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Abstract—For maneuvering target Doppler-bearing tracking with
signal time delay, a novel approach called ISE-IMM is proposed in
this paper. The iterative state estimation (ISE) method is designed
to eliminate the negative influence of time delay effect and an
interacting multiple model (IMM) filter is embedded to estimate the
state according to the measurements of the delayed signal. The
nonlinear filter preferred in this paper is a particle filter (PF) with an
improved resampling procedure. Performance of our proposed method
is evaluated in Monte Carlo simulations. Results show the effectiveness
and stability of ISE-IMM-PF in combating the negative effect of signal
time delay.

1. INTRODUCTION

Recent studies have applied multifarious new techniques to radar
systems [1–9]. Radar systems detect the position and velocity of a
target based on received measurements. Among various radar systems,
passive radar system has advantages such as lower costs of operation
and maintenance, better resilience to anti-radiation technology, etc. In
passive tracking problems, the target trajectory is estimated based on
the measurements of signals emitted by the target. The most common
target motion analysis (TMA) tracks the kinematics of the target
using noise-corrupted bearing measurements and it is well known as
bearing-only tracking (BOT). When the tonal signal is narrow banded,
frequency measurement is also available [10]. Since the received signal
frequency is Doppler shifted, the TMA problem with both bearing and
frequency measurements is sometimes referred to as Doppler-bearing
tracking (DBT).
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Algorithms to solve BOT problem are well investigated in the
last decade [11–13], nevertheless DBT has its inherent advantages over
BOT [14]: the additional frequency measurements provide extra target
course and speed information, making DBT more observable than BOT
[14]. The conditions are that the emitted frequency must be constant
during observation time and the target is not moving radially. In such
situations, the observer can be stationary [15], which is very useful in
real applications.

In standard BOT or DBT problem, signal propagation interval
is neglected under the assumption that the signal transmitting speed
is much larger than the target speed. In this sense, the target
remains its signal emitting position when the signal is received by
the observer. However, it does not hold true in many practical
applications. For instance, in passive sonar system, the target speed
is sometimes comparable to the signal transmitting speed, thus the
signal propagation interval can not be neglected and the target will
travel to a different position when the signal is eventually received by
the observer. Therefore, notable errors will occur between estimated
target positions and true target positions if not taking signal time delay
into consideration. Meanwhile, the interval between two consecutive
signal emitting time points (so-called signal emitting interval or SEI for
short) becomes unknown and time varying. This makes the traditional
BOT methods inapplicable.

To solve this problem, an online parameter estimation method
(OPE) is proposed in [16] to recursively compute the signal emitting
intervals. It considers the SEI as a parameter and calculates it using
linear search method before filtering stage. Once the SEI is determined,
it becomes a standard BOT or DBT problem and some conventional
algorithms can be applied. The OPE method can be embedded in
nonlinear filters to recursively estimate the target state with delayed
measurements. However, this OPE method can not be directly applied
to a maneuvering target tracking problem since there is not an explicit
system function in such case.

A popular way for describing maneuvering target dynamics is
multiple model (MM) method [11, 22, 23]. The interactive multiple
model (IMM) estimator [17, 18] is one of the most efficient dynamic
MM estimators [16]. Various nonlinear filtering algorithms can run
in the IMM framework. Some IMM filtering approach have been
well developed, such as IMM-EKF, IMM-UKF, etc. [12, 13, 19] Particle
filter (PF) [11, 24–26, 29] handles the problems with nonlinear dynamic
and measurement equations better than (extended) Kalman filters,
besides it can also be applied when the noises are non-Gaussian. A
combination of the conventional IMM algorithm and PF is a novel
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method [20, 30, 31].
Here a combined method named ISE-IMM is proposed to solve

the signal time-delayed maneuvering target tracking problem. The
iterative state estimation (ISE) method forms a general framework
which controls the procedure of IMM filtering by updating the input
value of SEI iteratively until an optimization termination is achieved;
the IMM estimator is used to describe the posterior density of the
maneuvering target state after a merging and filtering process. Since
ISE-IMM method outputs a non-real-time relative state based on
delayed measurements, a correction stage is added to estimate the
current state of the target.

In this paper, the preferred nonlinear filtering method for an
implementation of ISE-IMM algorithm is PF. Because the general PF
algorithm needs some modifications to suit the IMM framework, an
IMM-PF algorithm with an effective reducing resampling method is
described in detail. This resampling method is based on the residual
resampling method [34] and featured in roughening [26, 27].

The rest of this paper is organized as follows. Section 2 formulates
the mathematical models for maneuvering target DBT with signal
time delay. Section 3 proposes the general ISE method, ISE-IMM
method and current state prediction method; some problems in special
tracking scenarios are also discussed. In Section 4, some IMM
filtering algorithms especially IMM-PF is introduced. Simulations and
conclusions are presented in Sections 5 and 6, respectively.

2. MATHEMATIC MODELS FOR TIME-DELAYED TMA

2.1. Problem Description

In Figure 1, the observer receives a signal λkT at sample time kT which
was originally emitted by the target at time kT − tk, here tk denotes
the signal propagation interval. The target signal emitting position
and current position are denoted as pkT−tk and pkT , respectively. The
interval ∆Tk,k+1 between consecutive signal emitting time is referred
to as “signal emitting interval” (SEI). For standard TMA, the SEI
remains constant and is equal to observer sample interval T . But here
it becomes unknown and time varying which depends on the tracking
geometry.
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Figure 1. Illustration of TMA with signal time delay.

2.2. Mathematical Models

2.2.1. Target State Expression

The problem is mathematically defined in two dimensional Cartesian
coordinates. At observer sample time kT , the target state vector is
denoted as xt

kT . Let (xt
kT , y

t
kT ) be the target position and (ẋt

kT , ẋ
t
kT )

be the target velocity in the x-y plane. The target state vector is
defined as

xt
kT =

[
xt

kT , y
t
kT , ẋ

t
kT , ẋ

t
kT

]T (1)

similarly, the observer state vector at time kT is

xo
kT = [xo

kT , y
o
kT , ẋ

o
kT , ẋ

o
kT ]T (2)

the relative state vector at time kT is then defined as

xkT = xt
kT − xo

kT = [xkT , ykT , ẋkT , ẋkT ]T (3)

When taking the signal emitting time delay into consideration, suppose
a signal is emitted by the target at time kT − tk (target state xt

kT−tk
)

and received by the observer at time kT (target state xo
kT ). Define the

signal emitting state vector

xkT−tk,kT = xt
kT−tk

− xo
kT (4)
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Figure 2. Illustration of time-delayed signal propagation.

Note in situation illustrated in Figure 2, vector xkT−tk,kT contains a
position component B, rather than A or C. This means the observer
always receives time-delayed signals which can not reflect the current
states of the target.

2.2.2. Dynamic Models and Measurement Equations

The dynamics of a maneuvering target can be modeled by multiple
switching regimes [11, 12]. Assume that during any observation interval
T , the target obeys one of three dynamic models: (1) constant velocity
(CV) motion model; (2) anticlockwise coordinated turn (CT) model;
(3) clockwise CT model. Target dynamic model switches whenever it
maneuvers. Let rk ∈ {1, 2, 3} be the mode variable denoting the target
dynamic model in the interval ((k − 1)T, kT ].

Under the assumption that target remains its dynamic model
unchanged in the interval ((k − 1)T, kT ], it is still possible for the
target to experience more than one dynamic models within a single
signal emitting interval. A typical situation is shown in Figure 3, where
the target changes its dynamic mode from mode 1 to 3 during signal
emitting interval (3T − t3, 4T − t4]. Obviously the target dynamics can
not be simply described by any of three models in such a situation.
However, in this paper, we are only interested in signal emitting state
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at the end of every SEI and it can be well estimated after an IMM
output merge step. This method will be described in Section 4. Here
for simplicity, we can still assume target maintain its dynamic mode
unchanged within a SEI. Let mode variable r′k ∈ {1, 2, 3} denotes the
target dynamic model in the interval ((k − 1)T − tk−1, kT − tk], then
the target dynamics with signal time delay can be written as

x(k+1)T−tk+1,(k+1)T = f
(
xkT−tk ,x

o
kT ,x

o
(k+1)T , r

′
k+1,∆Tk,k+1

)
+ Γkvk

= F(r′k+1) (xkT−tk ,∆Tk,k+1) · (xkT−tk + xo
kT )

−xo
(k+1)T + Γkvk (5)

Here F(r′k+1)(·) is the transition matrix corresponding to mode variable
r′k+1. For this particular problem of interest, they can be specified
as follows [12]. F(1)(·) corresponds to CV motion, F(2)(·) and
F(3)(·) correspond to coordinated turn transitions (anticlockwise and
clockwise, respectively). They are given by

F(j)(xkT−tk , kT ) =





1 0 ∆Tk,k+1 0
0 1 0 ∆Tk,k+1

0 0 1 0
0 0 0 1


 , j = 1
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)
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)
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(
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)
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(
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)
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(
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)
cos

(
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)



, j = 2, 3

(6)

where the mode-conditioned turning rates are

Ω(2)
k =

am√(
ẋkT−tk,kT + ẋo

kT

)2 +
(
ẏkT−tk,kT + ẏo

kT

)2

Ω(3)
k = − am√(

ẋkT−tk,kT + ẋo
kT )2 + (ẏkT−tk,kT + ẏo

kT

)2
(7)
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Figure 3. Target changes its dynamic model during SEI.

Here am is a typical maneuver acceleration. Since the turning rate
is time variant and expressed as a nonlinear function of target speed,
mode 2, 3 are clearly nonlinear transformations. Γk is given by

Γk =




∆T 2
k,k+1/2 0

0 ∆T 2
k,k+1/2

∆Tk,k+1 0
0 ∆Tk,k+1


 (8)

vk is a 2 × 1 i.i.d. process noise with zero mean and covariance
Q = σ2

aI2. Here I2 is a 2 × 2 identity matrix.
Here available measurements are signal frequency and the angle

from the target to the observer, referenced to the y-axis. Suppose the
target emits single frequency f0 tonal signal during observation time,
the received signal frequency at kT is zf

kT , the measured angle is zθ
kT ,

the measurement equation can be expressed as

zkT = h (xkT−tk,kT ,xo
kT ) + ωk (9)

or

[
zθ
kT

zf
kT

]
=




arctan
(
xkT−tk

ykT−tk

)

f0 ·
vs + ρ(1)kT−tk

vs + ρ(2)kT−tk


 +

[
ωθ

k

ωf
k

]
(10)
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where

ρ
(1)
kT−tk

=
ẋo

kT ·xkT−tk,kT +ẏo
kT · ykT−tk,kT√

x2
kT−tk

+y2
kT−tk,kT

ρ
(2)
kT−tk

=
(ẋo

kT +ẋkT−tk,kT)·xkT−tk,kT +(ẏo
kT +ykT−tk,kT)·ykT−tk,kT√

x2
kT−tk

+y2
kT−tk,kT

(11)

according to Doppler effect equation. ωk is a zero-mean Gaussian
white noise with covariance Rk = diag(σ2

θ , σ
2
f ); vs is the signal transmit

velocity. The objective of DBT with signal time delay is to estimate
x̂kT = E(xkT | zkT ) out of noise corrupted, time-delayed signals.

For BOT problem, the only difference lies in the measurement
function where BOT only has bearing measurements.

If the time varying signal emitting interval ∆Tk,k+1 is replaced
by constant sample interval T , it becomes standard DBT or BOT
problem. Compare signal-time-delayed DBT problem with standard
DBT problem, we find the former is more complicated: both the
dynamic and measurement equations are functions of delayed state
vector xkT−tk,kT rather than current state vector xkT . Moreover, the
value of SEI is unknown and time varying. The methods to solve these
problems are introduced in Section 3.

3. SIGNAL TIME DELAY ANALYSIS

Estimation of SEI is a major task of TMA with signal time delay. In
Section 3.1, an iterative state estimation (ISE) method is proposed
to estimate the SEI as well as target state in every sample interval,
with known target dynamic model. Section 3.2 extends the ISE
method to solve maneuvering target TMA with multi-model dynamics.
Section 3.3 presents a method to predict the current state based on
the estimation of signal emitting state. Some interesting cases are
discussed in Section 3.4.

3.1. Iterative State Estimation Method

Suppose the estimation of last-step signal emitting state vector at kT
is given as

x̂kT−tk,kT = E (xkT−tk,kT | zkT ) (12)

Assume the target current dynamic mode is known as r′k+1, the
objective of current step is to predict x̂(k+1)T−tk+1,(k+1)T based on
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x̂kT−tk,kT and measurement z(k+1)T . The signal time delay equation
can be derived from Figure 1:

∆Tk,k+1 + tk+1 = T + tk (13)

After moving tk+1 to the right side of the equation, the SEI is expressed
as:

∆Tk,k+1 = T − tk+1 + tk (14)

It also holds true for the estimated values:

∆T̂k,k+1 = T − t̂k+1 + t̂k (15)

Here the sample interval T is a constant, signal propagation interval
t̂k is known from previous calculation. Therefore ∆T̂k,k+1 is a function
of t̂k+1. For simplicity, we denote the function as

∆T̂k,k+1 = ϕ
(
t̂k+1

)
(16)

Signal propagation interval t̂k+1 is determined by the signal emitting
state vector x̂(k+1)T−tk+1,(k+1)T which contains the relative position
components. It is given by

t̂k+1 =

√
x̂2

(k+1)T−tk+1,(k+1)T + ŷ2
(k+1)T−tk+1,(k+1)T

vs
(17)

where vs is the signal transmitting velocity.
The calculation of x̂(k+1)T−tk+1,(k+1)T is based on a recursive

nonlinear filter algorithm (EKF, UKF, PF, etc.). For simplicity, here
we denote the functional relationship as

x̂(k+1)T−tk+1,(k+1)T = ζ
(
∆T̂k,k+1, x̂kT−tk,kT , r

′
k+1, z(k+1)T

)
(18)

where mode variable r′k+1 and measurements z(k+1)T are assumed
to be known, x̂kT−tk,kT is obtained from the last cycle. Thus
x̂(k+1)T−tk+1,(k+1)T can be calculated if and only if ∆T̂k,k+1 is given.

Combining Equations (17) and (18), we can find that t̂k+1 is a
function of ∆T̂k,k+1, which can be denoted as

t̂k+1 = ψ
(
∆T̂k,k+1

)
(19)
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Therefore, the problem is to find an appropriate value of T̂k,k+1 to
satisfy both Equations (16) and (19) such as


∆T̂k,k+1 = ϕ

(
t̂k+1

)
t̂k+1 = ψ

(
∆T̂k,k+1

) (20)

In practice, this can be changed into the following optimization
problem 


∣∣∣∆T̂k,k+1 − ϕ(t̂k+1)

∣∣∣ ≤ δ
s.t. t̂k+1 = ψ

(
∆T̂k,k+1

) (21)

where δ is chosen as a optimization threshold parameter.
A way to solve the problem is linear search method proposed

in [16], but it may be computational expensive when Equation (18)
is very complex. The predefined increment must be small enough to
ensure the optimization solution exists. With a smaller increment, the
result is expected to be more precise, but accompanied with a rise in
total search steps.

For linear search method, it’s necessary to define searching bounds
to guarantee termination of the algorithm [16]. The searching bounds
are related with the last-step target state. However, strict constraints
on the signal emitting interval may deteriorate the performance
of tracking algorithm, especially when the previous target state
estimation is inaccurate. In such a situation, the estimated SEI is
very likely to be out of bounds in order to keep track with the true
trajectory.

Therefore, we proposed an iterative method to deal with the
problem. Assume at time step k, the estimated state is x̂kT−tk , the
signal propagation interval is t̂k, the signal emitting interval is ∆T̂k−1,k.
The mode variable at step k+1 is r′k+1. The initial estimated value of
∆T̂k,k+1 is set to be

∆T̂ (α)
k,k+1 = ∆T̂k−1,k (22)

Then the initial estimation of signal emitting state vector
x̂(β)

(k+1)T−tk,(k+1)T can be calculated according to Equation (18). It is
rewritten here as follows:

x̂(β)
(k+1)T−tk,(k+1)T = ζ

(
∆T̂ (α)

k,k+1, x̂kT−tk,kT , r
′
k+1, z(k+1)T

)
(23)
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The propagation interval is:

t̂
(β)
k+1 =

√(
x̂

(β)
(k+1)T−tk+1,(k+1)T

)2
+

(
ŷ

(β)
(k+1)T−tk+1,(k+1)T

)2

vs
(24)

Then an approximation of ∆T̂k,k+1 is given by

∆T̂ (β)
k,k+1 = ϕ(t̂(β)

k+1) = T − t̂(β)
k+1 + t̂k (25)

Substitute ∆T̂ (α)
k,k+1 and ∆T̂ (β)

k,k+1 into∣∣∣∆T̂ (α)
k,k+1 − ∆T̂ (β)

k,k+1

∣∣∣ ≤ δ (26)

to test whether it holds. If not, update ∆T̂ (α)
k,k+1 by a·∆T̂ (α)

k,k+1+(1−a)·
∆T̂ (β)

k,k+1, where a is a positive number between 0 and 1. For simplicity,
it can be set to 0.5. Repeat Equations (23)–(25) until Equation (26)
becomes true, then output approximations of signal emitting state
vector x̂(k+1)T−tk+1,(k+1)T and SEI ∆T̂k,k+1. To avoid endless iterations
when a divergent case occurs, the maximum count of iterative cycles
is set to m.

The pseudocodes of the iterative state estimation (ISE) method is
described in Table 1.

3.2. Maneuvering Target Tracking with Signal Time Delay

3.2.1. The Interactive Multiple Model Estimator

The IMM estimator [18, 21], with the Markov switching coefficient,
is one of the most efficient dynamic multiple model estimators. All
dynamic models are parallel processed and the model probability
represent model switch. Some implementations of IMM filters are
presented in Section 4.

3.2.2. ISE-IMM Method

IMM estimator can be easily embedded into ISE method if we replace
the function ζ(·) in Equation (18) by an IMM estimator: in this
way signal emitting state vector can be estimated step by step. The
structure of ISE-IMM method is described in Figure 4, where j ∈
{1, 2, 3} denotes the different modes.
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Table 1. Iterative State Estinmation (ISE).

[
∆T̂k,k+1, t̂k+1, x̂(k+1)T−tk+1,(k+1)T

]
=ISE

[
∆T̂k−1,k, t̂k, x̂kT−tk,kT , r

′
k+1,m

]

• Initialize ∆T̂ (α)
k,k+1 = ∆T̂k−1,k; set step = 1

• Calculate x̂(β)
(k+1)T−tk+1,(k+1)T using Equation (23)

• Calculate t̂(β)
k+1 using Equation (24)

• Calculate ∆T̂ (β)
k,k+1 using Equation (25)

• WHILE
∣∣∣∆T̂ (β)

k,k+1 − ∆T̂ (α)
k,k+1

∣∣∣ > δ AND step ≤ m

– Update ∆T̂ (α)
k,k+1 By a·∆T̂ (α)

k,k+1+(1−a)·∆T̂ (β)
k,k+1 (0 < a < 1)

– Calculate x̂(β)
(k+1)T−tk+1,(k+1)T using Equation (23)

– Calculate t̂(β)
k+1 using Equation (24)

– Calculate ∆T̂ (β)
k,k+1 using Equation (25)

– step = step+ 1

• END WHILE

• Assign ∆T̂k,k+1 = T̂ (β)
k,k+1

• Assign t̂k+1 = t̂(β)
k+1

• Assign x̂(k+1)T−tk+1,(k+1)T = x̂(β)
(k+1)T−tk+1,(k+1)T

3.3. Target Current State Prediction

In Figure 4, the output of each step k is the estimation of signal
emitting state vector xkT−tk,kT , which is denoted as x̂kT−tk,kT , and
x̂kT−tk,kT = E(xkT−tk,kT | zkT ). However, the eventual objective of
TMA with signal time delay is to estimate the state vector x̂kT at
sample time kT , where x̂kT = E(xkT | zkT ). The target current state
estimation x̂t

kT is given by:

x̂t
kT = xo

kT + x̂kT (27)
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Figure 4. Structure of ISE-IMM method.

Since there is not any direct information about the target current
state, x̂kT can only be predicted according to the estimated state vector
x̂kT−tk,kT and signal propagation time t̂k. The prediction of current
relative state is expressed as

x̂kT =
3∑

j=1

µ
(j)
k ·

[
F(j)(x̂kT−tk,kT , t̂k) · (x̂kT−tk,kT + xo

kT ) − xo
kT

]
(28)

where µ(j)
k denotes the normalized probability of mode j at step k, t̂k is

the estimated signal propagation time, both are outputs of ISE-IMM
method.
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3.4. Mode Switch Error in Prediction Stage

Using prediction method mentioned above, the real-time state x̂kT

can be estimated based on the time-delayed state x̂kT−tk . However,
there are some circumstances under which the real-time trajectory is
unpredictable. Considering the tracking scenario in Figure 5:
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1 2 3 41 2 3 4
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the jth estimated target signal emitting position

the j true target current position

the j predicted target current position
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'
'''

'
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th

th

Figure 5. Mode switch error in a tracking scenario.

In Figure 5, six consecutive sample intervals are taken from
the observation period. Suppose we have a perfect estimation so
that estimated values of state x̂kT−tk , mode probability µ

(j)
k and

signal propagation interval t̂k are equal to true values. Under such
assumption, the first two predicted positions perfectly match the true
ones since the target remains the CV model during signal propagation
interval. But this is not the case for the 3rd and 4th sample intervals.
When the 3rd sample state is on the turning, signal reflecting x̂3T−t3
arrived at the observer, then the ISE-IMM method tells the most
probable motion mode is CV. A prediction is made according to the
wrong mode probability thus big error occurs at the turning. We call
the error mode switch error. In the 5th sample interval, target signal
emitting state and current state are in the same dynamic mode again,
so the predicted position is true.

Generally speaking, the mode switch error occurs when the
following two conditions are both satisfied: (1) tk ≥ T ; (2) r′k �= rk.
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So obviously there is no mode switch error in non-maneuvering case,
where r′k = rk = 1 at any time step. If tk < T holds true in every
sample interval as the case illustrated in Figure 6, there is no mode
switch error either.
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Figure 6. A tracking scenario without mode switch error.

By decreasing sample interval T , mode switch error can be reduced
but by no means eliminated. Mode switch error potentially deteriorates
the accuracy of current position estimation, but luckily it does not
necessarily happen in every tracking scenario and only has effect on
the beginning steps of mode switching.

4. IMM FILTER ALGORITHMS

IMM (interacting multiple model) algorithm is featured by its
merging stage: the input to any of the model-matched filters is an
interaction of all the model-matched filters. According to the dynamic
model formulated in Section 2.2, three parallel model-matched filters
are required for CV motion, clockwise and anticlockwise motion,
respectively.

Theoretically, the model-matched filter in the framework of IMM
algorithm can be implemented with any nonlinear filter algorithms.
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But for particle filter (PF) the situation is slightly different, because
PF uses a set of weighted particles rather than the mean and the
covariance to describe a distribution. So the IMM algorithm needs to
be modified to suit the case.

4.1. General IMM Algorithm

The IMM algorithm is developed under the assumption that the
evolvement of mode variable rk can be modeled by a Markov chain
with transitional probability matrix Π, where k is the time index. In
the specified problem here,

Πij � p{rk = j | rk−1 = i}, i, j ∈ M � {1, 2, 3} (29)

According to Section 2.2, the target motion is classified into three
models. Thus Π is a 3 × 3 matrix with elements satisfying Πij ≥ 0
and

∑3
j=1 Πij = 1. Sometimes such dynamics of the target is referred

to as jump Markov system.
The general IMM algorithm can be implemented with any

nonlinear filter which describes the probability density by mean
and covariance, such as EKF and UKF. The basic idea is that for
each dynamic model, a mode-matched filter is used, and the filter
outputs are weighted according to the mode probabilities to give the
estimations of state mean and covariance. At each time index, the
target state pdf is characterized by a finite Gaussian mixture which
is then propagated to the next time index [12]. Details of the general
IMM algorithm can be found in [17]; an algorithm summary of IMM-
EKF is presented in [22].

4.2. IMM-PF Algorithm

The IMM-PF cycle has the following stages.
1. Input interaction stage:[{

x(i,n)
k−1 , r

(i,n)
k−1 , w

(i,n)
k−1

}
, i ∈ M, n ∈ S

]
→

[{
x(i,n)(j)

k−1 , r
(i,n)(j)
k−1 , w

(i,n)(j)
k−1

}
, i, j ∈ M, n ∈ S

]
(30)

where M � {1, 2, 3} denotes the set of mode variables and S �
{1, 2, . . . , N} is the set of particle indices. Each mode has N particles.

At time index k−1, the IMM-PF starts with a set of 3N weighted
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particles, with mode variable r(i,n)
k−1 = i, and weights satisfying

3∑
i=1

N∑
n=1

w
(i,n)
k−1 = 1, i ∈ M, n ∈ S (31)

Note for each mode rk−1 = i, N weighted particles span the empirical
density

pxk−1|rk−1,zk−1
(x |rk−1 = i)=

N∑
n=1

w
(i,n)
k−1 δ

(
x − x(i,n)

k−1

)/
N∑

n=1

w
(i,n)
k−1 (32)

as an approximation of the exact density.
After the interaction stage, the conditional probability density for

mode rk = j changes into

p̃xk−1|rk,zk−1
(x | rk = j) =

3∑
i=1

[
Πij

N∑
n=1

w
(i,n)
k−1 δ

(
x − x(i,n)

k−1

)]/
w̃

(j)
k−1

=
3∑

i=1

N∑
n=1

Πijw
(i,n)
k−1 δ

(
x − x(i,n)

k−1

)/
w̃

(j)
k−1 (33)

where

w̃
(j)
k−1 =

3∑
i=1

N∑
n=1

Πijw
(i,n)
k−1 (34)

serves as a normalization factor, or an approximation of mode
probability p̃r|zk−1

(rk = j) after interaction stage.
According to Equation (33), density p̃xk−1|rk,zk−1

(x | rk = j) is
spanned by 3N weighted particles denoted as{

x(i,n)(j)
k−1 , r

(i,n)(j)
k−1 , w

(i,n)(j)
k−1

}
, i ∈ M, n ∈ S (35)

where

x(i,n)(j)
k−1 = x(i,n)

k−1

r
(i,n)(j)
k−1 = r

(i,n)
k−1 = j

w
(i,n)(j)
k−1 = Πijw

(i,n)
k−1 /w̃

(j)
k−1 (36)

2. Resampling stage[{
x(i,n)(j)

k−1 , r
(i,n)(j)
k−1 , w

(i,n)(j)
k−1

}
, i, j ∈ M, n ∈ S

]
→

[{
x̃(j,n)

k−1 , r̃
(j,n)
k−1 , w̃

(j,n)
k−1

}
, j ∈ M, n ∈ S

]
(37)
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In order to maintain the fixed number of particles per mode, a
resampling stage is necessary after the input interaction. In this paper,
residual resampling algorithm is applied combined with a roughening
procedure [26–28]. An independent jitter c(i,n)(j)

k−1 is added to each

sample x(i,n)(j)
k−1 . In practice, this method can effectively boost the

diversity of particles without significantly increasing computational
complexity.

After roughening, residual sampling which reduces the number of
particles from 3N to N is implemented as follows:
(a) For mode j, denote{

x(i,n)(j)
k−1 + c(i,n)(j)

k−1 , r
(i,n)(j)
k−1 , w

(i,n)(j)
k−1

}
=

{
x(j,m)

k−1 , r
(j,m)
k−1 , w

(j,m)
k−1

}
(38)

where m = N(i − 1) + n, hence m ∈ {1, 2, 3 · · · , 3N}. Then retain
l
(j,m)
k−1 = Nw(j,m)

k−1 � copies of sample x(j,m)
k−1 . The total number of

retained copies will not surpass N .
(b) Let l(j)r = N − ∑3N

m=1 l
(j,m)
k−1 . If l(j)r > 0, obtain l(j)r samples i.i.d.

drawn from
{
x(l,m)

k−1

}
with probabilities proportional toNw(j,m)

k−1 −l(j,m)
k−1 ,

m = 1, 2, . . . , 3N .
(c) After steps (a) and (b), N samples have been drawn from 3N
particles, and they form a set

{
x̃(j,n)

k−1 , r̃
(j,n)
k−1 , w̃

(j,n)
k−1

}
, j ∈ M, n ∈ S.

Mode variable r̃(j,n)
k−1 = j. Particle weight w̃(j,n)

k−1 is set to w̃(j)
k−1/N ,

where w̃(j)
k−1 is defined by Equation (34).

3. Prediction and correction stage[{
x̃(i,n)

k−1 , r̃
(i,n)
k−1 , w̃

(i,n)
k−1 , zk

}
, i ∈ M, n ∈ S

]
→

[{
x(i,n)

k , r
(i,n)
k , w

(i,n)
k

}
, i ∈ M, n ∈ S

]
(39)

According to the system dynamic Equation (5), prediction step is
applied as follows:

x(i,n)
k = f (i)

k−1

(
x(i,n)

k−1

)
(40)

mode variables remain unchanged in this stage, so

r
(i,n)
k = r̃(i,n)

k−1 = i (41)
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particle weight is updated according to

w
(i,n)
k =

w̃
(i,n)
k−1 Λ(i,n)

k

3∑
i=1

N∑
n=1

w̃
(i,n)
k−1 Λ(i,n)

k

(42)

Here the likelihood Λ(i,n)
k is given by

Λ(i,n)
k = p

(
zk | x(i,n)

k , r
(i,n)
k = i

)
= N

(
υ; 0,S(i)

k

)
=

1

2π
∣∣∣S(n)

k

∣∣∣1/2
exp

(
−1

2

(
υ

(i,n)
k

)T (
S(n)

k

)−1
υ

(i,n)
k

)
(43)

where

υ
(i,n)
k = zk − hk

(
x(i,n)

k

)

z̃(n)
k =

N∑
i=1

1
N
hk

(
x(i,n)

k

)

S(n)
k =

N∑
i=1

1
N

[
hk

(
x(i,n)

k

)
− z̃(n)

k

] [
hk

(
x(i,n)

k

)
− z̃(n)

k

]T
+ Rk (44)

4. Output stage
Merge the 3N samples into one final output estimate state:[{

x(i,n)
k , r

(i,n)
k , w

(i,n)
k

}
, i ∈ M, n ∈ S

]
→ [xk] (45)

Mode probability is approximated as

w
(i)
k =

N∑
n=1

w
(i,n)
k (46)

For each mode, a model state vector is given by

x(i)
k =

N∑
n=1

w
(i,n)
k x(i,n)

k

/
w

(i)
k (47)

And the final output is

xk =
3∑

i=1

w
(i)
k x(i)

k (48)
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Note the output of particle filter algorithm is the a posteriori
probability density of the stage given all measurements. An estimate
of the density is

pxk|rk,zk
(x | rk = i) =

N∑
n=1

w
(i,n)
k δ

(
x − x(i,n)

k

)/
w

(i)
k (49)

In next section we’ll apply two kinds of IMM filters to solve a
maneuvering target tracking problem with time delay.

5. SIMULATIONS

Suppose a fixed ground-based acoustic sensor is tracking a low altitude
target. Figure 7 shows the configuration. Here the time step (or the
sensor scan period) is T = 5 s and the whole scenario lasts 400s (or
80 steps). Sound speed in air is 340 m/s. Target radiates single 300Hz
tone and is known by the observer [33, 34]. The target starts from
(−1, 4). It maintains a constant speed of 351.7 km/h (or 0.0977 km/s)
with an initial course of 83◦. It executes the first maneuver from time
step k = 21 to k = 32 and attains a new course of 207◦. The second
maneuver begins at time step k = 45 and lasts 12 steps, at the end
the target attains a course of 96◦ and maintains the new course for
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Figure 7. Signal time-delayed tracking scenario illustration.
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the rest of the observation period. The maneuvering acceleration in
two turnings are 0.0038, 0.0032 km/s2, respectively. The sensor is fixed
at (0, 0), 4.123 km away from the initial position of the target. The
measurement standard deviation is σθ = 0.0262 rad for bearing and
σf = 0.2 Hz for frequency. The process noise standard deviation is set
to σa = 1.6 × 10−4 km/s2.

The following parameters are used in simulation for filter
initialization. The transition probability matrix required in the IMM
method is set to be

Π =




0.9 0.05 0.05
0.4 0.5 0.1
0.4 0.1 0.5


 (50)

The initial speed and course standard deviations are set to σs =
1 × 10−4 km/s and σc = π/4 rad. The initial range standard deviation
σr is set to 2 km. To solve the DBT problem in time delay context,
the proposed ISE method is combined with IMM-EKF and IMM-
PF for comparison. The iteration termination threshold is set to
T/100. Target typical acceleration used in filter dynamic models is
0.0038 km/s2, notice that it is mismatched with the second turning.
ISE-IMM-PF uses 200 particles for each mode. The Monte Carlo
simulation number is 100. However, the number of effective Monte
Carlo runs is less than 100, because we consider the runs with a position
estimation error at any time index larger than 20σr divergent and cross
them out. A record of the number of divergent tracks for different filters
is shown in Table 2.

Table 2. Performance comparison of two filters.

ISE-IMM-EKF ISE-IMM-PF

Divergent tracks count 16 0

Average RMSE(km) 4.91 1.16

Average computing time(s) 0.0042 2.0148

Average iteration count 4.38 8.45

The root mean square errors (RMSE) of the target position
estimated by two filters are shown in Figure 8. ISE-IMM-PF
outperforms ISE-IMM-EKF as expected and achieves a RMSE of
about 1.3 Km at the end of the observation period, where the distance
between observer and target is 27.1 Km.
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Figure 8. RMSE for tracking scenario illustrated in Figure 8.

For further comparison, Table 2 lists the number of convergent
tracks, the values of average RMSE, average computing time per cycle
(time step) and average number of iterations per cycle, for both filters.

Note that ISE-IMM-EKF has 16 divergent tracks out of 100 Monte
Carlo runs. The other three metrics listed in Table 2 are computed
only on convergent tracks. Obviously in such a time-delayed tracking
scenario, the overall performance of ISE-IMM-EKF is considered worse
than that of ISE-IMM-PF.

A comparison of the average computing time shows that the
better performed ISE-IMM-PF suffers from the disadvantage of
computational complexity. However, this ISE method tends to be
faster than linear search method, since both methods converge to
a local optimization solution in less than 10 iterations on average.
According to [16], a pair of linear searching bounds in the above
scenario can be approximately calculated out to be 3.88 s, 7.02 s. If
a step increment is set to 0.05 s (same with the iteration termination
threshold), then approximately 63 steps are needed in a searching cycle.

The ISE method behaves well when combined with IMM-PF in
the time delay scenario described above. For a detailed comparison
see Figure 9: here ISE-IMM-PF takes signal time delay effect
into consideration while the conventional IMM-PF does not. The
performance improves evidently after ISE method is added.

We can observe that almost the whole RMSE curve of ISE-IMM-
PF is below that of IMM-PF. Although ISE-IMM-PF has a larger
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RMSE in the second turning stage due to the mode switch error,
its RMSE drops to a lower level quickly after the beginning steps
of the turning. Since conventional IMM-PF does not have a state
prediction stage, it could avoid mode switch error, but time-delayed
measurements largely deteriorates its performance.
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A comparison between the true value of SEI and the estimations
by ISE-IMM-PF is illustrated in Figure 10. Though the estimated SEI
strongly deviates from the true value in the beginning due to a bad
initial density, ISE-IMM-PF manages to decrease the error and obtains
a satisfactory estimation after a few steps.

For time step k = 80, statistical analysis on 100 estimated values
of SEI shows no sign of divergence in this tracking scenario. Figure 11
shows the histogram of 100 estimation errors. All the errors range from
−0.6 s to 0.6 s, with mean −0.021 s and variance 0.0324 s2.

6. CONCLUSION

In this paper, a general iterative state estimation (ISE) method for
time-delayed tracking is described in detail. The method is well suited
to IMM maneuvering target estimator and a combination called ISE-
IMM is proposed to solve the maneuvering target Doppler-bearing
tracking problem in time delay context. Simulations have been carried
out to compare the performances of two nonlinear filters in the
framework of ISE-IMM in a typical scenario, and the results show the
effectiveness and stability of ISE-IMM-PF in combating the negative
effect of signal time delay.
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