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Abstract—In this paper, a fast and efficient method based on MOM
is proposed for the analysis of antenna and array mounted on bodies
of revolution. An attachment mode is introduced to ensure the
continuity of current density at the junction region between wire
antenna and cylindrical surface. A method based on suitable changes
of coordinates and domains is presented to extract singular point
of the self-impedance element calculation at junction region and
accurate impedance can be obtained. Taking the antennas and array
mounted on a finite solid conducting cylinder as an example, the
impedance characteristics and radiation pattern are calculated. The
good agreement between the results obtained by using the analysis
method presented in this paper and those of CST and NEC software
reveals the accuracy and high efficiency of this method.

1. INTRODUCTION

The body of revolution is a familiar geometry. It is widely used in
aircraft, such as missile, rocket, artificial-satellite. As the geometry
is designed in streamline, it has good air-dynamics characteristics.
Research shows that the curvature radius of the cylinder has an
effect on the radiation pattern [1, 2]. As the mobile communication
is prospering with each passing day, the antennas and array with the
body of revolution have been widely applied to mobile communication
systems due to their advantages, for example, when applied to a base
station, compared with the plane antenna, the antennas and array with
the body of revolution can lead to a easier access to the communication
smart antenna. In order to enhance the computational efficiency of
antennas and array with the body of revolution, the surface currents
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of the cylinder are expanded as overlapping triangular functions and
complex Fourier mode. It is an efficient procedure to reduce the order
of matrix in MOM and the computing time and storage required [3–6].
But the efficiency and accuracy of computation results are hindered
because of the singularity that appears in impedance matrix elements.
When it comes to the singularity problem of the impedance matrix
elements for the revolution body and wire antenna in MOM, there are a
lot of literature report [1–9], but there is little information considering
the singularity of the computation of self-impedance at the junction
region between wire antenna and cylinder surface. In this paper, a
rigorous method is firstly introduced to extract the singularity of the
Greens function appearing within the integrands of the self-impedance
element at the junction region between wire antenna and cylindrical
surface, and the effect of the size of the junction region on the cylinder
surface on the self-impedance of the attachment point is analysed. The
input impedance and radiation pattern of wire antenna and patch array
of an L-probe feed mounted on the finite solid cylinder obtained by the
method in this paper agree well with the CST and NEC results.

2. THEORY

The geometry model of wire antenna with revolution body as shown in

Fig. 1, in terms of the enforcing the boundary condition
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Figure 1. The geometry model of revolution body.
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represent the current density
on the cylinder surface, wire antenna and junction region between wire
and cylinder surface, respectively.

Considering the rotational symmetry geometry characteristic of
the revolution body, the equivalent current is a vector quantity and
can be expressed as a superposition of two orthogonal vectors at any
points on the surface. The obvious choice for the current vectors is
surface tangential vector ût, which is rotationally symmetric about the
angle ϕ, and the azimuthal vector ûϕ. Therefore the surface current
density of the revolution body can be expressed as follows
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T (t− ti)

ρ
ejnφ

⇀

J
φ

ni = ûϕi
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where ûti and ûϕi are the unit vectors along t and ϕ direction, and
ρ is the radius of the revolution body, T (t − ti) is the triangle base
function about the ith segment, the subscript n denote the Fourier
mode number along ϕ direction in MOM.
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For wire antenna, suppose the currents distribution
⇀

Jw on wire
antenna is expanded with piecewise triangular basis functions.

⇀

J
w

=
Nw∑
l=1

ûw
l I

w
l Tl(h) (A/m) (5)

where, ûw
l is the unit vector of the lth segment along wire antenna,

Tl(h) represents a triangular function, and Iw
l is the unknown wire

current coefficient of the corresponding segment.
A special attachment mode is introduced wherever wire antenna

is connected with the cylinder surface, as shown in Fig. 2, in order
to ensure continuity of current flowing from wire antenna to cylinder
surface. Then, no discontinuity occurs at any conductive joint part.
For a point r in the junction region, the basis function of which is
defined as follows
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2π a is the current density on the wire segment nearest
the junction region.
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)
is the current density over the cylindrical

surface near the junction regions a, and b are the inner and outer radii
of the annulus in the junction region, respectively.

Substitute Eq. (3), Eq. (5), and Eq. (6) into Eq. (1). The surface
current to each region can be obtained by solving Eq. (1) using Galerkin
procedure.

3. IMPEDANCE EXPRESSIONS AND THE
EXTRACTING THE SINGULARITY POINT IN THE
INTEGRAL

Using Galerkin’s method to solve Eq. (1), The general matrix equation
can be obtained, with the following form
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In which [Zss] represents the impedance matrix, which are the
familiar impedances defining the EM interactions between various
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parts of the revolution body. Similarly, the revolution body-wire,
the revolution body-junction, the wire-wire, the wire-junction and
junction-junction impedance matrices are denoted by [Zsw],

[
ZsA

]
,

[Zww],
[
ZwA

]
, and

[
ZAA

]
, respectively. [V s], [V w], and

[
V A

]
are the

excitation voltage matrix of on the cylinder, the wire, and the junction
region, respectively. [Is], [Iw], and

[
IA

]
are corresponding surface

current to be determined.
The computation of the self impedance matrix and the mutual

impedance matrix for the revolution body and wire antenna have been
introduced [5–9], the details of this evaluation will not be explained
here for brevity. No information on junction region impedance element
ZAA is available, here, the impedance of the wire/cylinder surface
junction region are carefully treated in a special method.

For the wire/surface junction region self-impedance element ZAA,

as shown in Fig. 2, it consists of a small disk basis
⇀

J
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d
on the cylinder

surface and a half triangle basis
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J
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on the wire. Using Galerkin’s

method, the self-impedance element at the wire/surface junction region
is described as follows
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3.1. Extracting the Singularity Term in Integral

It can be seen the self-impedance ZAA of the junction region is
composed of four terms, the self-impedance between wire antennas, the
mutual-impedance between the wire and disk, and the self-impedance
between disks. The second term in Eq. (8) is the self-impedance
element between disks, which is expressed as ZAA

pp . There is a
singularity in ZAA

pp when r′ → r.
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Suppose α = 2π − ς, cosα = cos ς, it can be obtained
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using Hanker Function, Eq. (16) can be written as
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where, R0 =
√
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So the singularity in integral Eq. (8) can be extracted, and
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3.2. Determination the Outer Radius b of the Annulus

The inner radius a of the annulus corresponds to the wire radius, the
outer radius b of an annulus is usually chosen to be between 0.1λ to
0.25λ, which has effect on the impedance characteristic, especially on
the impedance value of the resonant frequency point. The admittance
versus b is calculated in the resonant frequency, as shown in Fig. 3, it
can be seen that the admittance converges when the outer radius b is
greater than 0.1λ. So we choose b = 0.107λ in the paper.

4. VALIDATION OF THE ARITHMETIC

To test the validity of the analysis method above, the impedance
characteristic of the wire antenna mounted on a finite solid conducting
cylinder is calculated. The dipole which is vertically attached to the
surface of the cylinder is shown in Fig. 4(a). The input impedance
varying with frequency is shown in Fig. 4(b). It can be seen that the
computation result using the developed MOM code is in agreement
with the result of the CST commercial software.
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Figure 2. Attachment region at
the wire/surface.
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junction point versus disk radius b.

1600 1800 2000 2200 2400 2600 2800 3000 3200 3400
-10

-5

0

5

10

15

20

25

−1

Frequency(MHz)

 SuperNEC
 SuperNEC
 Calculated
 Calculated

In
pu

t A
dm

itt
an

ce
 (m

Ω
   

)

(a) (b)

Figure 4. (a) The dipole vertical the axis of the cylinder. (b) The
input admittance vary as the frequency.

In the same way, the impedance and radiation patterns of an
L-probe fed patch antenna mounted on a finite solid conducting
cylinder are calculated. As shown in Fig. 5(a), when Rc = 50 mm,
Hc = 132 mm, L = 44 mm, W = 44 mm, s = 14 mm, s1 = 9.518 mm,
s2 = 20 mm, and the operating frequency is about 2.4 GHz, the
impedance characteristic, VSWR and radiation patterns are obtained
and as shown in Figs. 5(b)–5(e). The results show pretty good
agreement with the results of CST software.

Using the developed MOM code, the patterns of L-probe coupled
patch arrays with 8 patch elements is calculated, as shown in Fig. 6(a).
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Design parameters of the antenna arrays as following: operating
frequency f = 2.4 GHz, DR = 100.0 mm, Hc = 875.0 mm = 7λ,
s = 14.0 mm, s1 = 9.5 mm, s2 = 20 mm, Sd = 37.0 mm, patch sizes:
L = 44.0 mm and W = 44.0 mm. The results are shown in Fig. 6(b)
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Figure 5. (a) The patch antenna of L-probe feed mounted on metal
cylinder. (b) Input impedance versus the frequency. (c) VSWR versus
the frequency. (d) The horizontal pattern. (e) The elevation pattern.
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and Fig. 6(c), which are in good agreement with the results of the CST
software.

Similarly, the radiation patterns of the six elements patch arrays
of L-probe feed mounted on cylinder surface are computed. As shown
in Fig. 7(a), the six element patch antenna arrays are equally spaced
on the cylinder around along circumference, the parameters of the
patch and L-probe are as same as in Fig. 6(a), when R = 86.65 mm,
H = 132 mm, Sp = 62.5 mm, and the operating frequency is also about
2.4 GHz. The radiation patterns are calculated and showed in Fig. 7(b)
and Fig. 7(c). The results are also in pretty good agreement with the
results of CST software.
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Figure 6. (a) Geometry of the eight-element patch antenna array
mounted on a cylinder. (b) The horizontal pattern. (c) The elevation
pattern.
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Figure 7. (a) The six elements patch antenna arrays of the L-probe
feed with body of cylinder. (b) The horizontal pattern. (c) The
elevation pattern.

5. CONCLUSION

In the paper, taking wire antenna problem with body of revolution
as an example, the exact analysis model and computation method
using MOM in conjunction with the electric field integral equation
is proposed. The basis function is set up in terms of the geometry
characteristic of revolution body, in order to reduce the element
number of the impedance matrix and speed up the impedance matrix
computation. The special basis function is introduced at junction
region between the metal wire and the cylindrical surface, so as to
ensure the continuity of current density. The integral transform is
introduced and the computation formula of the self-impedance element
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at the junction region between the metal wire and the cylinder surface
is carefully derived to extract the singularity and a relatively accurate
solution is obtained. The examples above show that the method in this
paper is accurate and efficient. The analytical technique developed in
this paper can be used to study electromagnetic radiation and scatter
problems of wire antenna and array attached to bodies of revolution.

ACKNOWLEDGMENT

The work described in this paper was fully supported by National
Natural Science Foundation of China (Program No. 60671001).

REFERENCES

1. Cao, X., P. Li, K. M. Luk, and C. Liang, “Efficient analysis
of L-probe coupled patch antenna arrays mounted on a finite
conducting cylinder,” Microwave and Optical Technology Letters,
Vol. 41, No. 5, 403–407, 2004.

2. Cao, X., J. Qin, K. M. Luk, and C. Liang, “The efficient
analysis model of antenna with bodies of revolution,” Microwave
& Millimetre-wave Symposium of China (2005CNMWS), 420–424,
2005.

3. Harrington, R. F., Field Computation by Moment Methods, New
York, Macmillan.

4. Mautz, J. R. and R. F. Harrington, “Radiation and scattering
from bodies of revolution,” Appl. Sci. Res., Vol. 20, 405–435, 1969.

5. Andreasen, M. G., “Scattering from bodies of revolution,” IEEE
Trans. Antennas Propagat., Vol. 13, 303–310, 1965.

6. Medgyesi-Mtschang, L. N. and J. H. Mullen, “Radiation and
scattering from asymmetrically excited bodies of revolution,”
IEEE Trans. Antennas Propagat., Vol. 24, No. 1, 90–93, 1976.

7. Gedney, S. D. and R. Mittra, “The use of the FFT for the efficient
solution of the problem of electromagnetic scattering by a body
of revolution,” IEEE Trans. Antennas Propagat., Vol. 38, No. 3,
313–321, March 1990.

8. Raquel, P. L. and F. C. Manuel, “Input impedance of wire
antennas attached on-axis to conducting bodies of revolution,”
IEEE Trans. Antennas Propagat., Vol. 36, No. 9, 1236–1243, 1988.

9. Jung, H. and C. Seo, “Characteristics of circular polarization of
ellipitical microstrip antenna with full-wave analysis considering



130 Cao and Gao

the attachment mode,” Microwave and Optical Technology
Letters, Vol. 22, No. 2, 111–114, 1999.

10. Tarricone, L., M. Mongiardo, and F. Cervelli, “A quasi-one-
dimensional integration technique for the analysis of planar
microstrip circuits via MPIE/MOM,” IEEE Trans. Microwave
Theory Tech., Vol. 9, No. 3, 517–522, 2001.


