γ(a) γb = γ(b)

Substituting Equations (A4) into the exponent (A3) provides the
possibility to express easily the corresponding integral in the explicit
form of

I ≈ −iF
(
a+ b

2

)
exp(iwb) − exp(iwa)

wb − wa

= F

(
a+ b

2

)
exp[i(wa + wb)/2]sinc[(wa − wb)/2] (A5)

where

w(β) = αx+ βz + γy
wa = w(a) = αax+ az + γay
wb = w(b) = αbx+ bz + γby

Let now the small section [a, b] falls wholly within the range 0.7k ≤
β ≤ 1.3k. Here, not far from zero of the function α (A2), the linear
approximation of this function is in great error, but its argument β
in itself differs from zero appreciably. Hence, in this section it is
expediently to convent to the new integration variable α

I ≈ − 1
b− a

F

(
a+ b

2

) ∫ αb

αa

α

β
exp[i(αx+ βz + γy)]dα (A6)

and to consider the parameters β and γ as functions of α applying to
them the linear approximation

β(α) ≈ [(αba− αab) + (b− a)α]/(αb − αa)
γ(α) ≈ [(αbγa − αaγb) + (γb − γa)α]/(αb − αa)

Substituting the above expressions into the exponent (A6) and
replacing the ratio of α and β with its approximate value (αa+αb)/(a+
b), we obtain the same result (A5) as in the first case. Similarly, one
can consider the case when the interval of integration [a, b] falls within
the range about zero of the function γ (A2).

So, approximate computation of the diffraction integral (A1)
reduces to summation of the elementary integrals (A5) over all small
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intervals, such that a general form of these integrals does not depend
on position of corresponding interval. Comparative calculations carried
out for various diffraction problems show that even at very great values
of the coordinates x and z Equation (A5) provides a good accuracy
for diffraction integrals. More complex approximations (for instance,
computation of the integrals (A3) in terms of the Fresnel integrals) do
not provide appreciable gain in accuracy but essentially complicate a
computation algorithm.
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