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Abstract—This paper presents an efficient meshless approach for
solving electrostatic problems. This novel approach is based on
combination of radial basis functions-based meshless unsymmetric
collocation method with projection domain decomposition method.
Under this new method, we just need to solve a Steklov-Poincaré
interface equation and the original problem is solved by computing
a series of independent sub-problems. An electrostatic problem is used
as an example to illustrate the application of the proposed approach.
Numerical results that demonstrate the accuracy and efficiency of the
method are stated.
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1. INTRODUCTION

The use of a mesh is a basic characteristic of traditional numerical
approaches for the solution of partial differential equations (PDEs),
such as finite element method(FEM), finite difference method(FDM)
and so on. In those approaches, assumptions are made for the
local approximation of the primitive variables, which require mesh
to support them. The generation of mesh is a complicated work.
During the last decade, considerable effort has been given to the
development of so-called meshless or meshfree methods. This kind
of algorithm is quite different from the traditional ones applied
in electromagnetism,such as finite element method(FEM) and finite
difference method(FDM) stated in [11–24]. The aim of this type
of approach is to eliminate at least the structure of the mesh and
approximate the solution entirely using nodal values inside and in the
boundary quasi-random distributed in the domain. For instance, the
element free Galerkin(EFG) method was given by Belytschko [25]. The
meshless local Petrov-Galerkin and generalized finite element methods
were given by Atluri et al. [2] and Babuška [7] respectively. The
meshless method also consists of the method of foundational solution
and meshless method using radial basis functions.

In recent years, the theory of radial basis functions (RBFs)
has undergone intensive research and enjoyed considerable success as
a technique for interpolating multivariable data and functions [1].
Although most work to date on RBFs relates to scattered data
approximation and in general to interpolation theory, there has
recently been an increased interest in their use for solving PDEs. This
approach, which approximates the whole solution of the PDE by a
translates of RBFs, is very attractive due to the fact that it is a truly
meshless method and spatial dimension independent, which can easily
be extended to solve high dimensional problems. Furthermore, since
the RBFs are smooth, it can easily be applied to solve high order
differential equations. Collocation method to solve PDEs using radial
basis functions was first proposed by Kansa [3] and is extensively
studied by Schaback [5]. It has been applied to solve some typical
electromagnetic problems [8–10].

In the view of parallelism, The major applied technique is the
domain decomposition method. It is nowadays considered as one
of the most popular technique that can be applied for numerical
solution of partial differential equations. The idea behind the domain
decomposition is to divide the considered domain into a number of
sub-domains and then try to solve the original problem as a series
of sub-problems that interact through an internal interfaces. The
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numerical solution can be computed either iteratively, using Schwartz
method [4], by changing data interfaces between sub-problems or by
computing the interfaces data directly using Steklov technique and
then use interface solution to solve each sub-problem separately. There
exist two different approaches for domain decomposition: overlapping
and non overlapping domains. After it has been seen more development
with finite element method, it was applied with meshless method
in many work. We can cite the work published by Hon et al. [6].
Compared with another domain decomposition method (DDM), the
PDM need neither the suitable choice of the acceleration parameters
to ensure the convergent rate of the iteration arising in DDM nor the
iteration at each subdomains. This property is meaningful for meshless
method (using radial basis function (RBF)) coupled with DDM.

The main objective of this paper is to couple the project domain
decomposition method with asymmetric collocation method based on
radial basis functions to solve Poisson problem. The paper is organized
as follows. In Section 2, we use a general elliptic problem to analyze
the coupling method of PDM and RBF-based meshless collocation
method. In Section 3, several numerical examples, consisting of pure
mathematical test and computation of the fields of an infinite square
grounding metal slot, are given to validate the proposed method.
Conclusions are drawn in the final section, Section 4.

2. MESHLESS PDM USING RBFS

As we known that the governing equation in magneto/electrostatic
problems is an elliptic equation. Without a loss of generality,we
use a general elliptic boundary value problem (BVP) to illustrate
the meshless unsymmetric collocation method using RBFs, projection
domain decomposition and the coupling algorithm.

2.1. Elliptic Equation and Domain Decomposition

For the general elliptic BVP:{Lu = f in Ω
u = g on ∂Ω.

(1)

where Ω is a d -dimensional domain, with a Lipschitz boundary ∂Ω,
whose outer unit normal direction is denoted by n, f is a given
function of L2(Ω). Assuming that Ω is conformally partitioned into
two non-overlapping convex subdomains Ω1 and Ω2, and denoting by
Γ = Ω1 ∩ Ω2. We denote by ui the restriction to Ωi, i = 1, 2, of the
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solution u of Equation (1), and ni by the normal direction on ∂Ωi ∩Γ,
oriented outward Ω2. Set n = n1.

A standard domain decomposition skill [4] leads to the following
equation 



Lu1 = f in Ω1

u1 = g on ∂Ω1
⋂

∂Ω
u1 = u2 on Γ

∂u2

∂n
=

∂u1

∂n
on Γ

u2 = g on ∂Ω2
⋂

∂Ω
Lu2 = f in Ω2.

(2)

Denoting by λ = u|Γ, the unknown trace of the solution of Equation (1)
on the interface Γ, ui = u∗

i + Hiλ, with

Lu∗

i = f in Ωi

u∗
i = g on ∂Ωi

⋂
∂Ω

u∗
i = 0 on Γ.

(3)

Hiλ is the harmonic extension of the trace λ

LHiλ = 0 in Ωi

Hiλ = 0 on ∂Ωi
⋂

∂Ω
Hiλ = λ on Γ.

(4)

An additional equation, named Steklov-Poincaré equation, should be
satisfied to ensure u∗

i + Hiλ is the solution of Equation (1).

Sλ = χ on Γ (5)

where χ = ∂u∗
2

∂n − ∂u∗
1

∂n . S is the Steklov-Poincaré operator

Sλ =
∂H1λ

∂n
− ∂H2λ

∂n
(6)

2.2. RBF-based Meshless Unsymmetric Collocation Method

For a given set of distinct centers X = {x1, x2, . . . , xN} ⊂ Ω and
some positively definite RBF φ(r), let the approximated solution of
Equation (1) be u =

∑
i

λiφ(‖x−xi‖), where ‖·‖ is the Euclidean norm.

The RBF-based meshless unsymmetric collocation method reads:{Lu(xi) = f(xi) xi ∈ Ω
u(xj) = g(xj) xj ∈ ∂Ω (7)
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Denoted by

A = [Lφ (‖xi − xj‖) ,Bφ (‖xi − xk‖)]T = [A1, A2]T

the linear system induced by collocation method using RBFs is

A�λ =
[
�f,�g

]T

We can obtain the numerical solution of Equation (1) by solving the
linear system above.

2.3. Meshless PDM Using RBFs

For the set of distinct centers X ⊂ Ω and positively definite RBF φ(r),
we can define the finite dimensional space

V i
h = span

{
φ

(∥∥∥x − xi
j

∥∥∥)
χΩi

}
, j = 1, 2, . . . , Ni

Λh = span {φ (‖x − xj‖) , xj ∈ XΓ}

the space spanned by the RBFs with centers in Ωi, Ni is the number of
centers in Ωi, χΩi is the characteristic function of subdomain Ωi, XΓ is
the set of centers on Γ. Assuming that the density in Ωi are equivalent
to hi = sup

x∈Ωi

min
xi∈X

‖x − xi‖, h2 = sup
x∈Γ

min
xi∈XΓ

‖x − xi‖ are the density of

the distinct centers X = {x1, x2, . . . , xN} and XΓ respectively. The
coupling algorithm reads:

STEP 1. Solving Equation (4) by taking λ = φ(x − xk), we can
obtain Hiφ(x − xk), where xk ∈ Γ. i.e., Solve linear system


LHiφ(xj − xk) = 0 xj ∈ Ωi

Hiφ(xj − xk) = 0 xj ∈ ∂Ωi
⋂

∂Ω
Hiφ(xj − xk) = φ(xj − xk) xj ∈ Γ.

(8)

This step is to solve NΓ, the number of centers on interface Γ,
independent problems in each subdomain. It can be easily to compute
in parallel.

STEP 2. Solving Equation (3) to get u∗
i =

∑
k

Ckφ(x − xk), with

xk ∈ Ωi, i.e., 

Lu∗

i (xj) = f(xj) xj ∈ Ωi

u∗
i (xj) = g(xj) xj ∈ ∂Ωi

⋂
∂Ω

u∗
i (xj) = 0 xj ∈ Γ.

(9)
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This step can also be computed in parallel.

STEP 3. Assuming that Hiλ =
∑
j

cjHiφ(x − xj) with xj ∈ Γ,

we can obtain cj by solving the Steklov-Poincaré Equation (5). i.e.,

Sλ(xj) = χ(xj) xj ∈ Γ (10)

STEP 4. The approximated solution is obtained by ui =
u∗

i +
∑
j

cjHiφ(x − xj).

3. NUMERICAL EXAMPLES

3.1. Numerical Validation

In order to validate the proposed method, a model Poisson equation
with analytic solutions is solved by using two kinds of radial basis
functions, namely, TPS (Thin plate spline) φ(r) = r5 and Sobolev
Spline φ(r) = e−r(3 + 3r + 3r2). Of course, others RBFs can also
be selected as basis, Wendland’s functions [1], Gaussian function, for
example. The problem is to find the solution of{

∆u = f in Ω
u = 0 on ∂Ω.

(11)

with Ω = Ω1 ∪ Ω2 = [−1, 1;−1, 0] ∪ [−1, 1; 0, 1], Γ = {(x, y) | x ∈
[−1, 1], y = 0}. The right-hand sides are

f1(x, y) = ex
(
y2 − 1

) (
x2 + 4x + 1

)
+ 2ex

(
x2 − 1

)
f2(x, y) = −4

(
x2 + y2

)
sin

(
x2 − 1

)
sin

(
y2 − 1

)
+2 sin

(
y2 + x2 − 2

)
respectively and the corresponding exact solution are

u1(x, y) =
(
x2 − 1

) (
y2 − 1

)
ex

u2(x, y) = sin
(
x2 − 1

)
sin

(
y2 − 1

)
Let the relative error of L2 − norm in Ωi be

(
L2 (Ωi)error

)2
=

∫
Ωi

(ũi − uexact)
2

∫
Ωi

(uexact)
2
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where ũi is the numerical solution in Ωi, and the maximum pointwise
relative error at centers be

L∞(Ωi)error = sup
Ωi

|ũi − uexact|
|uexact|
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Figure 1. The distribution of
centers and two decomposition
regions in the computation re-
gion.

Figure 2. An infinite square
grounding slot.
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Figure 3. The distribution of
centers and two decomposition
regions in the computation re-
gion.
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Figure 4. The distribution of
field with h = 0.1 using TPS.
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The set of distinct centers is uniformly distributed in Ω with
density h = 0.2 (Fig. 1). This choice is based on two reasons: one
is that it is easy to chose the distinct center for a regular domain;
another is that a better distribution can ensure the convergence of the
proposed method [26–28]. Tables 1–4 are the numerical results.

3.2. Application

The proposed method is used to study 2-D field problem, i.e., to
determine the fields of an infinite square grounding metal slot (Fig. 2).
In the numerical implementation, TPS and Sobolev spline are chosen
as the basis functions, different density of the set of distinct centers are
used Fig. 3, the distribution of fields is shown in Fig. 4. The relative
error between the proposed numerical solution and analytical one and
The equipotential contours obtained by using the proposed method
are shown in Figs. 5 and 6. From these results it can be seen that the
proposed method is efficient.
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Figure 5. The relative error be-
tween numerical solution and analyt-
ical one of the ground metal slot with
h = 0.1 using TPS.
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Figure 6. The computed
equipotential contours of the
ground metal slot with h =
0.05 using sobolev spline.

Table 1. TPS.

f1(x, y)
L2(Ω1)error = 0.0082 L2(Ω2)error = 0.0082
L∞(Ω1)error = 0.0463 L∞(Ω2)error = 0.0466
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Table 2. TPS.

f2(x, y)
L2(Ω1)error = 0.0053 L2(Ω2)error = 0.0053
L∞(Ω1)error = 0.0142 L∞(Ω2)error = 0.0141

Table 3. Sobolev spline.

f1(x, y)
L2(Ω1)error = 0.0071 L2(Ω2)error = 0.0071
L∞(Ω2)error = 0.0332 L∞(Ω1)error = 0.0320

Table 4. Sobolev spline.

f2(x, y)
L2(Ω1)error = 0.0027 L2(Ω2)error = 0.0027
L∞(Ω1)error = 0.0093 L∞(Ω2)error = 0.0088

4. CONCLUSION

In this paper, a coupling algorithm of the RBFs-based unsymmet-
ric method and projection domain decomposition for solving mag-
neto/electrostatic problems is given. Unlike the FEM which interpo-
lates the solution by using low order piecewise continuous polynomials
or the FDM where the derivatives of the solution are approximated
by finite quotients, the RBF-based meshless method provides a global
interpolation formula not only for the solution but also for the deriva-
tives of the solution. The proposed method can easily be computed in
parallel. For the purpose of illustration, an infinite square grounding
metal slot problem is solved. Good results can be seen clearly from
the figure, which verifies the accuracy and efficiency of the method.
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