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Abstract—In this paper, we present an adaptive beamforming
scheme for smart antenna arrays in the presence of several desired
and interfering signals, and additive white Gaussian noise. As
compared with standard schemes, the proposed algorithm minimizes
the noise and interference contributions, but enforces magnitude-only
constraints, and exploits the array-factor phases in the desired-signal
directions as further optimization parameters. The arising nonlinearly-
constrained optimization problem is recast, via the Lagrange method,
in the unconstrained optimization of a non-quadratic cost function,
for which an iterative technique is proposed. The implementation via
artificial neural networks is addressed, and results are compared with
those obtained via standard schemes.

1. INTRODUCTION

In modern multi-objective radar and communication systems for
civilian and military applications, there is an increasing interest
toward smart antennas [1, 2], capable of processing multiple signals,
adapting to possible scenario variations, and mitigating the effects
† Also with Department of Electrical Engineering, Technical University of Eindhoven, 5612
AZ Eindhoven, The Netherlands.



2 Castaldi, Galdi, and Gerini

of the background noise and coherent interfering signals arising from
multipath and/or (un)intentional disturbances (see, e.g., [3–8]).

Within this context, typical beamforming algorithms [1, 2], are
based on maximum-likelihood criteria, on the maximization of the
signal-to-noise ratio, and on the minimization of the mean square
error (MSE) [9]. In particular, MSE-based approaches are based
on the minimization of the noise and interference contributions
while maintaining a specific array-factor gain in the desired-signal
directions. The applicability of the above algorithms is subject to
the knowledge of the amplitudes and directions of the desired and
interfering signals impinging on the array, which are likely unknown
a priori and, however, time-varying. In this framework, standard
algorithms for the estimation of the direction of arrival, such as
MUSIC [10] and ESPRIT [11], are too computationally-demanding for
real-time applications. This has motivated a growing interest toward
implementations based on artificial neural networks (ANNs) [12],
which are capable, via suitable training procedures, of accurately
approximating complex nonlinear mappings, and admit very-large-
scale-integration hardware implementations. ANN-based algorithms
have been successfully applied to several electromagnetics engineering
optimization/synthesis problems (see, e.g., [13–15]) and, in particular,
to adaptive beamforming schemes based on linearly-constrained MSE
minimization [16, 17].

In this paper, we propose an alternative scheme based on
the MSE minimization which, unlike those in [16, 17], involves
magnitude-only (nonlinear) constraints on the array-factor in the
desired-signal directions. As compared with the scheme in [16, 17],
for each constraint, we recover a real degree of freedom (array-
factor phase) which we exploit in the optimization process for
performance improvement. Via the Lagrange theory of constrained
optimization [18], we reduce the problem to the unconstrained
optimization of a non-quadratic functional (depending on the above
auxiliary phase unknowns), for which we propose an iterative solution
scheme. Moreover, we address the ANN implementation, and assess
the overall performance by comparison with standard schemes [16, 17].

In our prototype investigation, we consider a simplified scenario
involving a linear array of N isotropic elements in the presence of M �
N narrow-band plane-wave signals with identical center-frequency,
and a wide-sense stationary, zero-mean, white Gaussian background
noise. The indexes m = 1, . . . , MD tag the MD desired signals,
which are assumed to all have unit amplitude and known incidence
directions θ1, . . . , θMD

∈ (−90◦, 90◦) from broadside; the indexes
m = MD + 1, . . . , M tag the MI = M −MD interfering signals, which
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are assumed to all have amplitude Λ and unknown incidence directions
θMD+1, . . . , θM ∈ (−90◦, 90◦). Moreover, we assume that the elements
are uniformly spaced by half-wavelength (at the center-frequency), and
that the desired and interfering signals and the noise are mutually
uncorrelated. Hence, the array output can be parameterized in terms
of an N -dimensional complex vector r of components

rn(t) =
M∑

m=1

sm(t) exp [−j(n − 1)π sin θm] + ξn(t),

n = 1, . . . , N, (1)

where j =
√
−1 denotes the imaginary unit, sm(t) denotes the m-

th signal, and ξn(t) is a zero-mean Gaussian process with variance
σ2. Equation (1) can be recast in the following compact matrix
form [16, 17],

r(t) = A · s(t) + ξ(t), (2)

where s = [s1, . . . , sM ]T , ξ = [ξ1, . . . , ξN ]T , with the superscript T

denoting the transpose, and A = [a1, . . . ,aM ] is the N × M
steering (Vandermonde-type) matrix in the direction of the arriving
signals [16, 17], constituted by N -dimensional column vectors

am =[1, exp (−jπ sin θm) , . . . , exp [−j(N − 1)π sin θm]]T ,

m = 1, . . . , M. (3)

The beamforming output y can accordingly be expressed as a suitable
linear transformation of the vector r,

y(t) = wH · r(t) = wH · A · s(t) + wH · ξ(t), (4)

where w is the N -dimensional complex weight vector (to be determined
according to a suitable optimality criterion), and the superscript H

denotes conjugate transpose.

2. PROPOSED SCHEME

2.1. Beamforming Algorithm

Among the various beamforming schemes (and corresponding
optimality criteria) available in the literature [2], here we focus on the
class of algorithms based on Capon’s method [9], which was generalized
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in [16, 17] to the case of multiple desired signals. Such algorithms are
based on the minimization of the mean output power,

P (w) = wH · R · w, (5)

with unit-gain constraints in the directions of the desired signals,

wH · am = 1, m = 1, . . . , MD. (6)

In (5), R represents the N × N correlation matrix,

R = E
[〈

r(t) · rH(t)
〉]

= A · S · AH + σ2I, (7)

with E[·] and 〈·〉 denoting the statistical expectation and time average,
respectively, S denoting the M×M correlation matrix pertaining to the
desired and interfering signals (diagonal, in view of the uncorrelation
assumption), and I denoting the N × N identity matrix. In view of
the complex (and, hence, linear) nature of the constraints in (6), the
optimization problem admits a simple closed-form solution (see [16, 17]
for details). However, it should be emphasized that each complex
constraint reduces of two units the total number of real degrees
of freedom [real and imaginary parts of the weight coefficients in
(4)] to be exploited in the optimization process. With the aim of
improving the algorithm performance, our proposed scheme is based
on the minimization of the same cost function as in (5), but with the
enforcement of the unit-gain condition via magnitude-only constraints,
viz.,

∣∣wH · am

∣∣ = 1, m = 1, . . . , MD. (8)

As compared with the standard strategy [16, 17] based on the
minimization of (5) subject to (6), for each desired signal, we recover
one extra real degree of freedom exploitable in the optimization
process. However, the nonlinear constraints in (8) render the
optimization problem more complicated. In this framework, it is
expedient to rearrange (8) as

{
wH · am = ζm

|ζm|2 = 1
, m = 1, . . . , MD, (9)

where ζm are auxiliary unit-magnitude complex unknowns (and, hence,
equivalent to real phase variables). By exploiting the Lagrange theory
of constrained optimization [18], the minimization of (5) subject to (9)
can be reduced to the unconstrained minimization of the Lagrangian
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function

L (w;α,β, ζ) = wH · R · w−2Re
{(

wH · AD − ζH
)
· α

}

−
MD∑
m=1

βm

(
|ζm|2 − 1

)
, (10)

where the symbol Re{·} denotes the real part, AD = [a1, . . . ,aMD
]

denotes the N ×MD steering matrix pertaining to the desired signals,
α = [α1, . . . , αMD

]T and β = [β1, . . . , βMD
]T are Lagrange multipliers,

and ζ = [ζ1, . . . , ζMD
]T . Since, for σ > 0, the correlation matrix R in

(7) is strictly positive-defined (and hence invertible), it is easily verified
that the unique stationary point of the Lagrangian in (10) with respect
to w is given by

w(s) = R−1 · AD · α. (11)

By substituting the stationary solution (11) in the constraints (9), we
obtain a linear system of equations relating the α-multipliers to the
auxiliary unknowns, viz.,

B · α = ζ, (12)

where

B = (AD)H · R−1 · AD. (13)

The B matrix in (13) is invertible provided that the directions of
the MD desired signals are different (so that the AD matrix has full
rank) [9], in which case we obtain

α(s) = B−1 · ζ. (14)

Next, by substituting (14) and (11) in the Lagrangian (10), we obtain

L
(
w(s);α(s),β, ζ

)
= ζH · B−1 · ζ −

MD∑
m=1

βm

(
|ζm|2 − 1

)
. (15)

As shown in the Appendix, the iterative scheme

ζ(i+1)
m = −

MD∑
n=1,n�=m

[
B−1

]
mn

ζ(i)
n

∣∣∣∣∣∣
MD∑

n=1,n�=m

[
B−1

]
mn

ζ(i)
n

∣∣∣∣∣∣
(16)
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converges to a minimum of the reduced Lagrangian in (15). The
corresponding optimal weight vector w(opt) is obtained substituting
in (11) the converged values of (14) and (16). Note that, although
there is no guarantee that the global minimum is reached, our numerical
simulations (see Sect. 3) show that, as compared with global optimizers
(such as, e.g., genetic algorithms [19]), the above iterative scheme
provides a better tradeoff between MSE reduction and computational
burden.

2.2. ANN Implementation

In order to approximate the complicated relationship between the input
data and the optimal weight vector w(opt) computed via the above
MSE-minimization process, as in [16, 17], we choose a radial basis
function (RBF) ANN implementation [20] in view of its effectiveness
and versatility, as well as the ready availability of off-the-shelf software
libraries their for creation, training, and simulation. Our architecture
consists of an input layer, a hidden layer of Gaussian RBFs, and
an output layer of summation nodes, and is designed using the
following steps. First, for a given configuration of desired signals,
we create a series of “examples” by: i) choosing (via uniform
deterministic sampling) the angular directions of the interfering signals,
ii) evaluating the ANN input data, and iii) computing the optimal
weight w(opt) via the proposed scheme. Subsequently, in order to have
the ANN “learn” the underlying input-output mapping, we employ
an appropriate RBF-ANN training procedure, based on the algorithm
proposed in [21] and implemented in the newrb routine of the MATLAB
Neural Network Toolbox [22], using the above examples as training
data set. Following [16, 17], we choose as input of the ANN an N2-
dimensional real vector containing the (real and imaginary parts of
the) elements of the upper triangular half of the correlation matrix R
(in view of its symmetry), and as output a (2N − 1)-dimensional real
vector containing the (real and imaginary) components of the optimal
weight vector w(opt) (having assumed w

(opt)
1 purely real and positive

in view of the degree of freedom in the choice of the phase reference).
Additional theoretical and computational details regarding the RBF-
ANN architecture and training can be found in [16, 17, 21].

2.3. Computational Burden

It is interesting to compare the computational burden of the proposed
scheme with that of the standard one [16, 17]. In this connection, note
that the computationally most expensive operation, performed in both
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schemes, is the ANN training. The main computational difference
in the two schemes lies in the creation of the training data sets,
which, for the proposed scheme requires the additional minimization
of the Lagrangian functional in (15) via the iterative procedure in (16).
Accordingly, the proposed scheme requires an additional ∼ O(KM2

D)
burden, where K is the (MD-dependent) number of iterations (16)
required to achieve convergence. Recalling that, for M � N , the
computational burden of the standard scheme [16, 17] is ∼ O(N3),
we can conclude that the additional burden is generally moderate, and
becomes negligible for MD 
 N .

3. REPRESENTATIVE RESULTS

In order to assess the effectiveness of the proposed scheme, we carried
out an extensive parametric analysis and comparison with the standard
scheme [16, 17].
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Figure 1. Examples of optimized radiation patterns obtained via the
proposed (continuous curve) and standard (dashed curve) schemes, for
a configuration featuring N = 10 array elements, MD = 4 desired
signals (with directions θ1 = −70◦, θ2 = 10◦, θ3 = 45◦, θ4 = 75◦,
highlighted as thick arrows on the top axis), MI = 4 interfering signals
(with directions θ5 = −40◦, θ6 = 0, θ7 = 25◦, θ8 = 55◦, highlighted as
thick arrows on the bottom axis), SNR = 10 dB, and SIR =−10 dB.

First, we studied the performance at the input of the ANN.
As an example, Fig. 1 shows the comparison between two typical
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Figure 2. Boxplots of the statistics of the MSE ratio (pro-
posed/standard) at the ANN input, as a function of the number of
desired signals MD, for various representative array and signal config-
urations. The statistics are obtained from sets of 105 examples char-
acterized by random (uniform) arrival directions for the desired and
interfering signals. (a): N = 8, MI = 2, SNR = 10 dB, SIR =−10 dB;
(b): N = 16, MI = 2, SNR = 10 dB, SIR =−10 dB; (c): N = 16,
MI = 4, SNR = 10 dB, SIR =−10 dB; (d): N = 16, MI = 8, SNR = 10
dB, SIR =−10 dB; (e): N = 16, MI = 4, SNR = 10 dB, SIR =−10 dB;
N = 16, MI = 2, SNR = 0 dB, SIR =−10 dB; (f): N = 16, MI = 2,
SNR = 20 dB, SIR =−10 dB; (g): N = 16, MI = 2, SNR = 10 dB,
SIR = 0 dB; (h): N = 16, MI = 2, SNR = 10 dB, SIR =−20 dB.

optimized radiation patterns obtained via the proposed and standard
schemes, for a configuration featuring N = 10 array elements, MD = 4
desired signals, MI = 4 interfering signals, 10 dB signal-to-noise ratio
(SNR =σ−2), and −10 dB signal-to-interference ratio (SIR = Λ−2).
One observes, in both cases, the expected unit-gains and dip notches
in the desired- and interfering-signal directions, respectively. While,
at a qualitative glance, the proposed scheme appears more effective in
lowering the gain in the angular regions away from the desired-signal
directions, more quantitative and statistically meaningful assessments
are clearly needed. In this framework, we generated, for representative
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array and signal configurations, sets of 105 examples characterized
by random (uniform) arrival directions for the desired and interfering
signals, and looked at the ratio of the optimal MSEs in (5) obtained
with the two schemes. The plots in Fig. 2, generated via the
MATLAB boxplot function [22], compactly illustrate the salient
features of the arising statistics. Basically, the ranges of the data are
represented by the whiskers, and each box delimits the interquartile
range (i.e., bottom= 25th percentile, and top = 75th percentile), with
the horizontal line inside indicating the median (i.e., 50th percentile)
value. Specifically, Figs. 2(a) and 2(b) show the MSE ratios pertaining
to different number of array elements (N = 8 and N = 16, respectively)
and desired signals MD, for MI = 2 interfering signals, and fixed
values of the SNR and SIR. Different numbers of interfering signals are
considered in Figs. 2(c) and 2(d) (MI = 4 and MI = 8, respectively),
for a fixed number (N = 16) of array elements. Finally, different SNR
and SIR values (spanning two decades) are considered in Figs. 2(e),
2(f) and 2(g), 2(h), respectively.

A number of remarks are in order. At a first qualitative
glance, one observes that all the data ranges pertaining to the MSE
ratios (proposed/standard) entirely fall within the negative dB scale,
indicating that the proposed scheme always outperforms the standard
one. This could be intuitively expected, as the optimal solution of
the standard scheme also belongs to the search space of the proposed
scheme (ζm = 1, m = 1, . . . , MD), but was not to be taken for granted,
since the convergence to the global minimum was not guaranteed
for the proposed iterative optimization scheme in (16). In this
connection, we also verified on a representative set of examples, that
the use of a global optimizer (the ga routine in the MATLAB Genetic
Algorithms Toolbox [22]) produced only slight (∼ 0.1 dB, on average)
improvements in the MSE reduction, at the expense of significant
increases (nearly three orders of magnitude) in the computing times.

For more quantitative assessments, the interquartile and median
parameters provide an immediate reading and interpretation of the
statistical features. For instance, looking at Fig. 2(h), one readily
observes that for the case of MD = 14 desired signals the MSE
improvement is � 10 dB in 50% of the cases, and � 20 dB in 25% of
the cases.

The main general trends emerged from the parametric analysis
can be summarized as follows:

• The proposed scheme becomes more effective with decreasing the
difference N − MD between the number of elements and desired
signals. This could be intuitively understood, recalling that for a
small number of desired signals the degrees of freedom available
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in the standard scheme could already suffice to achieve good MSE
reduction.

• Increased effectiveness is also observed with increasing the SNR,
and with decreasing the SIR.

• On the other hand, decreased effectiveness is observed for
increasing number of interfering signals. This could be
attributable to a correspondingly increased nonlinearity (i.e.,
number of local minima) of the arising optimization problem.
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Figure 3. Normalized optimal weight coefficient w
(opt)
1 obtained

via the proposed (continuous curve) and standard (dashed curve)
schemes, for a configuration featuring N = 8, MD = 2, MI = 1,
SNR = 10 dB, and SIR =−10 dB, as a function of the interfering-signal
angular direction θ3.

As a second step, we looked at the ANN implementation. In
this connection, we carried out a preliminary study of the input-
output mapping, in order to get insightful guidelines for the parameter
choice. With reference to a simple configuration involving N = 8
array elements, MD = 2 desired signals, and MI = 1 interfering signal,
Fig. 3 shows the behavior of the (real, positive) w

(opt)
1 optimal weight

coefficient, as a function of the interfering-signal angular direction
θ3, obtained with the proposed and standard schemes. The behavior
observed in the proposed scheme is considerably more irregular than
the standard one, with the presence of several sharp jumps (see, e.g.,
around θ3 = 60◦). Such markedly different behaviors, consistently
observed in our preliminary study, imply that the proposed scheme
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Figure 4. Input-output MSE ratio statistics pertaining to a RBF-
ANN architecture (with 200 RBFs, and a training data set of
3000 examples) as a function of the number of desired signals,
for a configuration featuring N = 8, MI = 2, SNR = 10 dB,
SIR =−10 dB. The statistics are obtained considering 30 different ANN
realizations obtained varying (deterministically, via uniform sampling)
the interfering-signal angular directions. (a): Proposed scheme; (b):
Standard scheme.

requires a comparatively more complex ANN implementation in order
to well approximate the input-output mapping. Although there exist
alternative ANN architectures particularly suited for approximating
discontinuous functions (see, e.g., [23, 24]), we found that standard
RBF-ANNs can still yield acceptable results with a suitable increase
in the number of RBFs. For a representative example involving N = 8
array elements and MI = 2 interfering signals, Fig. 4 illustrates, for
both the proposed and standard schemes, the input-output MSE ratio
statistics pertaining to a RBF-ANN architecture (with 200 RBFs,
and a training data set of 3000 examples) as a function of the
number of desired signals. The statistics are obtained considering
30 different ANN realizations obtained varying (deterministically, via
uniform sampling) the interfering-signal angular directions. One
observes comparable levels of ANN-induced MSE deterioration for
both cases, thereby concluding that the performance improvement
attainable via the proposed scheme is generally preserved by the ANN
implementation.
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4. CONCLUSIONS

In this paper, we have presented and evaluated an adaptive
beamforming scheme based on magnitude-only constraints and
implementable via RBF-ANNs. Specifically, we have assessed, via an
extensive parametric study, the potential improvements (in terms of
MSE reduction) by comparison with a standard MSE-based approach,
and addressed the underlying computational implications. Overall,
the proposed scheme appears as an attractive alternative to the
standard one, especially in the presence of a number of desired
signals comparable with the number of array elements, with median
improvements as large as ∼ 10 dB in the MSE reduction, at the
expense of a moderate increase in the computational burden. Current
and future investigations are aimed at the exploration of alternative
ANN architectures particularly suited for approximating discontinuous
mappings [23, 24].

APPENDIX A. ITERATIVE MINIMIZATION
ALGORITHM

We can show that updating ζ according to the iterative rule in (16)
yields a non-increasing sequence of values of the reduced Lagrangian
in (15). By using the equality |ζm| = 1, m = 1, . . . , MD, the variation
of L in (15), after updating the m-th state only, is given by

∆L(i+1)
m = 2Re




[
ζ(i+1)
m − ζ(i)

m

]∗ MD∑
n=1,n�=m

[
B−1

]
mn

ζ(i)
n


 , (A1)

with ∗ denoting complex conjugation. By using (16), we obtain

∆L(i+1)
m = −2

∣∣∣∣∣∣
MD∑

n=1,n�=m

[
B−1

]
mn

ζ(i)
n

∣∣∣∣∣∣
(
1 + cos γ(i)

m

)
, (A2)

where γ
(i)
m = arg

[
ζ
(i)
m /

(∑MD
n=1,n�=m[B−1]mnζ

(i)
n

)]
. Note that the right

hand side of (A2) is non-positive and, as a result, the sequence L is
non-increasing.
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