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Abstract—A geometrical high-frequency approximation method for
solving the propagation of electromagnetic wave through the quartic
Wood lens into an uniaxial crystal is presented in this paper. Caustic
problem of electromagnetic wave is translated into non-caustic problem
by using the hybrid space. The drawback that the solution in the
caustic region cannot be obtained with geometrical optics is overcome
by this method known as Maslov’s method. The high-frequency
approximation solution that is valid around caustic region is obtained
by using this method which combines the simplicity of ray and
generality of the transform method. And the results are compared
with those obtained by Huygens-Kirchhoff’s expression.

1. INTRODUCTION

Geometrical optics (GO) approximations are often the tool of choice
for modelling the propagation of waves through inhomogeneous
media. Their advantages are numerous: They are faster and
physically more intuitive than fully numerical techniques such as
finite difference method. In large three-dimensional inhomogeneous
problems where fully numerical techniques are computationally very
expensive, geometrical optics approximation may be the suitable
technique. Applications of geometrical optics approximation in wave
propagation include in both acoustics [1] and electrodynamics [2, 3].

Unfortunately, geometrical optics encounters the problem of
caustics, means it produces nonphysical wavefield at caustics.
A number of theoretical techniques have been developed to
circumvent this problem, including Maslov’s theory [4], coherent state
approximations [5], direct use of the caustic classification theorem [6],
and Kirchhoff’s approximation [7]. However, each of these methods has
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its own difficulties. According to Maslov’s method, the field expression
near the caustic can be constructed by using the GO information,
though we must perform the integration in the spectrum domain in
order to predict the field in the space domain.

In Maslov’s method, the ray is expressed in terms of the
six coordinates, i.e., components of wave vector (px, py, pz) and
space coordinates (x, y, z). The conventional ray expression may
be considered its projection into space coordinates. The expression
in the hybrid coordinates may be transformed into that of space
coordinates through Fourier transform. For a review and application
of the Maslov’s method on different problems, the reader is referred
to Maslov [8], Kravtsov [9–12], Gorman [13, 14], Ziolkowski and
Dechamps [15]. Hongo and Ji [16–20], Naqvi and co-workers [21–35].

In present work, field refracted by a Wood lens into uniaxial crystal
is determined analytically by using the Maslov’s method. Results
are compared with obtained using Kirchhoff’s integral. Transmission
of electromagnetic waves through a planner interface separating two
media becomes very complicated when one of the medium is uniaxially
anisotropic. The source of the complication can be mentioned as mode
coupling. Mode coupling takes place because incident plane wave
produces both ordinary and extraordinary transmitted waves. Mode
coupling can be avoided only by choosing special orientations of the
optical axis with respect to the interface normal or the direction of
propagation of the incident plane wave. Study of fields in uniaxial,
isotropic, and anisotropic material has been carried out by various
authors [36–39].

2. HAMILTON’S EQUATION AND SOLUTION

Consider the distribution of permittivity given by the following quartic
expression

ε = εc[1 − b2(x2 + y2) + cb4(x2 + y2)2] (1a)
It may be noted that constants b and c are related to focal length and
are discussed later. The Hamilton’s equation for the medium described
by equation (1a) is given by

dx

dt
= px,

dy

dt
= py,

dz

dt
= pz (1b)

dpx

dt
= −1

2
∂ε

∂x
,

dpy

dt
= −1

2
∂ε

∂y
,

dpz

dt
= −1

2
∂ε

∂z
(1c)

It is of interest to determine the solution of Hamilton’s equation in
medium defined by (1a) and value of c is very small in expression for
permittivity.
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Figure 1. Geometry of refraction of field from Wood lens into uniaxial
crystal.

3. DERIVATION OF THE FIELD EXPRESSION FOR
QUARTIC WOOD LENS

Consider the geometry as shown in Figure 1. It contains a quartic
Wood lens placed apart from a uniaxial crystal interface. The crystal
has been assumed to be LiNbO3 with µ = 1, σ = 0, and no = 2.300
and ne = 2.208, and its optical axis has been assumed to be in the
z direction. Front face of Wood lens is placed at z = 0 while rear
face is placed at z = L. The thickness of the lens is L. Uniaxial
crystal occupies half space z ≥ z0. It is assumed that uniaxial crystal
occupying the half space z ≥ z0 has principle permittivities (εo, εe),
permeability µ2. Region L < z < z0 has constitutive parameters
(ε1, µ1).

Electromagnetic plane wave polarized in x-direction and propagat-
ing in z-direction, is incident on a Wood lens. After passing through the
Wood lens, ray is refracted through plane interface of uniaxial crystal.
We may write approximate solution for Hamiltons equations as

x = ξ[(1 + g) cosψ − g cos 3ψ]
y = η[(1 + g) cosψ − g cos 3ψ]
z = pzt (1d)
px = −βξ[(1 + g) sinψ − 3g sin 3ψ]
py = −βη[(1 + g) sinψ − 3g sin 3ψ],

pz =
√
ε− p2

x − p2
y
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=
√
εc

(
1 − b2r20F1 + cb4r40[(1 + g) cosψ − g cos 3ψ]4

)
where

F1 = [(1 + g) cosψ − g cos 3ψ]2 + [(1 + g) sinψ − 3g sin 3ψ]2

In above equation pz has been assumed in the form

pz =
√
εc

(
1 − b′2r20 + c′b′4r40

)
(2a)

where

β =
√
εcb, g =

c′b′2r20
4

, b′ = λb, c′ = κc

and g is perturbation parameter, the parameters λ and κ are
determined so that (1b) and (1c) give better solution. The Cartesian
coordinates of refraction point at the rear face (ξ1, η1, ζ1) and
components of associated wave vector are given by

ξ1 = ξ[(1 + g) cosψ − g cos 3ψ]
η1 = η[(1 + g) cosψ − g cos 3ψ]
ζ1 = L, ψ1 = βt1

t1 is the arc length of the ray for region occupying the Wood lens and
r0 =

√
ξ2 + η2. In equation (1d), (ξ, η, ζ) are the Cartesian coordinates

of refraction point of the front face of the Wood lens. Wave refracted
by the Wood lens hits uniaxial crystal interface. The electromagnetic
field that is incident on the plane interface is TM field. Due to this
incidence, TE as ordinary wave and TM as extraordinary wave are
excited inside uniaxial crystal half space. There is no coupling between
TE and TM waves [36]. Ray vector of the refracted wave into uniaxial
crystal may be obtained as [36–39]

P et = n0px1ix + n0py1iy + pe
ziz (2b)

where n0 is ordinary refractive index of crystal and z component may
be written as

pe
z = A1 +

√
B1

A1 =
−χ sin θ cos θ(cosφn0px1 + sinφn0py1)

1 + χ cos2 θ

B1 =
(p0)2(1 + χ) − (n0)2(p2

x1 + p2
y1)

1 + χ cos2 θ
− A2

1

χ cos2 θ
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where χ is measure of the anisotropy in the uniaxial crystal and is
given by

χ =
(pe)2

(p0)2
− 1

pe =
ω

c
(
√
εeµ2)

p0 =
ω

c
(
√
ε0µ2)

The coordinates of the ray at the front face of the uniaxial crystal are
given by

ξ2 = ξ1 + px1t2, η2 = η1 + py1t2
ζ2 = ζ1 + pz1t2, px1 = px0, (2c)

py1 = py0, pz1 =
√

1 − p2
x1 − p2

y1

where t2 = ζ2−ζ1
pz1

signifies the arc length of the ray after passing through
the uniaxial crystal. The coordinates of the cartesian and Ray vector
may be given as

x = ξ1 + px1t2 + n0px1t

y = η1 + py1t2 + n0py1t

z = ζ1 + pz1t2 + pz
et

where t2 = ζ2−ζ1
pz1

> 0 is the distance between the point P (ξ1, η1, ζ1)
on the rear face of the Wood lens and the point Q(ξ2, η2, ζ2) on the
front face of the uniaxial crystal and t signifies the arc length of the
ray after refraction into the uniaxial crystal. The GO solution is given
by [9–11]

u(x, y, z) = [J(t)]−
1
2 exp[−jk(ψ′

0 + t)] (3)

In the above equation,ψ′
0 is the phase difference between front and rear

faces of the Wood lens and can be calculated see Appendix A and

J(t) =
U

W
t2 +

V

W
t+ 1

For detailed jacobian calculations see Appendix B. Geometrical optics
field contains singularity at the focal point. Our interest is to find the
uniform field expression valid in focal region using Maslov’s method.
The uniform expression which is valid in the focal region is given by
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[9, 16–18]

u(r) =
k

2π

∫ ∞

−∞

∫ ∞

−∞
T (r0)

[
1

D(0)
∂((px1, py1, z)
∂(ξ, η1, t)

]− 1
2

× exp
[
−jkΨ2(px1, py1, z)

]
dpx1dpy1 (4)

T (r0) is the initial value at the rear face of the Wood lens. Phase
Ψ2(px1, py1, z) has been determined in appendix C and the results are

Ψ2(px1, py1, z) = Ψ′
0 + βr20[(1 + g) cosψ1 − g cos 3ψ1]

×[(1 + g) sinψ1 − 3g sin 3ψ1]

+
√
{1−β2r20[(1+2g) sin2 ψ1−6g sinψ1 sin 3ψ1]}(ζ2−ζ1)

−βrr0[(1+g) sinψ1−3g sin 3ψ1] cos(δ−φ)+(z − ζ2)pe
z

(5)

Quantities in square bracket of equation (4) are

∂(px1, py1, z)
∂(ξ, η, t)

= β2pe
z

{[
(1 + 2g) sin2 ψ1 − 6g sin 3ψ1 sinψ1

]

+ cosψ1 sinψ1
βL

p3
z0

r20

[
b′2εc − 2εcc′b′4r20

]

+g [2 cosψ1 sinψ1 − 3 sin 3ψ1 cosψ1 − 9 cos 3ψ1 sinψ1]
ββ′2L
p3

z0

r20

}

D(0) = pe
z

{
[(1 + 2g) cos2 ψ1 − 2g cosψ cos 3ψ1]

− sinψ1 cosψ1
βL

p3
z0

(εcb′2 − 2εcc′b′4r20)r
2
0

−g[2 sinψ1 cosψ1 − sinψ1 cos 3ψ1 − 3 cosψ1 sin 3ψ1]
ββ′2L
p3

z0

r20

}
(6)

Conversion of(px1, py1) into (r0, δ) yields as

dpx1dpy1 = β2
{[

(1 + 2g) sin2 ψ1 − 6g sin 3ψ1 sinψ1

]

+ cosψ1 sinψ1
βL

p3
z0

r20

[
b′2εc − 2εcc′b′4r20

]
+g [2 cosψ1 sinψ1 − 3 sin 3ψ1 cosψ1 − 9 cos 3ψ1 sinψ1]

×ββ
′2L
p3

z0

r20

}
r0dr0dδ (7)
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T (r0) and other related parameters are given by

T (r0) = T1T2T
ee
α , T1 =

2

1 +
√
εc − β2r20 + cβ2b2r40

T2 =
2
√
εc − β2r20 cos2 ψ1 + cβ2b2r40 cos2 ψ1 cos θi2

cos θi2 +
√
εc − β2r20 cos2 ψ1 + cβ2b2r40 cos2 ψ1 cos θt2

θi2 = tan−1

√
p2

x0 + p2
y0

pz0
= tan−1 βr0[(1 + g) sinψ1 − 3g sin 3ψ1]√

εc(1 − b′2r20 + c′b′4r40)
,

θt2 = tan−1 βr0[(1 + g) sinψ1 − 3g sin 3ψ1]√
1 − β2r20[(1 + g) sinψ1 − 3g sin 3ψ1]2

t1 =
L√

εc(1 − b′2r20 + c′b′4r40)

and θi2 and θt2 are angles of the incidence and the refraction of the ray
at the rear face of the Wood lens. The direction of the optical axis in
the uniaxial crystal along the unit vector ŝ is given by

ŝ = sin θ cosφix + sin θ sinφiy + cos θiz

The transmission coefficients may be obtained [36, 37] by

T ee
α =

2µp2px1pz1

µ1(p0)2pz1Aet − µp2Bet

where

Aet = cos θpx1 − sin(θ + φ)pe
z

And

Bet = sin(θ + φ)(p0)2 − sin(θ + φ)px1 − pe
zp

2
x1 cos θ

Substituting equations (5)–(8) into equation (4) we get

u(r) =
k

2π

∫ a

0
T (r0) [ΓΞ]

1
2 exp

[
−jkΨ2(px1, py1, z)

]
r0dr0 (8)

where a is radius of lens and
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Γ =
[
(1 + 2g) sin2 ψ1 − 6g sin 3ψ1 sinψ1

]
+ cosψ1 sinψ1

βL

p3
z0

r20

[
b′2εc − 2εcc′b′4r20

]

+g [2 cosψ1 sinψ1 − 3 sin 3ψ1 cosψ1 − 9 cos 3ψ1 sinψ1]
ββ′2L
p3

z0

r20

Ξ = β2
{[

(1 + 2g) sin2 ψ1 − 6g sin 3ψ1 sinψ1

]

+ cosψ1 sinψ1
βL

p3
z0

r20

[
b′2εc − 2εcc′b′4r20

]

+g [2 cosψ1 sinψ1 − 3 sin 3ψ1 cosψ1 − 9 cos 3ψ1 sinψ1]
ββ′2L
p3

z0

r20

}

4. COMPARISON TO THE HUYGENS-KIRCHHOFF’S
EXPRESSION

To verify the validity of the uniform expression which is valid near the
caustic, we compare the numerical results with those computed from
the Huygens-Kirchhoff’s radiation integral given by

u(r) =
−kβ
2π

∫ ∫
T1T2T

ee
α φ(ξ2, η2, ζ2)

exp[−jkR]
R

cos γdS (9)

where φ is the field distribution at the front face of the uniaxial crystal
and cos γ is the angle behind the lens.

R =
√

(x− ξ2)2 + (y − η2)2 + (z − ζ2)

= px1(x− ξ2) + py1(y − η2) + pe
z(z − ζ2)

= −px1ξ2 − py1η2 + βrr0[(1 + g) sinψ1 − 3g sin 3ψ1]
× cos(δ − φ) + pe

z(z − ζ2)

Φ =
1√
Ξ

exp[−jk(ψ′
0 + t2)]

Substituting these values into equation (9) integrating with respect to
angular coordinates we get result

u(r) =
−k
2π

∫ a

0

T1T2T
ee
α

R
√

Ξ
J0(kβrr0[(1 + g) sinψ1 − 3g sin 3ψ1])

exp[−jk(Ψ′′
0+(ζ2−ζ1)pz1+(z − ζ2)pe

z − px1ξ2 − py1η2]r0dr0
(10)



Progress In Electromagnetics Research, PIER 86, 2008 329

12 14 16 18
0.0

0.2

0.4

0.6

0.8

1.0

F
ie

ld
 In

te
ns

ity

kz

 Maslov'method
 Kirchhoff's approximation

Figure 2. Comparison field Intensity at focal point of Wood lens Into
uniaxial crystal by Maslov’s method and Kirchhof’s approximation.

5. RESULTS AND DISCUSSION

Field patterns around the caustic of an Wood lens are determined using
equation (8) and (10). These integrals have been solved using Gauss
Quadrature method numerically. Present discussion is extension of our
previous work accepted for publication in Central European Journal
of Physics [27]. Figure 2 deals with the field patterns, computed
by Maslov’s method and Huygens-Kirchhoff’s integral along z-axis,
around the caustic region. It is assumed that kL = 1.8, εc = 2.25,
β = 0.2, c = 0.1 and θ = 00. The diameter of wood lens is kD = 3.6.
The results are in good agreement. It is difficult to determine which
method provides more precise solution, but each method give a similar
order of accuracy. Figure 3 shows comparison of two situations, one
deals with isotropic medium and other deals with uniaxial crystal with
optical axis making angles at θ = 0◦. The results in this Figure 3 show
that the maximum intensities are indeed the same, as expected, but
the focus in the crystal is shifted towards the interface compared to
the focus in the isotropic medium. The crystal can be replaced by an
isotropic medium by putting ne = no = 1. Figure 4 show comparison
of field distribution by optical axis along x-axis and z-axis

Figure 5 and Figure 6 show comparison of field distribution at
different orientation of optical axis, that is, at θ = 0◦, θ = 15◦, θ = 30◦,
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Figure 3. Comparison of Field distribution at focal point of Wood
lens with isotropic medium and into uniaxial crystal.
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Figure 4. Comparison of field distribution at focal point with optical
axis along z-axis and x-axis.
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Figure 5. Comparison of field distribution of wood lens into uniaxial
crystal at different orientations of optical axis.

10 12 14 16 18
0.0

0.2

0.4

0.6

0.8

1.0
 at theta(deg)=45
 at theta(deg)=60
 at theta(deg)=75
 at theta(deg)=90

F
ie

ld
 in

te
si

ty

Figure 6. Comparison of field distribution of wood lens into uniaxial
crystal at different orientations of optical axis.
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Figure 7. Variation of field intensity of Wood lens into uniaxial crystal
with orientation of different angle.

θ = 45◦ and θ = 45◦, θ = 60◦, θ = 75◦, θ = 90◦. Figure 7 shows
variation of field intensity at different orientation of optical axis that
is at θ = 0◦, θ = 15◦, θ = 45◦, θ = 60◦, and θ = 90◦. It is shown that
the focal area for a negative uniaxial crystal is displaced in the x and
z directions as the angle θ is increased from θ = 0◦. If we continue to
increase the angle θ, we will obtain a maximum displacement of the
focal area when θ = 45◦ If the angle θis monotonically increased above
θ = 45◦, then the displacement of the focal area will be monotonically
reduced until the displacement in the x direction vanishes when θ
approaches θ = 90◦.

Throughout the discussion, for uniaxial crystal case, we have
used LiNbO3, which has ordinary refractive index of no = 2.208 and
extraordinary refractive index of ne = 2.300. The distance between the
rear face of the Wood lens and front face of uniaxial crystal kd1 = 7
from the plane uniaxial interface.

APPENDIX A.

Ψ′′
0 =

∫ t1

0
εc

[
1 − b2(x2 + y2) + cb4(x2 + y2)2

]
dt

=
∫ t1

0
εc

[
1 − b2r20[(1 + g) cosψ − g cos 3ψ]2
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+ cb4r20[(1 + g) cosψ − g cos 3ψ]4
]
dt

=
∫ t1

0
εc

[
1 − b2r20[(1 + 2g) cos2 ψ − 2g cos 3ψ cosψ]

+ cb4r20[(1 + 2g) cos2 ψ − 2g cos 3ψ cosψ]2
]
dt

=
∫ t1

0
εc

[
1 − b2r20 cos2 ψ

]
dt− 2εcgb2r20

∫ t1

0
[cos2 ψ − cos 3ψ cosψ]dt

+εccb4r20
∫ t1

0
[(1 + 2g) cos2 ψ − 2g cos 3ψ cosψ]2dt

=
∫ t1

0
εc

[
1 − b2r20 cos2 ψ

]
dt− εcgb

2r20

∫ t1

0
[1 − cos 4ψ] dt

+εccb4r20
∫ t1

0
[(1 + 2g) cos2 ψ − 2g cos 3ψ cosψ]2dt

= Ψ0 + εcgb
2r20t1

(
1 − sin 4ψ1

4β

)

+εccb4r40t1
(

3
8

+
2

16β
sin 2ψ1 +

1
32β

sin 4ψ1

)

where Ψ0 is the phase difference between front and rear faces of the
Wood lens.

Ψ0 =
∫ t1

0
ε(t)dt =

∫ t1

0
εc

[
1 − b2r20 cos2 βt

]
dt

= εc

(
1 − b2r20

2

)
t1 −

βr20
4

sin 2ψ1

APPENDIX B. EXPRESSION FOR JACOBIAN

x = ξ1 + px1t2 + n0px1t, y = η1 + py1t2 + n0py1t

z = ζ1 + pz1t2 + pe
zt

D(t) =
∂(x, y, z)
∂(ξ, η, t)

=

∣∣∣∣∣∣∣∣∣∣∣∣∣

∂x

∂ξ

∂y

∂ξ

∂z

∂ξ
∂x

∂η

∂y

∂η

∂z

∂η
∂x

∂t

∂y

∂t

∂z

∂t

∣∣∣∣∣∣∣∣∣∣∣∣∣
= Ut2 + V t+W
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where

U =
(
∂(nopx1)

∂ξ

∂(nopy1)
∂η

− ∂(nopy1)
∂ξ

∂(nopx1)
∂η

)
pe

z

+
(
∂(nopy1)

∂ξ

∂pe
z

∂η
− ∂(nopy1)

∂η

∂pe
z

∂ξ

)
px1

+
(
∂(nopx1)

∂η

∂pe
z

∂ξ
− ∂(nopx1)

∂ξ

∂pe
z

∂η

)
py1

V = px1

(
−Bη

∂ψ1

∂ξ

∂pe
z

∂η
+
∂py1

∂ξ

∂pe
z

∂η
t2 +

∂pz1

∂η

∂(n0py1)
∂ξ

t2

−∂pz1

∂ξ

∂(n0py1)
∂η

t2 −
∂py1

∂η

∂pe
z

∂ξ
t2 +Bη

∂ψ

delη

∂pe
z

∂ξ
−A

∂pe
z

∂ξ

)

+py1

(−A∂pe
z

∂η
+
Bξ∂ψ

∂ξ

∂pe
z

∂η
− ∂px1

∂ξ

∂pe
z

∂η
t2 −

∂pz1

∂η

∂(n0px1

∂ξ)
t2

+
∂pz1

∂ξ

∂(n0px1)
∂η

t2 −Bξ
∂ψ

∂η

∂pe
z

∂ξ
+
∂px1

∂η

∂pe
z

∂ξ

)

+pe
z

(∂(n0py1)t2
∂η

∂py1

∂ξ
+
∂(n0px1)t2

∂ξ

∂py1

∂η
+A

∂(n0py1)
∂η

−Bξ∂ψ
∂ξ

∂(n0py1)
∂η

+A
∂(n0px1)

∂ξ
−Bη

∂ψ

∂η

∂(n0px1)
∂ξ

)

+pe
z

(∂(n0py1)t2
∂η

∂py1

∂ξ
+
∂(n0px1)t2

∂ξ

∂py1

∂η
+A

∂(n0py1)
∂η

−Bξ∂ψ
∂ξ

∂(n0py1)
∂η

+A
∂(n0px1)

∂ξ
−Bη

∂ψ

∂η

∂(n0px1)
∂ξ

+
(
Bη

∂ψ

∂ξ

∂(n0px1)
∂η

− ∂py1

∂ξ

∂(n0px1)
∂η

t2 −
∂px1

∂η

∂(n0py1)
∂ξ

t2

+Bξ
∂ψ

∂η

∂(n0py1)
∂ξ

)

W = pe
z

(
A2 −ABη

∂ψ

∂η
+A

∂py1

∂η
t2 −ABξ

∂ψ

∂ξ
−Bξ

∂ψ

∂ξ

∂py1

∂η
t2

+A
∂px1

∂ξ
t2 −Bη

∂px1

∂ξ

∂ψ

∂η
t2 +

∂px1

∂ξ

∂py1

∂η
t22

)

+pe
z

(
Bη∂ψ

∂ξ

∂px1

∂η
t2 −

∂px1

∂η

∂py1

∂ξ
t22 +Bξ

∂ψ

∂η

∂py1

∂ξ
t2

)

−Apy1
∂pz1

∂η
t2 +Bξpy1

∂ψ

∂ξ

∂pz1

∂η
t2 − py1

∂px1

∂ξ

∂pz1

∂η
t22
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+pe
z

(
Bη∂ψ

∂ξ

∂px1

∂η
t2 −

∂px1

∂η

∂py1

∂ξ
t22 +Bξ

∂ψ

∂η

∂py1

∂ξ
t2

)

−Apy1
∂pz1

∂η
t2 +Bξpy1

∂ψ

∂ξ

∂pz1

∂η
t2 − py1

∂px1

∂ξ

∂pz1

∂η
t22

−Bηpx1
∂ψ

∂ξ

∂pz1

∂η
t2 + px1

∂pz1

∂η

∂py1

∂ξ
t22 −Bηpy1

∂ψ

∂η

∂pz1

∂ξ

+py1
∂px1

∂η

∂pz1

∂ξ
t22−Apx1

∂pz1

∂ξ
t2+Bηpx1

∂ψ

∂η

∂pz1

∂ξ
t2

−px1
∂py1

∂η

∂pz1

∂ξ
t22

By using the relations

∂px1

∂ξ
= −β

(
B + ξA2

∂ψ

dξ

)
,
∂px1

∂η
= −βξA2

∂ψ1

dη
, px1 = −βξB

∂py1

∂ξ
= −βηA2

∂ψ1

dξ
,

∂py1

∂η
= −β

(
B +A2η

∂ψ

dη

)
, py1 = −βηB

∂ψ1

∂ξ
=

βεcL

p3
z0

(
b′2 − 2c′b′4r20

)
ξ

∂ψ1

∂η
=
βεcL

p3
z0

(
b′2 − 2c′b′4r20

)
η

pz0 =
√
ε− p2

x0 − p2
y0 pz1 =

√
1 − p2

x1 − p2
y1

where

A1 =
−χ sin θ cos θ(cosφn0px1 + sinφn0py1)

1 + χ cos2 θ
,

B1 =
(p0)2(1 + χ) − (n0)2(p2

x1 + p2
y1)

1 + χ cos2 θ
− A2

1

χ cos2 θ

and

A = [(1 + g) cosψ1 − g cos 3ψ1], B = [(1 + g) sinψ1 − 3g sin 3ψ1]

A2 = [(1 + g) cosψ1 − 9g cos 3ψ1]

∂pe
z

∂ξ
= −∂A1

∂ξ
+

1
2
√
B1

∂B1

∂ξ

∂pe
z

∂η
=

∂A1

∂η
+

1
2
√
B1

∂B1

∂η

Jacobian of coordinates transformation may be derived as

J(t) =
D(t)
D(0)

=
U

W
t2 +

V

W
t+ 1
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APPENDIX C. DERIVATION OF THE PHASE

Ψ2(px1, py1, z)
= Ψ′

0+t2+t−px1x(px1, py1, t)−py1y(px1, py1, t)+px1x+py1y

= Ψ′′
0+t2+t−px1(ξ2+nopx1t)−py1(η2+nopy1t)+px1x+py1y

= Ψ′
0 + t2 + t− px1(ξ1 + px1t2 + nopx1t)

−py1(η1 + py1t2 + nopy1t) + px1x+ py1y

= Ψ′
0 + (ζ2 − ζ1)pz1 + px1(x− ξ1) + py1(y + η1) + (z − ζ2)pe

z

= Ψ′
0+βr20[(1+g) cosψ1−g cos 3ψ1][(1+g) sinψ1−3g sin 3ψ1]

+
√
{1−β2r20[(1 + 2g) sin2 ψ1 − 6g sinψ1 sin 3ψ1]}(ζ2 − ζ1)

−βrr0[(1 + g) sinψ1 − 3g sin 3ψ1] cos(δ − φ) + (z − ζ2)pe
z

where

ξ = r0[(1 + g) cosψ1 − g cos 3ψ1] cos δ
η = r0[(1 + g) cosψ1 − g cos 3ψ1] sin δ

px1 = −βr0[(1 + g) sinψ1 − 3g sin 3ψ1] cos δ
py1 = −βr0[(1 + g) sinψ1 − 3g sin 3ψ1] sin δ
x = r cosφ
y = r sinφ

have been used.

REFERENCES

1. Keller, J. B. and J. S. Papadakis, Wave Propagation and
Underwater Acoustics, Springer-Verlag, Berlin, 1977.

2. Kline, M. and I. Kay, Electromagnetic Theory and Geometrical
Optics, Interscience, New York, NY, 1965.

3. Budden, K., The Propagation of Radio Waves, Cambridge
University Press, Cambridge, U.K., 1985.

4. Maslov, V. and M. Fedoriuk, Semiclassical Approximation
in Quantum Mechanics, Reidel Publications Co., Dordrecht,
Holland, 1981.

5. Klauder, J., Ann. Phys., 180–108, N.Y., 1987.
6. Kravtsov, Y. A. and Y. I. Orlov, Caustics, Catastrophes, and

Wave Fields, 2nd edition, Springer-Verlag, Berlin, 1998.



Progress In Electromagnetics Research, PIER 86, 2008 337

7. Zhu, T., “A ray-Kirchhoff method for body-wave calculations in
inhomogeneous media: Theory,” Geophys. J., Vol. 92, 181–193,
1988.

8. Maslov, V. P., Perturbation Theory and Asymptotic Method,
Moskov., Gos. Univ., Moscow, 1965 (in Russian). (Translated into
Japanese by Ouchi et al., Iwanami, Tokyo, 1976.)

9. Kravtsov, Y. A., “Two new methods in the theory of wave
propagation in inhomogeneous media (review),” Sov. Phys.
Acoust., Vol. 14, No. 1, 1–17, 1968.

10. Kravtsov, Y. A. and Y. I. Orlov, Caustics, Catastrophes, and
Wave Fields, 306, Springer-Verlag, Berlin, 1993, 2nd edition, 1997.

11. Kravtsov, Y. A. and Y. I. Orlov, Geometrical Optics in
Inhomogeneous Media, 312, Springer-Verlag, Berlin, 1990.

12. Kravtsov, Y. A. and Y. I. Orlov, “Geometrical optics in
engineering physics,” Alpha Science, International Ltd., UK, 2005.
1990.

13. Gorman, A. D., S. P. Anderson, and R. B. Mohindra, “On
caustic related to several common indices of refraction,” Radio
Sci., Vol. 21, 434–436, 1986.

14. Gorman, A. D., “Vector field near caustics,” J. Math. Phys.,
Vol. 26, 1404–1407, 1985.

15. Ziolkowski, R. W. and G. A. Deschamps, “Asymptotic evaluation
of high frequency field near a caustic: An introduction to Maslov’s
method,” Radio Sci., Vol. 19, 1001–1025, 1984.

16. Hongo, K., Y. Ji, and E. Nakajimi, “High-frequency expression
for the field in the caustic region of a reflector using Maslov’s
method,” Radio Sci., Vol. 21, No. 6, 911–919, 1986.

17. Hongo, K. and Y. Ji, “High-frequency expression for the field
in the caustic region of a cylindrical reflector using Maslov’s
method,” Radio Sci., Vol. 22, No. 3, 357–366, 1987.

18. Hongo, K. and Y. Ji, “Study of the field around the focal
region of spherical reflector antenna by Maslov’s method,” IEEE
Trans.Antennas Propagat., Vol. 36, 592–598, May 1988.

19. Ji, Y. and K. Hongo, “Field in the focal region of a dielectric
spherical by Maslov’s method,” J. Opt. Soc. Am. A, Vol. 8, 1721–
1728, 1991.

20. Ji, Y. and K. Hongo, “Analysis of electromagnetic waves refracted
by a spherical dielectric interface by Maslov’s method,” J. Opt.
Soc. Am. A, Vol. 8, 541–548, 1991.

21. Ghaffar, A., Q. A. Naqvi, and K. Hongo, “Analysis of the
fields in three dimensional Cassegrain system,” Progress In



338 Ghaffar, Sajjad, and Naqvi

Electromagnetics Research, PIER 72, 215–240, 2007.
22. Ghaffar, A., A. Hussain, Q. A. Naqvi, and K. Hongo, “Radiation

characteristics of an inhomogeneous slab,” J. of Electromagnetic.
Waves and Appl., Vol. 22, No. 2, 301–312, 2008.

23. Ghaffar, A., Q. A. Naqvi, and K. Hongo, “Study of focusing of
field refracted by a cylindrical plano-convex lens into a uniaxial
crystal by using Maslov’s method,” J. of Electromagnetic. Waves
and Appl., Vol. 22, 665–679, 2008.

24. Ghaffar, A., Q. A. Naqvi, and K. Hongo, “Focal region fields
of three dimensional Gregorian system,” Optics Communications,
Vol. 281, 1343–1353, 2008.

25. Ghaffar, A. and Q. A. Naqvi, “Focusing of electromagnetic plane
wave into uniaxial crystal by a three dimensional plano convex
lens,” Progress In Electromagnetics Research, PIER 83, 25–42,
2008.

26. Ghaffar, A. and Q. A. Naqvi, “Study of focusing of field refracted
by an inhomogeneous slab into uniaxial crystal by using Maslov’s
method,” Accepted for publication in Journal of Modern Optics.

27. Ghaffar, A. and Q. A. Naqvi, “Focusing of electromagnetic
plane wave into uniaxial crystal by a Wood lens,” Accepted for
publication in Central European Journal of Physics.

28. Ashraf, M. R., A. Ghaffar, and Q. A. Naqvi, “Fields in the focal
space of symmetrical hyperbolic focusing lens,” J. of Electromagn.
Waves and Appl., Vol. 22, 815–828, 2008.

29. Fiaz, M. A., A. Ghaffar, and Q. A. Naqvi, “High-frequency
expressions for the field in the caustic region of a PEMC
cylinderical reflector using Maslov’s method,” J. of Electromagn.
Waves and Appl., Vol. 22, 385–397, 2008.

30. Fiaz, M. A., A. Ghaffar, and Q. A. Naqvi, “High-frequency
expressions for the field in the caustic region of a PEMC Gregorian
system using Maslov’s method,” Progress In Electromagnetics
Research, PIER 81, 135–148, 2008.

31. Aziz, A., Q. A. Naqvi, and K. Hongo, “Analysis of the fields in
two dimensional Cassegrain system,” Progress In Electromagnetics
Research, PIER 71, 227–241, 2007.

32. Aziz, A., A. Ghaffar, Q. A. Naqvi, and K. Hongo, “Analysis of the
fields in two dimensional Gregorian system,” J. of Electromagn.
Waves and Appl., Vol. 22, No. 1, 85–97, 2008.

33. Faryad, M. and Q. A. Naqvi, “Highfrequency expressions for the
field in the caustic region of a cylindrical reflector placed in chiral
medium,” Progress In Electromagnetics Research, PIER 76, 153–



Progress In Electromagnetics Research, PIER 86, 2008 339

182, 2007.
34. Faryad, M. and Q. A. Naqvi, “Cylindrical reflector in chiral

medium supporting simultaneously positive phase velocity and
negative phase velocity,” J. of Electromagn. Waves and Appl.,
Vol. 22, 563–572, 2008.

35. Hussain, A., Q. A. Naqvi, and K. Hongo, “Radiation
characteristics of the Wood lens using Maslov’s method,” Progress
In Electromagnetics Research, PIER 73, 107–129, 2007.

36. Stamnes, J. J., Waves in Focal Regions, Adam Hilger, Bristolr
Boston, 1986.

37. Stamnes, J. J. and G. C. Sherman, “Radiation of electromagnetic
fields in uniaxially anisotropic media,” J. Opt. Soc. Am., Vol. 66,
No. 8, 780–788, 1976.

38. Stamnes, J. J. and D. Jiang, “Focusing of electromagne waves into
a uniaxial crystal,” Opt. Comm., Vol. 150, 251–262, 1998.

39. Jiang, D. and J. J. Stamnes, “Numerical and asymptotic results
for focusing of two-dimensional electromagnetic waves in uniaxial
crystals,” Opt. Comm., Vol. 163, 55–71, 1999.


