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Abstract—The efficient algorithm is presented for the analysis of
electromagnetic scattering from composite structures with coexisting
open and closed conductors. A hybrid combined-field integral
equation-the improved electric-field integral equation (CFIE-IEFIE)
formulation with the incomplete LU factorization (ILU) preconditioner
is proposed. Numerical results are given to demonstrate that
the efficiency of our algorithm can be significantly improved when
compared with the conventional EFIE formulation and the hybrid
CFIE-EFIE formulation.

1. INTRODUCTION

The radar cross section (RCS) for a target is of great importance in
the area of electromagnetic scattering [1–10]. The present study aims
to develop an efficient algorithm to analyze the composite-geometry
problems involving both open and closed conducting surfaces. For the
electromagnetic modeling of problems involving only closed conducting
surfaces, the combined-field integral equation (CFIE) [11] is preferred
mainly because it is free of the internal resonance problems of both
electric-field integral equation (EFIE) and magnetic-field integral
equation (MFIE). In addition, it generates considerably better-
conditioned linear systems compared to the EFIE. However, in the
simulations of practical electromagnetic problems, the thin and thick
conducing parts of the objects are usually modeled with open and
closed surfaces, respectively. These problems are traditionally solved
by the EFIE due to the presence of the open surfaces. However, the
EFIE has internal-resonance problems and also leads to ill-conditioned
matrix equations that deteriorate the performances of the iterative
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solvers, especially when the problem size becomes large. In [12], the
hybrid CFIE-EFIE formulation for composite geometries is presented
to significantly improve the efficiency of the solutions. In this
formulation, the EFIE is adopted for thin conductors that are modeled
with open surfaces and the CFIE is taken with the closed parts in order
to improve the efficiency of the iterative solutions.

To solve discretized surface integral equations, which give rise to
large, dense, complex systems, direct methods based on the Gaussian
elimination are prohibited due to their O(n2) memory and O(n3)
computational complexity for n unknowns. On the other hand, by
making use of the multilevel fast multipole algorithm (MLFMA) [13–
16], the dense matrix-vector products required in each step of the
iterative solvers can be performed in O(n log n) time and O(n log n)
memory, rendering these solvers very attractive for large problems.
However, the iterative solver may not converge, or convergence may
require too many iterations for the hybrid CFIE-EFIE formulation
when the number of unknowns of the EFIE parts becomes large. In
this paper, we propose a novel technique denoted as the hybrid CFIE-
IEFIE to accelerate the convergence rate, which replaces the EFIE
part in the hybrid CFIE-EFIE techniques with the improved electric
field integral equation (IEFIE) [17]. To further accelerate the solution,
the incomplete LU preconditioning technique in [18, 19] is proposed to
solve the hybrid CFIE-IEFIE.

Incomplete LU (ILU) preconditioners are widely used and
available in several solver packages. There are two popular drop
strategies for ILU factorization: the level based drop strategy and the
threshold based drop strategy, the former is denoted ILU(p), where
p ≥ 0 is an integer denoted as the level of fill-in, and the latter is ILUT.
The ILU-class preconditioners have been tested for electromagnetic
problems in [19]. It can be found that ILU(0) preconditioner produces
highly unstable and hence useless factorizations for the EFIE as
the number of unknowns increases. However, the iteration numbers
obtained with ILU(0) for the CFIE are very close to those of the exact
solution of the near-field matrix preconditioned iterative solvers. It is
also observed that the ILU(0) and ILUT preconditioners produce very
similar convergence rate for the CFIE. In this paper, the condition
number of our proposed hybrid CFIE-IEFIE formulation is similar to
that of the CFIE. The ILU(0) preconditioner is chosen to accelerate
the convergence rate of hybrid CFIE-IEFIE equation, since it is of
lower computational complexity and easier to be implemented than
ILUT. The efficiency of the ILU(0) preconditioned hybrid CFIE-IEFIE
formulation is demonstrated by numerical experiments.
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2. THE HYBRID CFIE-IEFIE FORMULATION

For the analysis of electromagnetic scattering from the composite
conductors S involving both closed and open surfaces, the hybrid
CFIE-EFIE shows a higher efficiency than the traditional EFIE [12]. In
the hybrid CFIE-EFIE technique, the linear system with N unknowns
is written as:

N∑
n=1

ZCE
mn In = vCE

m , m = 1, 2, . . . N (1)

The corresponding elements of the hybrid CFIE-EFIE are linearly
combined as

ZCE
mn = αmZ

E
mn + (1 − αm) · η · ZM

mn (2)

vCE
m = αmv

E
m + η (1 − αm) vM

m (3)

where η is the wave impendence and αm a variable combination
parameter with its value between 0 and 1. αm is set to be 1 when Λm

locates on the open surface parts, and 0 < αm < 1 when Λm resides
in the closed surface parts. αm is customarily taken as 0.2–0.3 for
the closed surface to achieve the fast convergence rate and remove the
inner resonance phenomenon. In is the unknown coefficient of the nth
basis function. The EFIE and the MFIE impedance matrix elements
are calculated by:

ZE
mn = jk0η

∫∫
S

Λm ·
∫∫

S
Ḡ0 · ΛndS

′dS (4)

ZM
mn =

1
2

∫∫
S

Λm · ΛndS −
∫∫

S0

Λm · n̂×∇×
∫∫

S
G0ΛndS

′dS(5)

where j is the imaginary unit, Λm, Λn the Rao-Wilton-Glisson (RWG)
test and basis functions [20], Ḡ0 the three dimensional free space dyad
Green’s function, k0 the wavenumber of the incident wave, n̂ the unit
outward normal vector of the closed parts of the surfaces. The right-
hand side vectors of the EFIE and the MFIE are

vE
m =

∫∫
S

Λm · EincdS (6)

vM
m =

∫∫
S

Λm · n̂× HincdS (7)

where Einc, Hinc are the electric field and magnetic field vectors of the
incident plane wave, respectively.
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The EFIE parts are replaced with the IEFIE in [17] to further
speed up the solution. In this case, the hybrid CFIE-IEFIE solution
utilizes an updated process for i = 1, 2, . . . ,Nstep to solve

N∑
n=1

ZCI
mnI

i
n = vCE

m + αmβm

N∑
n=1

Z̃M
mn · Ii−1

n (8)

where βm is the IEFIE combination factor, and it is set to be 0 when
Λm locates on the closed surface parts and 0 < βm < 1 for the open
surface parts. Nstep is the number of iteration steps that has the
neighbor approximations satisfying

‖INstep − INstep−1‖2

‖INstep‖2

≤ ε (9)

where ‖.‖2 denotes the 2-norm of a vector and ε is a given small
positive real number. The matrix elements in the hybrid CFIE-IEFIE
formulation are

ZCI
mn = ZCE

mn + αmβm · Z̃M
mn (10)

where Z̃M is the principle value terms of the MFIE and with the
elements

Z̃M
mn =

1
2

∫∫
S0

Λm · ΛndS (11)

Since Z̃M is a sparse symmetric matrix with a maximum five elements
for each row, the cost for building Z̃M is very little.

3. ILU PRECONDITIONER

Equation (8) can be written in the following form:

ZCIIi = Vi and i = 1, 2, . . . , Nstep (12)

where V i
m = vCE

m +αmβm

N∑
n=1

Z̃M
mn ·Ii−1

n . Instead of solving the original

linear system in (9), one may solve a left preconditioned system

M−1ZCIIi = M−1Vi (13)

via the two steps

b = M−1Vi and M−1ZCIIi = b (14)
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which are equivalent to solving the original system so long as the
preconditioner matrix M is nonsingular. The preconditioner matrix M
often approximates ZCI , thus the product matrix M−1ZCI has a much
better condition number. As a consequence, the number of iterations is
greatly reduced. Since the operator M−1 has to be applied at each step
of the iterative linear solver, its computation should be high efficient
in order to reduce the cost (computing time) of applying the M−1

operation. Incomplete factorization methods start from a factorization
method such as LU or Cholesky decomposition that factorizes a matrix
into a lower triangular matrix L and an upper triangular matrix U.
And LU factorization is modified into its incomplete version to reduce
the construction cost and memory requirement for the sparse matrix.
Usually let L̄Ū ≈ LU = M, where L̄ ≈ L, Ū ≈ U. The basic idea to
construct L̄ and Ū is to keep the factors artificially sparse, for instance
by dropping some elements in the prescribed non-diagonal positions
during the standard Gaussian elimination algorithm. Then the final
preconditioning matrix is M′ = L̄Ū and the preconditioning operation
z = (M′)−1y is computed by solving the linear system L̄Ūz = y,
which can be performed in two distinct steps: solve L̄w = y and
Ūz = w successively and they are much easier to solve than the original
preconditioning operation z = M−1y.

The key step to build an ILU preconditioner is the selection of
the non-zero pattern of triangular factors since the triangular factors
L and U can often be fairly dense, even when the matrix is sparse. A
simple way is to take the non-zero pattern of factors (L̄ and Ū) to be
the same as the sparsified matrix of Z, which is called ILU factorization
with no fill-ins and denoted by ILU(0) [21, 22]. Since ILU(0) prescribes
the non-zero pattern in advance, its constructing cost is quite small.
Therefore, the preconditioning matrix for the IEFIE can be constructed
as

M = αm · Z̃EN + (1 − αm)βm · η · Z̃MN + αmβm · Z̃M (15)

where Z̃EN, Z̃MN are the near-field matrices of EFIE and MFIE in the
context of MLFMA as in [13]. To reduce the both computational cost
and memory requirement, the preconditioner M is further sparsified
by maintaining only the entries with the largest 100 moduli for each
row.

4. NUMERICAL EXPERIMENTS

In this section, several numerical results are provided to illustrate the
efficiency of the proposed ILU(0) preconditioned hybrid CFIE-IEFIE
for the analysis of the electromagnetic scattering of composite objects
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Figure 1. The geometry of examples 1–3: A sphere above a square
patch with an incident plane wave Ei = x̂ exp(jk0z).

containing both close and open surfaces. As shown in Fig. 1, examples
1–3 are involved in a closed geometry of perfectly conducting sphere
and an open geometry of square patch. The geometries are solved at
various dimensions and the different meshes and numbers of unknowns
are required for the closed surfaces and the open surfaces. How the
number of the unknowns in the EFIE parts is demonstrated to have
the influence on the ILU(0) preconditioner for the hybrid CFIE-EFIE
formulation and the CFIE-IEFIE formulation, respectively.

Example 1 involves a sphere of radius r = 5 m and a rectangular
patch of edge length a = 10 m. The patch is located below the center
of the sphere with a distance of h = 7 m.

Example 2 is with the sphere of radius r = 4 m and the rectangular
patch of edge length a = 12 m. The patch is located at a distance of
h = 6 m from the center of the sphere.

Example 3 has the sphere of radius 3 m and the rectangular patch
of edge length a = 14 m. The patch is located at a distance of h = 5 m
below the center of the sphere.

Example 4 is to analyze the scattering from China’s lunar orbiter
Chang’E1. Chang’E1 is simplified to a model consisted of a conducting
cuboid and two symmetric conducting rectangular patches as shown
in Fig. 2. The cuboid is with side lengths a = 1.7 m, b = 2 m,
c = 2.2 m, and the rectangular patch on the XOY plane with edge
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Figure 2. The geometry of example 4: China’s lunar orbiter Chang’E1
with an incident plane wave Ei = x̂ exp(jk0z).

length L = 10 m and H = 2 m, and the distance between the
rectangular patch and the cuboid d = 0.8 m. The cuboid is built as a
cuboid centering at the coordinate origin with edges length 1.7 m, 2 m,
2.2 m along the x-, y-, z-direction respectively, then rotate 45 degrees
around the x axis.

Table 1. The number of unknowns of CFIE parts and EFIE parts in
the hybrid CFIE-EFIE formulation for the examples 1–4.

Example CFIE EFIE
1 70563 34165
2 53532 49308
3 36291 67217
4 21948 76338

In the analysis, the incident electric field is Ei = x̂ exp(jk0z) and
the frequency of the incident plane wave is 300 MHz for examples 1–3
and 550 MHz for example 4. The number of unknowns of CFIE parts
and EFIE parts in the hybrid CFIE-EFIE formulation for the four
examples are listed in Table 1. In our calculation, αm = 0.2, βm = 0 are
set for the closed surfaces, and αm = 1, βm = 0.3 for the open surfaces
if not explicitly given. The size of smallest clusters in MLFMA is set
to be 0.25λ. The iterative solver is the generalized minimal residual
algorithm (GMRES) [6, 18, 23] restarted every 30 steps. The iterative
solver starts with the zero initial guess in the first update step and
adopts the latest approximate solution as initial guess for other update



138 Fan, Ding, and Chen

-10

0

10

20

30

40

50

60

0 20 40 60 80 100 120 140 160 180

θ (degree)

R
C

S
(d

B
)

EFIE

CFIE+EFIE

CFIE+IEFIE

Figure 3. Bistatic RCS in example 1 by EFIE, hybrid CFIE-EFIE,
hybrid CFIE-IEFIE. The incident wave is Ei = x̂ exp(jkz) with
frequency 300 MHz.
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Figure 4. Bistatic RCS in example 2 by EFIE, hybrid CFIE-EFIE,
hybrid CFIE-IEFIE. The incident wave is Ei = x̂ exp(jkz) with
frequency 300 MHz.

steps. The solver terminates if the normalized backward error is less
than 10−3 or the number of iterations reaches 10000. The parameter
ε in eq. (9) is taken to be 10−3. All experiments are performed on a
Core-2 6300 with 1.86 GHz CPU and 2 GB RAM in single precision.
As shown in Figs. 3–6, the curves of bistatic RCS of the four examples
are given for the EFIE, the hybrid CFIE-EFIE and the hybrid CFIE-
IEFIE formulations, respectively. It can be found that there is a good
agreement between them.

To demonstrate the efficiency of our proposed hybrid CFIE-
IEFIE formulation, the total number of iterations of GMRES, the
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Figure 5. Bistatic RCS in example 3 by EFIE, hybrid CFIE-EFIE,
and hybrid CFIE-IEFIE. The incident wave is Ei = x̂ exp(jkz) with
frequency 300 MHz.
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Figure 6. Bistatic RCS in examples 4 by EFIE, hybrid CFIE-EFIE,
and hybrid CFIE-IEFIE. The incident wave is Ei = x̂ exp(−jkz) with
frequency 550 MHz.

solution-time, and the update step Nsteps are listed in Table 2 and
the comparison is made among EFIE, hybrid CFIE-EFIE and hybrid
CFIE-IEFIE without/with ILU(0) for our four examples. The total
iteration number of GMRES denotes the summation of the number of
iterations of every update step. It can be observed for example 1 that
the ILU(0) preconditioned hybrid CFIE-EFIE and hybrid CFIE-IEFIE
reduce the solution time by a factor of about 15.8 and 24.8 respectively
when compared with the traditional EFIE solution.

For example 2, it can be observed from Table 2 that the
ILU(0) preconditioned CFIE-EFIE and hybrid CFIE-IEFIE reduce the
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Table 2. Comparison of the total number of iterations of GMRES
(denoted as N), update steps of the hybrid CFIE-IEFIE formulation
(denoted as n) and the sol-time (denotes as t in seconds) in various
schemes for three examples, * denotes no convergence achieved in 10000
iterations. Superscript ’ stands for the case with ILU(0) preconditioner.

Example 1 Example 2 Example 3  Example 4 
Formulation

N (n) t N (n) t N (n) t N (n) t

EFIE 1931 33831 1334 17544 1371 14699 1042 16015

CFIE-EFIE 239 4197 295 3887 324 3485 150 2318

CFIE-EFIE' 119 2138 125 1700 * * * *

CFIE-IEFIE 153(5) 2822 204 (5) 2836 207(5) 2164 80(2) 1293

CFIE-IEFIE' 65(5) 1365 66 (5) 1018 72 (5) 833 25(2) 381

solution time by a factor of 10.3 and 17.2 respectively when compared
with the EFIE. They reduce the solution time by a factor of 2.3 and
2.8 respectively when compared with the hybrid CFIE-EFIE and the
hybrid CFIE-IEFIE without the preconditioning technique.

For examples 3 and 4, it can be observed that the ILU(0)
preconditioned hybrid CFIE-EFIE does not reach the convergence over
10000 iterations since the number of unknowns of open parts becomes
so large that ILU(0) produces highly unstable and hence useless
factorizations for the EFIE part. However, the ILU(0) preconditioned
hybrid CFIE-IEFIE reaches the convergence with a reduction of the
solution time by a factor of 17.6 for example 3 and 42.0 for example 4
when compared to the traditional EFIE and a factor of 4.2 for example
3 and 6.1 for example 4 when compared to the hybrid CFIE-EFIE.

Table 3 shows the influence of the IEFIE combination factor β on
the convergence of the hybrid CFIE-IEFIE formulation in example 3.
It can be found that the total number of iterations decreases as
βm increases for open surface parts without ILU(0) preconditioner.
However, the total number of iterations is almost constant after the
ILU(0) preconditioner is used.

From our numerical results, it can be observed that the hybrid
CFIE-IEFIE is more efficient than the hybrid CFIE-EFIE. The ILU(0)
preconditioners can accelerate the convergence of both the CFIE-EFIE
and the CFIE-IEFIE for smaller number unknowns of EFIE as in
examples 1 and 2. However, the ILU(0) preconditioning algorithm
becomes unstable for the hybrid CFIE-EFIE when the number of
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Table 3. The influence of the IEFIE combination factor β for the open
surface parts on the total number of iterations and update steps Nstep
in example 3. N1 and N2 stand for the total number of iterations of the
CFIE-IEFIE formulation and the ILU(0) preconditioned CFIE-IEFIE
formulation, respectively.

β
parameter

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.

Nstep 1 4 5 5 6 6 7 7 7 7 8

N1 324 278 233 207 180 175 160 152 142 135 132 

N2 * 77 72 72 76 74 70 77 76 72 80

unknowns for the open surface parts increases as in examples 3 and 4.
But this phenomenon is not true for the ILU(0) preconditioned CFIE-
IEFIE and it is stable and highly efficient.

5. CONCLUSIONS

In this paper, the ILU(0) preconditioned hybrid CFIE-IEFIE is
presented to efficiently solve the electromagnetic scattering from
composite objects involving both open and closed conducting surfaces.
The instability of the incomplete LU factorization is avoided for the
EFIE part of the hybrid CFIE-IEFIE. The significant reductions for
both the number of iterations and solution time are obtained without
compromising the accuracy.

ACKNOWLEDGMENT

The authors would like to thank the assistance and support of Natural
Science Foundation of China under Contract Number 60701003,
60701005, 60431010 and Excellent Youth Natural Science Foundation
of China under Contract Number 60325103.

REFERENCES

1. Xu, L., Y.-C. Guo, and X.-W. Shi, “Dielectric half space model for
the analysis of scattering from objects on ocean surface,” Journal
of Electromagnetic Waves and Applications, Vol. 21, No. 15, 2287–
2296, 2007.



142 Fan, Ding, and Chen

2. Strifors, H. C. and G. C. Gaunaurd, “Bistatic scattering by bare
and coated perfectly conducting targets of simple shape,” Journal
of Electromagnetic Waves and Applications, Vol. 20, No. 8, 037–
1050, 2006.

3. Li, Y. L., J. Y. Huang, and M. J. Wang, “Scattering cross section
for airborne and its application,” Journal of Electromagnetic
Waves and Applications, Vol. 21, No. 15, 2341–2349, 2007.

4. Collard, B., B. Fares, and B. Souny, “A new formulation for
scattering by impedant 3D bodies,” Journal of Electromagnetic
Waves and Applications, Vol. 20, No. 10, 1291–1298, 2006.

5. Illahi, A., M. Afzaal, and Q. A. Naqvi, “Scattering of dipole
field by a perfect electromagnetic conductor cylinder,” Progress
In Electromagnetics Research Letters, Vol. 4, 43–53, 2008.

6. Carpentieri, B., “Fast large RCS calculation using the boundary
element method,” Journal of Electromagnetic Waves and
Applications, Vol. 20, No. 14, 1959–1968, 2007.

7. Huang, E. X. and A. K. Fung, “An application of sampling
theorem to moment method simulation in surface scattering,”
Journal of Electromagnetic Waves and Applications, Vol. 20, No.
4, 531–546, 2006.

8. Varmazyar, S. H. and M. N. Moghadasi, “An integral equation
modeling of electromagnetic scattering from the surfaces of
arbitrary resistance distribution,” Progress In Electromagnetics
Research B, Vol. 3, 157–172, 2008.

9. Mittra, R. and K. Du, “Characteristic basis function method for
iteration-free solution of large method of moments problems,”
Progress In Electromagnetics Research B, Vol. 6, 307–336, 2008.

10. Hatamzadeh-Varmazyar, S., M. Naser-Moghadasi, and Z. Ma-
souri, “A moment method simulation of electromagnetic scatter-
ing from conducting bodies,” Progress In Electromagnetics Re-
search, PIER 81, 99–119, 2008.

11. Mautz, J. R. and R. F. Harrington, “H-field, E-field, and combined
field solutions for conducting bodies of revolution,” AEÜ, Vol. 32,
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